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Binary systems for finite planes. (*9)

1. - Introduction.

An affine plane consists of things, called « points», and sets of points,
called «lines », satisfying the following postuldtes

1. Two distinet points are contained in (are ]omod by, he on, d@tomnne)
exactly one line.

2. Lines being defined as « parallel » if and only if they have no common
point, Kucrip’s parallel postulate holds; that is, given a point P not
lying on a line ¢, 3 exactly one line m through (i.e., containing) P
parallel to ¢. '

3. There exist three non-collinear points (i. e., 3 points not on any single
line).

From these postulates, various well-known properties can be derived (for
example [5] (})). If one line has n points, every line has » points, the whole
plane has n® points, and there are exactly n-(n -~ 1) lines altogether. An af
fine plane can be completed by adding a line of ideal points in the usual way;
the resulting plane is called a «projective » plane, and is characterized by
the projective axioms of incidence:

1. two distinct points determine exactly one line;
two distinet lines have a common point;

3. there exist four points, no three collinear.

(*) Indirizzo: Dept. of Mathematics, Syracuse University (U.8.A.).
(**) Ricevuto il 10-9-1960.
() I numeri in neretto e tra [ ] si riferiscono alla Bibliografia posta al termine del
lavoro.
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The structures of affine and projective planes have not been completely
investigated; but developments of the past decade have helped to establish
the usefulness of these structures in Geometry and Combinatorial Analysis.

A number of authors have discussed planar coordinate; (cf. the bibliog-
raphy); yet the literature contains no answer to the following specific question.
What is the most general « double binary system » which may serve to coor-
dinatize affine and projective planes? It is the purpose of this paper to give
the answer for the finite case. In fact, I shall obtain a simple set of necessary
and sufficient conditions-and these will be proved independent. The kernel
of the idea was suggested by G. BirxHOFF [3]. It will also be of interest to
study the transformations that can be made on these double-composition
systems without destroying their assential affine property.

2. - The meaning of « most general».

Let A denote a finite set of » elements, on which are defined single-valued
binary operations of addition () and multiplication (-). Assume that the
ordered pairs (z, y) of elements from A give the points of an affine plane n and
that equations of the forms @ =k and y = b -+ m -2, for k, b, m € A, represent
all the lines of z (2). Since m has exactly (n* -+ n) lines and since there are
exactly (n»* -~ n) equations of the forms & =k and y = b + m-2, distinet
equations represent distinct lines. We might expect, from the analogy of
the real plane, that » of the equation ¥ = b + m-2 would give lines having
constant y-coordinates. Such is not necessarily the case, however, as shown
by the following example (n = 3).

The points The operations (®)
0,2) (1,2) (2,0) + 012 o2
01012 01001
0,1) (1,1) (22 11201 17010
2112 21022

(0,0) (1,0) (2,1)

(3) As usual, multiplication takes precedence over addition in the order of operations.
(®) Throughout this paper, I shall adopt the convention that a - b appears in the
addition table opposite a¢ and under b. A similar convention will hold for a-b.
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Tabulation of the lines

yo=0 + 0.2 (0,0) (1,0) (2,1)
y =140 (0,2) (1,2) (2,0)
y =2 +0-w (0,1) (1,1) (2,2)
y=0-+12 0,0) (1,1) (2,0)
y=1-+1-2 (0,2) (1,0) (2,2)
y =2 +1w (0,1) (1,2) (2,1)
g =0 -4+23 (0,0) (1,2) (2,2)
y=1+22 0,2) (1,1) (2,1)
y =2 £ 2 (0,1) (1,0) (2,0)

v =0 (0,0) (0,1) (0,2)

z =1 (1,0) (1,1) (1,2)

@ =2 2,00 (2,1) (2,2)

A second example shows that the main body of the multiplication table
need not even contain all n elements of A and that some columns for addition
may be completely arbitrary.

2w -]012 02) (L2) @0)

+[01

01012» 0001

11120b 11010 0,1) (1,1) (2,2)
2‘200 21100

(0,0) (1,0) (2,1)

(%) Each of @, b, ¢ is an arbitrary element of 4.
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0 +0w=y (0,0) (1,00 1) a-+l-w=y (0,00 (1,1) (2,0)

Lhlo=y (01) (IL1) 22) 1+la=y (0,1) 1,2) 21

o

0w =y (0,2) (1,2) (2,0)

8
i
I
i
=

(0,2) (1,0) (2,2)
022 =y (0,1) (1,0)‘ (2,0) @ o=1

1+2w=y (0,2) (1,1) (2,1) also: 2 —2

[
-

bo

%

2w =y 10,0) (1,2) (2,2) @ =0

These examples indicate that some of the systems obtained under the as-
sumptions of this section are too general to be useful.

In an affine plane, two sheafs of parallel lines may be singled out to vi-
sualize as the « verical » and « horizontal » lines respectively. The remaining
lines can be pictured as curves winding through the « horizontal-vertical »
square lattice. Thus it seems reasonable to require that the equations y = %
should also represent straight lines (in addition to equations # ==k and ¢ ==
=b + m-x). Assuming that points are given by the ordered pairs (x, y) and
that equations @ =5k, y =%, y =b -+ m-2 represent straight lines, it is
still not necessary that certain equations y = - {(m-x) represent the same
lines as do the equations y = k. In fact, it is no longer necessary that distinet
equations represent distinct lines, as I now show by an example (n = 2).

0,1 (1,1

(0,0 1,0)

Here two sets of parallel lines are given by # ==k and y =% Both y =
0 +0-2 and y =0 + 1-2 represent the single line {(0,0), (1,1) }, while both
y=1-+0-wandy =1 41 o represent the single line { (0,1), (1,0) }. If the
restriction is added that distinct equations of the form Y ==b -~ m-x repre-
sent distinet lines, the resulting system becomes an interesting generalization
of a GALOIS Field. In the next section I shall discuss the properties of such
systems.
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3. - Affine Systems.

Definition I. A finite set A with two single-valued binary operations,.
+- (addition) and-(multiplication), will be called an affine syslenm <s=-

(i) Each ordered pair (@, %) of clements from A represents exactly
one point of an affine plane z. [z and A will be said to « correspond »].

(ii) Bach equation of the form # =k, y ==k, or Y o=b ~+ m-w represents

Lemma 1. If 4 is an affine system of n elements corresponding to the-
plane z, then every line of m is represented by an equation » =k, ¥ =k,
or ¥ ==b -+ m-z. The n equations y = k represent exactly the same lines ag.
the n equations y = b -+ 0-2 for some fixed element ¢ < 1. Moreover, 0-2 is-
constant,-independent of w. I m 2 0, Then 7 it == W -¢ == o =7,

7

Proof. No line y =& -~ m-x can coincide with a line @ == k, since b, m, ¢
uniquely determine 4 4 m-¢. Thus the #»® distinct equacions ¥y = b -+ m-a
represent the remaining #? lines of =, and » of these equations represent the
same lines as the » equations y = .

To show the existence of the required element 0, suppose that for every:
med, m-u =m-v=u =0yp; ie, for any fixed m, m-z assumes all values
€ A as z varies over 4. Pick = ¢ and y = b* - m*
same line. Then ¢ = b* - m*.2 for all z & 4, ie, ¢ =0 Ly forall ued,
whence ¢ = b* 4 m-z, for all m and all e A, contradicting the fact that
distinet equations y =10 + m-x give distinet lines.

Thus 3 elements 0, 2y, w,€ 4 with 0-2, = 0-2,, but with =, == x,. For
any be A, the equation y = + 0-2 must represent the same line as y =
=b - 0.2, since the points (@, b - 0-2,) and (z,, b + 0-2,) determine a
line and since 0-2; = 0-2,. All # lines ¥ =5 -~ 0-2 thus correspond to
the lines y = k.

It m 5 0, no equation y =5 -+ m-» can give the same line as y == k.

Therefore, if m £ 0, m 2, = m-3,=—> @, =, .

o

14

both representing the

- Theorem 1. Let A denote a finite set (of n elements) with single-valued.
binary operation 4 (addition) and -(multiplication. Then A4 is an affine
system if and only if the following algebraic conditions, (i)-(iv), are valid..

(i) A contains at least two elements € A.

(ii) For all m 3= one particular element 0 € 4, m-u = m-v=>u = v.
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(iii) For all b, u,ved, b 4+ u =b +v=—u =¢

(iv) I a, b, ¢, fe A, with @ 5= b, then 3 an ordered pair ¢, s of elements
from A for which ¢t 4 s-a =¢ and ¢ -+ s+ = {.

The following additional properties hold in any affine system (being deri-
vable from i-iv).

(2} The solution ¢, s in condition (iv) is unique.
(b) 0-x is identically constant, independent of .

Proof. Assume that 4 is affine. Any line # = & has at least two points
50 4 also must have at least two elements.

Condition (i) is part of the lemma.

To prove (iii), pick m 5= 0. There exist unique elements #, and z, such
that m-z, = v and m @, = v respectively. The points (z;, b -~ u) and (2.
b - u) satisfy the equation y =& -+ m-z, whence @, == m, and % —o.

Condition (iv) states that distinet points (a, e) and (b, f) with @ £ b sa-
tisfy an equation of the form y =1 -- s .

Assume, conversely, that 4 is a finite set (of # elements) with two single-
valued binary operations + and-and satisfying (i)-(iv). We must check that
the ordered pairs (2, ¥), for #, ¥ € A, meet the requirements for points of an
affine plane when a «line » is taken to be the set of all pairs («x, y) satisfying
an equation of the formz =%, y =k, ov y = b + m-x, for k, b, m € 4. First
it is convenient to establish the extra properties (a) and (b) stated in the
theorem. To show the uniqueness of the solution ¢, s given elements a« = b,
¢, and f, note that for fixed o 5= b every pair ¢, f leads to a pair ¢, s, and every
pair ¢, s determines a pair e, f; since 4 is finite, the correspondence between
the pairs, ¢, f and ¢, s is one-to-one. To prove condition (b), let an element
a 5= 0 be given, and let elements ¢, s satisfy ¢t +s-a =a, ¢ -+ $-0 =a. Then
t4sa=t-+s0=s5a=s0 by (ii), and $0 =s-a=s =0 by (ii).
‘Thus 0-a = 0-0 for all a. Moreover, the one-to-one correspondence of 1, s
-onto ¢, f established by ¢ -+ sa = ¢ and ¢ + sb = f maps the »n pairs {, s =0
onto the n pairs ¢ = f. Hence the n sets of paires (z, y) which satisfy the »
equations ¥y = b + 0-x coincide with the # sefs given by v =e¢.

Postulate 1. The points (zy, y,) and (@, 9,), with ¥y, 5% y,, satisfy o = 2y;
they cannot satisfy a relation ¥ == b -~ me because the given binary operations
are single-valued.

If 2, 5= @, and ¥,, y, ave given, there is exactly one choice of b and m
for which b -+ ma; =y, (¢ =1, 2). [This includes the possibility y, = y.].
Clearly the given points cannot satisfy an equation x =e.
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Postulate 2. Given ¥y = b -+ mae, with m £ 0, each value of 2 determines
-exactly one value of ¥, and » may assume just # values; any equation z =k
or y ==k is satisfied by exactly «» points; hence every line has just # points.
Given a line r and a point P not on r, the lines joining P to points of » are n
in number and contain altogether exactly 1 -+~ #-(n — 1) points. If there are ¢
other lines through P, there must be ¢-(» — 1) points on them besides P
itself. The fotal number of points being %2, we obtain 2% =1 4+ n-(n — 1) +
g-(n —1), whence ¢ =1 and the parallel postulate holds.

Postulate 3 follows at once from (i).

The independence of conditions (?)-(4v). The trivial set {O} satisfes all pro-
perties except (i), 0 4+~ 0 and (-0 being defined = 0.
The following system satisties all properties except (ii).

+]012 cjorz2
01012 01001
1{201 11010
21120 21022

Although it is not immediately obvious that this system satisfies (iv),
that fact is easily verified by tabulating the lines.

The next example proves the independence of (iii), and the accompanying
table shows that this example fails to satisfy (iv).

4101 2 .]012
0100 01020
11112 11012
2122090 21201
Tabulation
0+00=0, 0-41-0:20, 0 +2-0=1, 1 4+0-0=1, 1 +1:0=1,

0 +2-1 =0, 14+0-1=2, 1+1-1=1,
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In general, systems that satisfy (i)-(iii) fail to satisfy (iv). For example,,
eonsider

+101 Lo1

010 0110

1101 1701
Here the system

P+ 50 ==0 t+581 =0

has no solntion, although (i)-(iii) are valid.

The generality of affine systems. An example to illustrate the generality of
affine planes is given below.

Lo

}:_Io.i ;-'101:

2
0102 0ol111
11012 1012
21120 2210

Theorem II. In an affine system (of # elements), the following conditions:
are all equivalent. (The preceding example shows that they are not necessary)..

1) The equation « + m-z =1t + m'-x (with m = m’) has at least
(hence exactly) one solution for w.

2) For a given «slope» m = 0-0, the lines ¥ = b + m-x are all « pa-
rallel » [i.e., nonintersecting].

3)b e =a-+c=>h=a().

Proof The equation @ --m-x =b 4 m'-@ (where m == m') can never
have distinet solutions a; and @, . If it did, then «, m and b, m’ would consti-
tute distinet solutions of the system ¢ +s-2, ==a -~ My, t + 8wy == -
+mex, .

(1) <= (2). Any given line, ¥ = b -~ my 2, meets exactly n2 other lines..
The » lines ® =k and the »n (n — 1) lines y = b -+ m'-2 where m’s= m, consti-
tute a set of »? lines. Those lines all intersect y == b -+ my & <=>a 4 m-5=>b -+

(*} Each of these conditions is equivalent to Birkuorr’s eondition (i) on p. 111 of [3]-
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- m'-z always has a solution; moreover, they all intersect # ==b -- my-
s <=y Jines ¥ == b b ngew and ¥ == b" - myea fail to meet unless b o= .

(2) <=> (3). b 4 ¢ == a 4 ¢<==>for somem 5= 0-0 and for some x, b - m-
<@ = ¢ -+ m-x; the latter implies that b = ¢ if and only if (2) is satisfied.

4. - Normalizations and transfermations of affine coordinates.

When a plane can be represented over an affine system, it is natural to in-
quire if more standard coordinates can be introduced into the same plane.
The guestion remains open whether the affine system I have introduced must
have a prime-power number of elements. In studying this question, it is
important to know if an afline system can be modified toward a GAvLoIs field
‘without changing the number of elements involved, or at least if the existence
-of an affine system with # elements implies the existence of a field of order 5.
In that case; n is of ‘coursea prims-power. ~Conversely, it is-instructive to
Aransform Garos fields into affine systems having more -general properties.

Definition II. Two afline systems will be called isotopic <=> their corres-
ponding planes are geometrically isomorphie.

Lemma 2. Tt the columns of the multiplication table for an affine system
are subjected to an arbitrary permutation, addition being kept invariant,
the resulting number system is still affine and, in fact, isotopic to the original
system. ‘ ‘

Proof. Tt is convenient to regard the given permutation as a transformation
a — a' acting on the top title row of the multiplieation table (with the columns
themselves left fixed). Denote the original operation of multiplication by -,
and define the new multiplication * by the condition 8% a' =b-«. Deline
a map, p, from the set of all points under{ +, 0 * } by the relation y { (x, g/} ==
= («'y ¥); w is one-to-one since & — &' is one-to-one. The points satisfying

x ==k are mapped onto points satisfying # = E’. Also points which satisfy
¥ =b -+ m-z ave mapped onto points which satisfy y ==b -+ m=a, since
Y =b - mw<==>y = b mxx'. Thus wis the desired geometric isomoprhism,

Lemma 3. Assume that 4 is an affine system under { 4y } Let -+ remain
fixed, while the rows in the multiplication table are subjected to any permu-
tation that leaves the top row (0-w) unchanged. The new multiplication, *, thus
obtained, combines with -+ to form an affine system isotopic to the original.

Proof. The pérmutation on the vows for multiplication may be regarded
as a permutation @ — @' on the left-hand title column for -, with 0 — 0. Thus
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@b = a'*h. The identity map qp{ (z, ¥) } = (@, ¥) 18 now a geometric isomor-
phism of the plane for { +, - } onto the plane for { -4, *}. In fact, the points
(k, y) still satisfy 2 =k and the points satisfying ¢ = b + m-x are exactly
those wich satisfy y =b 4 m'*».

Lemma 4. Two affine systems having the same elements are equivalent if
their multiplications are the same and if the rows in one addition table form
o permutation of the rows in the other.

Proof. For some transformation a — a’ (on the common elements of the
two systems) a + 2 =a' @ o (all #); and ® denoting the two operations of’
addition. The identity map { (z, y) } == (¥, ¥) is a geometric isomorphism
since any point (k, y) satisfies 2 = & and since the points which satisfy y =
==b + m-x are exactly those which satisfy y =b' & m-a.

Given an affine system with opera.»tions{ +, - }, and given an operation & ,
obtained by permuting the columns for -+, it is not true in general t-hm:{ @, }
will be affine. For example, start with the field of integers (mod 5), and alter
its addition table, interchanging the columns o+ 2 and @ 4, to form a new
addition &, but leaving multiplication unchanged. No solution exists for
the simultaneous system ¢ @ s-1 =2, t @ s- 3 = 3.

It is possible, however, to establish the following restricted result.

Lemma 5. Let 4 be an affine system with operations { +, - }and let ® be
an operation satisfying #+4-a =2 ® o/, where @ — @’ is an arbitrary one-to-
one transformation on 4. Then a new multiplication, *, can be constructed

on A so that 4 is affine under{ & ,*} with the new system isotopic to the original.

Proof. Define m* (¢') = (m-a)’, for all m, ac A, so that b +m-a=0b &
® m* (a'), for all m, b, ae 4. Obviously 4 is affine under &, *

To establish the equivalence, set y{ (a, ) } = (a', ¥). Any line & =k is
mapped by y onto the line » = k'. Any liney =& + m-z is mapped onto the
line y =& @& m* (a').

Theorem III. If a (finite) affine plane admits a representation by an affine
system { -+, -}, then coordinates from an affine system { e, *} can be
introduced into the plane in such a way that0 @ 2 =2 ® 0 =&, 0% 2 =0,
and 1" @ =w. (Such an affine system will be called « standard »).

Proof. The elements b + 0-0 comprise all of the system { +, - }. (Other-
wise, the lines y =k would not all be given by the equations y = b - 0-x).
After applying Lemma 4, we can assume that b -+ 0-0 =b. In particular
0 +0-0 = 0. Next apply Lemma 5 to permute the columns of the - table,
obtaning a new addition, @, which satisfies 0 -+ a =0 & o' = o/, and a new
multiplication, 4, where m 4 (¢') = (m-a)’. Thus, 0 =0 +0-0 =0 @
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@ (0-0) = (0-0), and 0 32’ = (0-2) = (0-0) = 0. A permutation on the
columns for 4 gives a final multiplication, *, which satisfies 1* x=w, for some
element 1 =0, with 0% = 0. . : .

Theorem IV.Tf a standard of fine system { -, } has one element «, such
that the elements z-a, comprise all of the system, then an isotopic standard
system exists with an element 1 which is both a left and a right unit.

Proof. Permute the rows of the multiplication table to obtain -z, = .
In particular, #4 @, = x,. Permute the columns to obtain z,-» = z, so that @,
becomes the unit element.

Remark. Unfortunately, the Lypothesis of Theorem IV may fail to hold-
even in a standard system. For example:

+]01 2 [012
0/012 0]000
1,120 1/012.
2201 21210

P/

Lemma 6. Let n denote a one-to-one transformation on a standard affine
system A such that, given s, @ = b € 4, there exists an s’ € 4 for which 8'-a =
= {s-a}and s-b =x{s-b}. Then s’ is unique.

Proof. 1t s"-a — s'-a and s"*b = s'+b, then{z =0,y =+¢'} and {& =0,
y =s"} both satisfy the system @ +y-a =s'-a, - y-b =s"+b. Hence
8[ ____s//-

Theorem V. Let A denote a standard affine system under { -+, - }. For
fixed o€ A, define t ® @ =1t + @, if ¢ 5% Uy; U ® 7 (¥) = U+ @, wWhere
is a one-to-cne permutation on A. The following is a necessary and sufficient
condition that 4 be affine under { &, } given s, @ = b € 4, there exists
one (and hence exactly one) s’ such tha,t s'a=n {s-a} and §-b == {s-b}.

Proof. (The sufficiency) It is enough to show that %, + s-a = ¢ and u, +
+ s-b ={, for a 5= b, imply the existance of s’ such that w, ® s'-a = ¢ and
w, ® s'-b =f. This is immediate since = (s-a) =s'-a, and 7 (s-b) = s'-b.

(The necessity) If u, -+ s-a = ¢, and %, + s-b = f, with a s b, then u, ®
® m(sa) = e and w4, ® 7z (sb) = f. In the affine plane relative to { o, - },.
there exists s’ such that u, ® s'-a = ¢ and 4, @ s'-b = f; by additive can-
cellation, = {s-a}=s"-a and & {sb} = s'*D.

" Remark. A one-to-one transformation s of the type described in Theorem V
must fix 0. In fact, corresponding to given elements a s b, there is exactly
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-ome 8" € A for which both s"-¢ = {s-a} =z (0) and §'-b =z {s:0}=n {0}
Thus 8" =7 {0} =s'-b, with a s b, implies s* = 0.

In the process of trflnsforming a standard affine system { ot }, we may
wish to alter exactly one row wu, - x (1, 5= 0) of the addition table by defining
Uy & & == Uy -+ S+, fOr fixed s,. When does this preserve the affine property?

The answer follows easily from Theorem V, and is given below.

Corollary 1. If 4 forms a standard affine system under { -+, f, and if
we define u, @@ = u, -+ s,-, for fixed s, and fixed #y 5= 0, then 4 is affine
relative to { e, ~}<:=> (i) so 5= 0, and (ii) given s, a=% b, there is a unique
s'€d such that s -a = s,-(sa) and s'-b = so-(s-b).

Lroof. For sped, o — 8,2 is one-to-one <= so 52 0. Take n.w — s x,
_for s, £ 0; and apply Theorem V.

Remark. Condition (ii) of Corollary 1 is equivalent to Condition (ii)’: given
@ 7= b, s"ed, there is a unique s such that s -a =8y (sa) and s b =sg,-
+(sh), for. g, == 0. - ' ‘

Proof. It is enough to show that if s'-@ = s, (sa) and s'-b = 8y -(sb), while
s'-a == sy(ra) and s’-b == s,-(rb), then s =7r. (That establishes 2 one-to-one
-correspondence between s and s', for fixed s, % 0, ¢ 5= b). We have So-(ra) =
z's/'a == .?,,-(.s'a); and  so(rb) =s"+b = s,-(sb). Hence (v =0, y =r) and

(@ =0,y ==s) both satisfy  + y-a =0 +s-a,0 +-y-b =0 L 5- -b; implying
7 o= 8,

Remark. Special cases in which the conditions of Corollary 1 are valid
include the following:

(i) ¢ = 0; and given s, there is an r (depending on s and o), such that
Sor(s-@) =1z, all xea [proof-if s,-(s o) = 7@, then r-a =s,-(s-a), and
7°b =so-(s+b)];

(i) so 5% 0; and s,- (¥ z) = (s0-¥y) @ [proof-given s, take r = s,-s];

(iil) s, 5= 0; and 2-(y-2) = (2-y)-2 [proof obvious].

5. - Projective systems.

The usual homogeneous coordinates for a projective plane can be regarded
a8 the set of number-triples (w, J, 1), (@, 1, 0), and (1, 0, 0), with lines given
by the linear equations (21 +y-a) +2b =0, y-1 +z-¢ =0, 2-1 =0.
VEBLEN and WEDDERBURN [8] hfwe introduced systems more general than
fields (later called « VEBLEN-WEDDERBURN Systems ») whose triples and hnear
equations still lead to projective planes.
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In this section, I shall deseribe the most general binary system whose
triples and linear equations determine a finite projective plane, and relate
such homogeneous coordinates to the affine systems already studied. Once
again, only finite planes will be considered.

Definition IIX. A finite set 4 will be called a projective system = (i) two
single-valued binary operations, addition (+) and multiplication (-), are
defined on A; (ii) 3 elements 0 and @ € 4 such that the triples (w, y, @), (x,
D, 0), and (P, 0, 0), for @, y € A represent uniquely the points of a projective
plane m; (iii) equations of the forms (w-p + y-a) + 2-b = O, 99 +z¢=0,
and z- g == 0 represent all the lines of x.

Lemmas 7-11 concern a projective sustem P.

Lemma 7. Distinet equations represent distinet lines, 0.y =0, &y =£ 0,
0 = @, and the points (v, @, 0), (D, 0, 0) comprise line z-y = 0.

Proof. Denote by # the number of elements in P. There are 1 4 n 4 nd
equations of the designated form and 1 + n - #2 triples (@, ¥, D), (x, D, 0),
(D, 0, 0). Hence the corresponding plane m has 1 + n + n? lines, so that
distinet equations represent distinet lines. ;

Since exactly n <41 points satisfy z-9 == 0, we must have 0 -y =0 but
D-y 5 0; whence 0 == @, and line Z-p =0 consists exactly of the points
(%, D, 0) and (D, 0, 0).

Remark. The element » may or may not coincide with 0. Also P May or
may not coincide with @. To see this, consider a finite filed, in which we
may take p =@ =1 5¢ 0; also the system shown below, in which @ =1 5=
0 =y,

+ 01 o1
001 0]00
110 1110

Lemma 8. Bach line of the form ¥Y'yp + 2-¢ =0 contains (@, 0, 0) and n
points (z, ¥, @), for some fixed y,. Distinet values of ¢ correspond to distinet
values of y,. The equation y-p + @-¢ = 0 establishes a one-to-one corre-
spondence between y and e.

Proof. By Lemma 7, each equation y-y + 2+¢ = 0 must be satisfied by a
point of the form (w,, y,, @) and hence by all » points (z, Yo, @) but by no
-other points (z, y, @). Since every equation Y¥-p + z-¢ = 0 represents a line,
and since two points determine exactly one line, distinct values of ¢ give di-

9. — Rivista di Matematica.
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stinet values of y. Hence a one-to-one correspondence between y and c¢ is
established by the relation y-y + @-¢ = 0.

Each equation ¥y - z-¢ = 0 must be satisfied by a single point having
z = 0, and so that point must also satisfy y = 0. Therefore, the point (@, 0, 0}
lies on ¥y + 2-¢ = 0, for every c.

Corollary 2. Uy =V P=>U =V
Pa=Pb=>a =D.

The equations -9 =« and @-y = b have unique solutions for @ amd % res-
pectively.

Proof. If w -y = vy, let ¢ denote the unique element such that n-yp -+
+@-¢:=0. Then v-yp +P-¢c =0 and u = .

Similarly, ®-a =®-b=>a = b,

The uniqueness- of the solutions follows from the fact that P is finite.

Corollary 3. The equation @ + x = 0 has a unique solution for =.

Proof. Let a' denote the unique element for which a’-y = a. Then a'-yp -~
+ @-u =0 for exactly one %, and # = @-u is the unique solution desired.

Corollary 4. 0 +0 =0 and 0-4 = 0.

Proof. Since (P, 0, 0) lies on every line y-w + z-u =0, it follows that
O-p +0-%=0 DBub0-p =0 (Lemma 7), so that 0 4 0-% = 0. Thus, re-
gardless of %, 0-% is the unique solution of the equation 0 + » = (¢ and this
solution is itself o since 0 +-0 =0 -+ 0.y =0,

Lemma 9. v + a =v 4+ a=>u =+o. That is, the equation # +-b =¢
has a unique solution for «.

Proof. By Corollary 2, 3 m, n, ¢ such that m-p =u, n-yp =v and 0+¢ = a.
By Corollaries 1 and 2, 3 & for which (m-yp + @-¢) + P -k = 0. Then also
(ney + @-¢) + -k =0, and the points (m, D, 0), (n, D, D) satisfy the equation
(¢ +y-¢) + 2k =0. Unless m = n, the unique line determined by these
two points would have the form y-y + z:d = 0. Hence m = n, and u = m-
Y =Ny =,

Lemma 16. The lines through an «ideal point » (m, @, 0) comprise, beside
@y =0, exactly » lines (x-y + y-a) + 2-b =0 for some fized a.

Proof. Assume that (m, @, 0) lies on both of the lines (- yp + y-a) + 20 =0
and (w-y +y-a') +2b' =0. Then (my+P-a) +0=0 and (m-y +



[15] BINARY SYSTEMS FOR FINITE PLANES 129

+@-a') + 0 =0. From Lemma 9, it follows that m-y +Da =0 =m-
-y + P-a’; whence, by Lemma 8§, a = a'.

Lemme 11. The points of the form (#, y, @) which lie on a given line (-p +
+ y-a) + z-¢ =0 are exactly those which satisfy -y -+ y-@ = k. The value
of k is determined by e, there being a one-to-one correspondence between
¢ and k.

Proof. For given ¢, 3 a unique k such that & + @-¢ =0 (by Lemma 9).
Conversely a given & determines uniquely the value ¢ (by Corollaries 2 and 3).

Theorem VI. A (finite) projective system P is also an affine system.

Proof. It will be sufficient to establish conditions (i)-(iv) which charac-
terize an affine gystem.

(1) 3 distinct elemenis, since @ = 0.

(iv) If a, b, ¢, f € P, with @ 5 b, then 3 a unique ordered pair t,s, of elements
from P for wich t +s-a =¢ andt + s-b = f. In fact, since ¢ == b, it follows
from Lemma 10 that two lines (z-y -Fy-a) +2¢=0 and (v -y +y-b) +
+2-d =0 must meet in a «finite » point. By Lemma 11, equations zoy
+y-a=c¢ and w-p -+ y-b = f represent the «finite parts» of two. distinct
lines, hence have a unique solution , y. Take ¢ = z'y and § =9.

(i) b +u =b +v=—>u =o.

Assume b +u =b +v =% Then, b +~®m==Fk and b - D-n = k,
where @-m =« and @-n =v. By Lemma 9, 3 # such that # - 0 = %k We
have disinct solutions ¢ =, s =0 and ¢ = b, s =@ for the system ¢t + s-
‘m =k, t + s-n = k. Hence, by Condition (iv), m =n and 4 = @ -m = P-
o=,

(i) If m 520, m-u = m-v=>u=12. Assume that m-u = m-v, with m 40,
Choose any ge P. Then ¢ + m- -« =q + m-v. Let 7 be the unique element
for which » +0 =¢q +m-u. Then ¢ =17, s =0, and ¢ =g¢, s = m arve dis-
tinct solutions of the system ¢ + s-u = ¢ +m-u, t +sv=gq -+ m-v. This
is possible only if w = .

Lemark. The converse of the preceding theorem is not true. The example
shown below is affine but not projective.

+[01 -[01
001 0
110 110
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Tf we add to the algebraic postulates (i)-(iv) of an affine system the con-
dition (v) = 0-2=0, (vi) 0--0=0, (vil) - @=y-g=>z =y, and (Viil) 2+ ¢ =
==y + a==> @ =y, we obtain a set of necessary and sufficient conditions that
a system be projective. These conditions are not independent, however, since
(i) and (iii) can be established from (i) and (iv)-(viii). The properties (i),
(iv)-(viii) arve independent, as will be shown.

Theorem VII. A (finite) system P with single-valued binary operations of
addition and multiplication is projective <=

(i) .3 at least two elements € P.

(iv) If, @, b, ¢, f € P, with a 5= b, then 3 an ordered pair i, s, of elements
from P for which t -t s-a =¢ and ¢t + s-b = f.

(v) 0-a == 0, for some fixed element 0 € P and for all € P.
(vi) 0 -0 =0.
(vii) For some fixed element p e P, @y =y p=>x =Y.

(vili) # +a =¥y + a=>x =1.

Proof. These properties have already been proved necessary for a projec-
tive system. The proof of the sufficiency follows.

Let @ be any element == 0. As «points », take the triples (z, ¥, D), (v, D, 0),
(@, 0, 0), for all #, y € P, with distinct triples regarded as distinet points. A
« line » shall consist exactly of those points (z, ¥, 2) which satisfy an equation
of the form z+yp =0, y-y + 2@ =0, or (¥yp +yra) +2b=0.

Tt is convenient to show first that (i) and (iv)-(viii) imply (ii) and (iii):

(i) a-u =av and @ % 0=>u = 1.
(i) @« +ax =a - y=>w=1Y.

Suppose that a = b. Then each ordered pair ¢, s determines a unique
ordered pair e, f, such that ¢ +s-a = ¢ and t -+ s-b = f; conversely, each
ordered pair e, f gives rise to at least one pair ¢, s. Hence the correspondence
(t, s) — (e, f) is one-to-one and the simultaneous solution given by (iv) is
unique. By (viil), ¢ + 0 ranges over all P as t ranges over P. Hence the unique
solution for a system t +s-a =¢ and ¢ +s-b =¢ (a 7 b) satisfles s = 0.

Assume ¢-u = ¢+v, with @ = v. Then 0 +c¢-u =0 +c¢-v, whence ¢ =0,
§ == ¢, is the unique solution of the system ¢ - s-v = 0 +cu t+su=
== 0 -+ ¢-u; and ¢ = 0. This establishes (ii).

Assume that d -+ & = d + y. By (i) 3 unique m and » for which Dom =z
and @-m’ =y. Thus ¢t =d and s =@ satisfy t +sm=da +Pm and
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t+s-m =d -~ @-m. Unless m = m', this implies @ = 0, which is impossible.

Thus m = m' and @ = @-m = D-m' ==y, proving (iii).
Since 0-9 == 0 while 0-y = 0, the points satisfying z-yp =0 are exactly
those for which 2z = 0. If a point satisfies both ¢ =0 and y-y + 24 =0,

then the point satisfies ¥ = 0 and must be (P, 0, 0). The points (2, y, D) for
which y-y -+ 2-a = 0 are exactly those having some fixed value of y, and
different values of « give different values of y. Thus the lines y-y 24 =0
are also given by the equations y = k and intersect only at (@, 0, 0). Given a
point (m, @, 0) satisfying (z-p -+ y-¢) + 2-d = 0, the value ¢ is definitely
determined and all values of d ave possible. These remarks make verification
of the synthetic projective postulates trivial, except for the proof ‘that two
points (m, n, @) and (u, v, @), with » £ ¢ are contained in some line (z-y +
1/-(1) “+g+b = 0. To show this, it is enough to prove that m-yp -+ n-a =
= w- P -+ v-a for some a; and to show the 1dtter it is enough to prove that a
solutlon for g always exists in any equation ¢ + n-q = ¢ -+ v-q, where n = 2.
Givenyg, 3 ¢suchthat ¢--ng =¢ +vq. I distinet va lues of ¢ lead to distinet values
of ¢, then ¢ will range over P as g ranges over P; so that for any given ¢, the
desired solution ¢ will exist. Suppose that distinct values g, ¢ satistied ¢ -+ n-
g =¢ Fueg, ¢ --n-g =c Lo, Then the simultaneous system ¢ - s
=gt g =0 =g would have distinet solutions t =¢ s = n,
and t = ¢, § = v, which is impossible.

The independence of Properties (i), (iv)-(viit).

The following six systems establish the respective indipendence of the
postulates for a projective system.

(i) {0}, with 00 =0 and 0 + 0 =

(iv) 150123 0123
0olo123 00000
1120381 1/2103
213210 211082
311302 313201

A system ¢t 4+ s+a =e, t -+ sb =f, with ¢ % b, does not necessarily have
a solution-for example, take ¢ =0, b =e =2, and f = 3. On the other hand,
the system with @ =0, b =¢ =2, f =1 has distinet solutions {t = :3}
and {t =1, 5 =2}.

(v) +]01 “]o1

0101 0]l11
1110 11710
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(vi) +lo1 01
of10 0]0o0
101 101
(vii) tlo12 012
01012 0]000
1120 11012
21201 91210
(viii) +lo12 1012
01012 01000
1102 1012
219201 2 021

6. - Normalization of Projective Coordinates.

Every projective system is affine. Hence it follows automatically that
a given projective system can be transformed into a « standard » system in
which 1'o =21 =2, 0 -2 =2 + 0 =2 Again, the standard system is
isotopic to the original. The proof of this fact is practically the same as the
proof for the affine case and will not be given here.
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