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On the Foundations

of Macroscopic Theories of Creep. (*¥)

1. - Generalities.

The hypotheses wich form the basis of the macroscopic theories of creep are
suggested by the results of experiments which are simple in principle: for in-
stance experiments of simple pull of a rod-shaped specimen under constant
stress P and at constant and uniform temperature 0. The application of a ten-
sile load induces an instantaneous elongation in a test piece; if the stress P
is not too high this elongation is purely elastic and would disappear on removal
of the load. But, if the temperature 0 is sufficiently high and the load is not
removed, a slow creep follows the elastic deformation. Let us call L the original
length of the specimen and A L the elastic elongation; if A L is much
smaller than L the ratio 4 L/L is a convenient measure of the elastic strain
&9, which is related to the stress by Hooke’s law

(1.1) &? = PJH,,

where F, is the modulus of elasticity of the specimen at the temperature 6.

A measure £ for the permanent strain can be defined in a manner similar
to 9. ¢ ig found to increase with time at first rapidly (first stage creep); then,
for a period which is often very long, at an almost constant minimum rate
(second stage creep), and finally rapidly again (third stage creep). Qualita-
tively this behaviour is common to many metals and alloys in relatively wide
ranges of temperature and stress; but quantitatively the dependence of &

(*) Nelson Research Laboratories, English Electric Co., Ltd, Stafford (England).
(**) Ricevuto il 21 luglio 1960.
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on time is extremely sensitive both to changes of composition in the material
and to P and 0. If one could duplicate the experiments on specimens of exactly
defined composition and structure one would undoubtedly find a uniquely
defined dependence of ¢ on 0, P and t; but in practice the experimental results
show often a considerable amount of scatter. However, no allowance is made
for this fact in the present analysis; rather, for any structural member under
constant uniaxial tension P and ab constant uniform temperature 0, &? is
taken as a well defined function of time: explicitly

>

(1.2 g™ = E og (P t) .

Here the factor P/E, is introduced so that the ereep function o, represents the
fractional increase of strain over and above the elastic strain.

Even when the difficulties associated with the scatter of experimental
results arve disregarded, formula (1.2) cannot-be by any means considered as
significant for creep phenomena as Hooke’s law (1.1) is for elastic ones. In the
elastic range the proportionality between stress and strain has general validity;
& direct (non-linear) relation between stress and creep strain, as expressed by
eqn (1.2), is true only on first loading: for instance, formula (1.2) predicts the
value zero for £” when P = 0, but the creep strain does not vanish on un-
loading.

Analogy with phenomena of plastic deformation leads one to assume that
(M

the creep strain rate , not ¢”, is directly defined by the instantaneous me-

at
chanical condition of the specimen; say

de P
At~ FeTy’

where Ty can be called the time function of the material, as its dimension is that
of a time.

Such an assumption is plausible; but it is difficult to decide on the status
of the parameters which define the mechanical condition of the specimen.
The time function T, certainly depends on the stress, but seems to be also
governed by the history of the specimen (cfr. for instance, [1], [2], [3]); there
is no contradiction between this statement and what has been said above (as
to the dependence of the creep rate on the instantaneous mechanical condition
of the specimen only) if we assume that previous mechanical history has effect
only through the total creep strain &”. On the contrary the consequences of
thermal history may be more complex.
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The effects of creep strain, time and temperature on the creep rate may be
to some extent explained if the microscopic mechanism of creep is explored.
There is firstly the thermal-action factor: creep resistance may be influenced by
metallurgical changes induced when keeping the specimen at high tempera-
ture, as for instance by carbide spheroidization in carbon steels [4]. 1f the chan-
ges arise from a metastable condition and do not involve a constitutional modi-
fication, T, does not depend on time and temperature separately but rather
on the combination ¢ exp (— A/k0) (¢ time at temperature, 4 activation energy
of the change, % Boltzmann constant) if 0 is constant ([5], Appendix I and

3

[6], Appendix 2), or else on the integral [ exp (— A/k0) dt if 0 varies with
0
time [7]. In complex alloys, however, the effect of temperature is more involved
[8]. Nevertheless, when studying structures under isothermal conditions, it will
be enough to account for the fact that 7'y may depend, coeteris paribus, on the
total time at temperature, being possibly influenced by heating preliminary to
~loading. :

Actually it was behe'ved for some time that thermal action was the over-
riding factor in creep problems [5], [9]; more recently, however, the effects
of strain-hardening have been emphasized [10], [11]. As we have already
remarked above, in a macroscopic theory these effects can be accounted for
by assuming that T, depends on the total creep strain &,

In conclusion we will assume here that 7'y depends on P, £” and ¢ only,
if the temperature 0 is kept constant, and we will write the fundamental relation
between creep-strain rate and stress in the form

de® P
(1-3) At EgTy(P; eW; 1)’
2. — Significance of tension and relaxation tests.

The qualitative conclusions of Seect. 1, summarized by eqn (1.3) must be
made more definite quantitatively before applications are possible. The problem
is that of giving explicitly 7', as a function of P, ¢ and ¢. To this end suffi-
cient information is not yet available, unfortunately : most experiments on creep
are carried out at constant stress and therefore lead to a more or less complete
knowledge of the function «, (see eqn (1.2)). But this knowledge does not allow
a unique determination of 7,; this fact can be realized most easily if & mathe-
matical point of view is taken.

Records of the relative elongation of a specimen under constant stress
(L.e. records of the function Peuy/H,) versus time can be interpreted as records
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of solutions of the differential equation (1.3), precisely of solutions which cor-
respond to the initial condition

£ (0) =0.

But in general to reconstruct the right-hand side of a differential equation
(i.e., in the present instance, to determine 1) knowledge of a set of solutions,
which correspond to different initial conditions, is necessary. If only o, is known,
Ty (P, €7, 1) is determined only on the points of the octant (P >0, &” >0,
t>0) of the space (P, ¢®, {), which belong to the surface Y,

&P = (P/Iﬂg) %g (P9 ?)

and over that surface one has

(2.1) Ty[P, (P/Eg)e, t] = [%)}—1 .

For a complete determination of 7', experiments under stepwise varying stress
are necessary. Precisely, to determine 7'y at a point (P, ¢”, 7) one should first
reach through an ordinary tension test the point @, which belongs to 3, and
whose last two co-ordinates are ¢, 1; i.e., if P, is the first co-ordinate of @,
in the first stage of the experiment a test specimen should be stressed at a con-
stant level P, for the time f. Then the stress should be rapidly changed to P
and the ensuing creep rate recorded; T’y could be finally calculated using formula
(1.3). Of course, if P is less than Py, in particular if P is zero, phenomena of
creep Trecovery may be involved (see, for instance, [1], Ch. 6).

Very little information is at the present available on experiments of the
type just described [12]; nor is it possible to overcome all difficulties caused
by lack of data, using the results of relaxation tests, that is tests where the total
strain of a rod-shaped specimen in tensions is kept constant and the stress
allowed to wvary. Calling & the total strain

£ = E(e) + 8(1‘)

one gets from eqns (1.1), (1.3)

de dP P

2.2 R A D
-2) Boqi =@ T Tgp; 70
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When ¢ is constant, equal, say, to &%, the creep strain can be expressed by the
difference

(2.3) e = g% — (P|H,)

and eqn (2.2) becomes

oy ar P
(2.4) at ~ Te[P; e*— (P[Eg); 1]

Therefore records of experiments of stress relaxation can be interpreted as
records of solutions of the differential equation (2.4) in P . These records are
usually expressed in the form

25 P =EByer{1—py(c% 1)},

where S, is a positive function of ¢ (increasing from 0 to 1 when ¢ increases
from 0 to co) which is called the relaxation function ([13], Art. 38).

Tt is obvious from eqns (2.3), (2.5) that all characteristic lines of relaxation
tests in the space (P, £, t) belong to the surface Y, defined by the equation

(2.6) P = (Bye® + P){1— o[ + (P[By), 1]}

It follows that relaxation tests can determine 7'y only for values of its ar-
guments which are co-ordinates of points belonging to .. For such values
of P, &€ and t, T, is given by the formula

en  To=(PIE) | [” + (P[E)-5 Al + (PIE), 11|

It may be noted incidentally from eqn (2.4) that the relaxation phenomena
explored here are of the type shown by viscoelastic materials (See, for instance,
[13], Ch. 9). Here, however, the coefficient which multiplies . on the right-
hand side is not a constant but depends on stress and time (as well as on 9). If
T, were constant its significance would be that of a relaxation time, i.e. the time
taken by the stress in a specimen under- constant strain to be reduced to 1/e of
its initial value. As it is, the qualitative character of eqn (2.4) remains unal-
tered but the decrease of stress with time does not necessarily follow an expo-
nential law. :
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3. — Simplifying hypotheses: time hardening, strain hardening, constant

creep rate.

In Section 2 we have shown that the usual tension and relaxation tests at
constant stress and constant strain respectively determine the time function
Ty (P; & t) only on the two surfaces >, and >, of the octant (P>> 0, ¢* > 0,
1> 0) of the space (P, &, t). Similar compression tests give the values of T,
on analogous surfaces lying in the octant (P <0, £”< 0, t > 0). On the other
hand the information available at present on creep behaviour originates almost
exclusively from ftests of the type just mentioned; it must be thus considered
as far from complete.

Fortunately complete information on the time function is not necessary
for the usual applications; in most pratical cases the initial loading is followed
only by a limited variation of stress or conversely the initial straining is folowed
only by small changes in strain, For this reason only the values of 7', in a neigh-
bourhood of 3 or 3, are needed and these values can be obtained with some"
confidence by extrapolation.

Ixtrapolation may be achieved in many ways: for instance, trivially, by
fitting & function of the type

AP (£2)? ¢

to the values of 7'y on ¥, (or >.) and then assuming that the range of validity of
the approximation is extended to a neighbourhood of 3, (or >,). However, onecan
take better advantage of the fact that there is a certain degree of arbitrariness
in the choice of the method of extrapolation; having in mind future calculations
one can adopt a method which will make these calculations simpler.

In this respect it is important to note that on >, (and >,) T, can be con-
sidered as a function of two variables only [P, t or P, &* or ¢, £€”]. The remark
suggests a simple process of extrapolation, which is no more arbitrary than other
processes and leads to quite easier developments: it consists of assuming that
the dependence of T, on two variables only remains approximately true in a
neighbourhood of >, (and 3,). Although any one of the three possible couples
of variables may appear in principle equally good, it is usual to choose , P or
P, & because Ty is found to vary more rapidly with P than with ¢ or &7

It might be remarked at this point that in most technical applications
factors of safety are chosen so that tertiary creep is avoided during the lifetime
of structures; hence, in the periods of time of interest, creep rates are found
to decrease steadily. This effect is described as a time-hardening or as a strain-
hardening phenomenon according to whether greatest importance is ascribed
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to the influence of time or to the influence of strain. It is then natural to call
time hardening hypothesis the assumption that 7, depends on ¢ and P alone and
to call strain hardening hypothesis the alternative assumption, although their
acceptance may not be restricted to the range of primary and secondary creep.

In some instances secondary creep is by far the most important feature of
the phenomenon of flow, both because the deformation associated with primary
creep is relatively small and because, within the limited interval of time under
investigation, the onset of tertiary creep is avoided; then it is customary to
reduce further the complexity of the developments (to some extent at the
expense of accuracy) by assuming that 7', depends on P only. The assumption
is referred to usually as the hypothesis of constant creep rate.

Some of the implications of the hypotheses listed above may be appreciated
by comparing the ensuing predictions on the behaviour of a rod under varying
load. The simplest case of a specimen under a stress P, for 0 <t <?;, and a
stress P, for ¢, <<t < t, (Py and P, having the same order of magnitude and, in
particular, having the same sign) will be considered, assﬁming that the functions
oy (Pyy 1) and oy (Py, 1) aré Known for 0 <t <t B

Under the time-hardening hypothesis the differential equation (1.3) dege-
nerates in the form

dem P
(3.1) di  EeTe(P;t)’
if B(t) is a solution of this equation so is also ¥ (f) + C, where ( is a constant.
In our case, where P changes from P, to P, at ¢ = ¢,, ¢* is given by

(3.2) P (1) = (Py)By) wg (Pr; 1), for 0<t<t,,
and by
(3.3) e (1) = (Pof/By) [0tg (P2 1) — ot (P #)] +

+ (Py/By) g (Pyj 1), for 4 <t<<ty.

In fact formula (3.2) is true by definition; on the other hand the expression
on the right-hand side of formula (3.3) is a solution of eqn (3.1) by the remark
just made and reduces to (P,/H,) oty (Py; 1) for t == £;, thus ensuring continuity.

Under the strain-hardening hypothesis eqn (1.3) becomes

de» P
At BeTe(P; &®)’
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because the rvight-hand side of this equation does not depend on time, if E(t)
is one of its solutions so is also E(f -+ 1), where 7 i a constant.
In our case &7 is given by

e (1) = (Py/Bg) ay (Py; 1), for 0<i<ty,
and by

W (1) == (Po/By) oty (Poy t—1; -+ 1), for t; <t <t,,

provided i, is chosen in such & manner that
Py oy (Po ty) = Pray (Py; 1) .

As Pa, is & monotonically increasing function of both P and ¢, this equation
always admits of a solution if P, > Py, in which case t, is less than ¢,. If P,
is smaller than P, a solution exists ounly if ¢, is sufficiently large and P, — P,
sufficiently small so that

Pyay (Po; 1) > Py oy (Pys 1) -

It is obvious that within the ranges of primary and secondary creep (where
the ereep rate decreases) the creep predicted for ¢ > ¢, on the basis of the strain-
hardening hypothesis is in excess of that pl'edicted on the basis of the time-
hardening hypothesis if P, > P, and vice versa.

In some instances it is possible to treat the problem of a rod under constant
stress but at stepwise varying termperature in the same way as that of a rod at
constant temperature but under stepwise varying load; we do not enter in
details, however, because we intend to concentrate our attention to isothermal
conditions. To mark this point we will drop henceforth the subscript 0.

4. — Further comments on the simplifying hypotheses. A similarity parameter.

If it is assumed that the strain-hardening hypothesis is valid for values
of P, ¢”, t representing co-ordinates of points near the surface 3, (i.e. for con-
ditions near those found in experiments of stress relaxation at constant strain),
knowledge of the function f (defined in Sect. 2) is sufficient to predict the change
of stress with time in a rod under stepwise varying strain. This is so because,
under the strain-hardening hypothesis, eqn (2.4) reduces to
ar P

(4.1) e T
dt T[P; e* — (P/E)]
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hence, if S(¢) is one of its solutions, so is also S(¢ -+ 7) where 7 is an arbitrary
constant. It follows in particular that if we know, for instance, g for two dif-
ferent values of &%, say ¢ and &, and for ¢ in the interval (0, t,), we can give
the explicit expression of P when ¢ is kept equal to g for 0 <& <<ty (t, <t)
and to &, for ¢ <it<t,. The statement needs some qualifications; they
will be mentioned presently. For 0 <<, we have, of course,

P B {1—B (0},
and for t; <<t <t,, instead,
P =T {1—fle, t + 0},
provided 7 satisfies the equation
I C L R S TR

Because s/{l — p (&%, t)} is a monotonically decreasing function of both &*
and ¢, eqn (7.2) has a solution only if & differs little from & . Precisely, if &,

is less than e;, it must be
8;{1 '“' ﬁ(EL 1) }< 8:{1 _'.5 (8;’ 0) }7
and, if e, is greater than ¢, it must be

g{1—p (e, t) > e;{l—ﬁ (&, tz)}.

It is remarkable that, in problems of relaxation, the time-hardening hy-
pothesis does not lead to similar simple developments; in fact both the de-
pendent and the independent variables appear in the right-hand side of the
equation

dr P

&t TP 1)

So far we have spoken here of both the strain-hardening and the time-
hardening hypotheses as means of extrapolating the values of the function T
from the surfaces >, and >, to their respective neighbourhoods. These assump-
tions, however, embody more than a mathematical artifice: they make reference
to possibile atomic mechanisms of creep. Their validity may not be restricted
to a neighbourhood of the surfaces >, and >,; where such is the case experi-
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ments of simple pull and relaxation are necessarily related: more precisely an
equation can be written which involves the functions « and g.

Under the time-hardening hypothesis the function 7' can be obtained from
eqn (2.1)

doc|~t
oe; o = |5

and also from eqn (2.7). The relation follows

0o B 0
(£3) = == | [+ @B A + (2B, ],

where ¢ must be eliminated using eqn (2.6).

Vice versa in the strain-hardening hypothesis 7(P; £”) can be first obtained
from eqn (2.1) (where ¢t must be eliminated using eqn (1.2)) and then from eqn
(2.7). Eqn (4.3) follows again; but here ¢t must be eliminated using eqn (2.6).

Systematic experimental work designed to relate, if possibile, creep and
relaxation phenomena (on general lines, as indicated above) has not been carried
out so far. Partial result have led authors to contradictory statements; to some
extent the disagreement can be justified with the extreme variability of response
in specimens prepared in accordance with the same nominal specification and
the consequent difficulties in correlating experimental results. Comparisons are
also made difficult by extreme differences in time scales (and lives) for parts
designed to work at not greatly different temperatures. Here some help may
come from the introduction of a similarity parameter. Note that the equation
(2.2) wich relates the total strain to stress and time can be put in a non-dimen-
sional form by introducing a typical strain-rate D; D could be, for instance,
the ratio of the maximum permissible strain over the expected lifespan. Repla-
cing then P and 7 with the quantities

(4.4) P = En, T =®/D
and the variable ¢ with the ratio /D, eqn (2.2) becomes

de dn 7
4.b = == i
(4.5) dr dz - s’
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an equation which involves only non-dimensional variables: the strain e, the
non-dimensional stress z, the non-dimensional time 7 and the parameter @,
We call S the Truesdell number, because it was first introduced by C. TRUES-
DELL in a general analysis of the mechanics of bodies possessed of a time func-
tion, such as T [14].

As T depends on P, & and ¢ it will be impossible to speak of a Truesdell
number ag characteristic of a certain problem; comparisons may be stated,
however, between ranges of values for B in different problems.

We may note here incidentally that dimensional considerations restrict
greatly the type of the function 7', if the material does not posess, beside
the modulus of elasticity F, also at least one time modulus. To be physically
acceptable 7' must have the form

(4.6) . T = t.lﬂ[(P/E); 8(7})]

for materials without time moduli, as immediately follows from a comparison
of the dimensions of the variables concerned. The hypothesis of absence of
time moduli, leading to the specification (4.6) for T, would allow, if accepted,
simplifications of the type permitted by the strain-hardening hypothesis, be-
cause the time could be effectively reduced to the role of an auxiliary variable.

In particular it is immediately obvious that, under the circumstances, if
(P/E) o (P; t) is a solution of eqn (1.3), so is also (P/B) o (P; vt) where v is an
arbitrary constant. Also, in the experiment of tension of a rod under stepwise
varying load described in Section 3, the predicted strain for ¢> 1, would be
now

£ (1) = (PofB) & (Ps; at),
where the constant a must satisfy the equation
Py (Pg; aty) = Pyo Py 8) .

When the dependence of 7T on ¢ is more complex than that envisaged in for-
mula (4.6) the material must possess at least one time modulus, say ». It will
be convenient later to put the function 7 in the form

)4.7) T = tH [(P/E); &7; (t})]-
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5. — Creep under complex stress.

The behaviour of a cylindrical rod under tension and of a few other systems
under stress can be described on the basis of eqn (2.2); most stress analyses,
however, involve complex stress distributions. To deal with these a general
form of the stress/strain-rate relation must be first agreed upon, as the exten-
sion of formula (2.2) i3 not unique; a possible choice is indicated in this Seection.
We start by recalling some classical definitions and properties; the hypotheses
on which the generalization is based can then be clearly stated.

At any poinf in a body € a general state of stress can be characterized by
the components 7, (h, k =1, 2, 3) of the stress tensor, given with reference to
a cartesian frame of co-ordinates (0, @y, ., x;); the tensor 7, can be split into
the sum of its spherical part, the mean normal stress z:

1
(5.1) ~ : To== 3 (711~ Tay ~+ Tag)

and a deviatoric part, as follows
(5.2) Te = T + (Tar — T01)

[0n: is the KRONECKER delta]. This partition is so convenient for our purposes °
to call for a specific notation for the components of the second tensor on the
right-hand side of formula (5.2):

(5.3) S == Tpr— T3

the tensor s, is termed stress deviation.

The conditions of equilibrium for C assure that 7,, (and hence s, is sSym-
metric. Furthermore if we call ¥, (k =1, 2, 3) the components of the body
force acting on C, and f, (k =1, 2, 3) the components of the surface forces
acting on the boundary 3 of @, the following equations must be satisfied

3, Oty o in @
(5.4) Sk =F, .. in C,
1

a(E 13

) 3
(5'5) Zk Tar Vi “—-‘fh e 0N 2.
1
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In (5.5) », are the direction cosines of the exterior normal to . Reference is
made here to the equations of equilibrium rather than to the dynamic equa-
tions for @ because the motions associated with creep are usually so slow that
inertia forces can be safely disregarded.

We will measure the strain in accordance with the classical linear definition,
thus assuming that the displacements of the points of € are small. This is in
line with the definition of strain given in Sect. 1 where the change of length
of a rod was referred to its initial length, not to its current length. If u, (h =1,
2, 3) are the components of the displacement, the components of the strain
tensor are

1 [0u, o,
(5.6) Cpr = I

5_..._

3 b =1 2 .

), 0, k=129

The tensor e, can be split into the sum of the mean normal strain ¢ and
_the strain deviation v,..

(8.7) € = Yar + €0n -

e, defined by
1
e = 3 (611 + €an + 633)}

measures the increment of volume per unit initial volume.

As long as the displacements are small the components of the strain-rate
tensor can be simply expressed in terms of the components v, of the velocity
vector

. 1 [ov, 0
(5.8) b =5 (———’ + ﬂ) ;

ox;, ox,

du,,

here, of course, v, = Tl b =1, 2, 8).

All definitions and relations given so far in this Section apply to any con-
tinuum and do not suffice in general to determine the mechanical state of C.
We still lack the analytical expression of the material properties of C: the
relation between stress, strain and strain rate. For sake of simplicity we seek
here that relation under the hypothesis that C is isotropiec.
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Then, if the deformation were perfectly elastic, the two tensor s, and y;
and the two scalars T and ¢ would be simply proportional

7 =3 Ke,
(5.9)
‘ Sur = Q'G‘}jhk: (h'; k= ]: 2’: 3).

K and G are respectively the bulk modulus and the shear modulus; both moduli
are proportional to the elastic constant I already introduced, but their defi-
nition involves also Poisson’s ratio u

I I

~

(5.10) K=gi—zs ““aaizw

This shows that the recording of the elastic lengthening of a rod under tension
is not sufficient as an experimental basis of a three-dimensional theory of elastic
deformation; the accompanying lateral contraction must be also examined.

Similarly the effect of creep on volume changes must be stildied, betore equ (2.2)
can be generalized. The point seems to be clearly decided on experimental
basis; but to proceed to an analytical statement we must introduce a prelimi-
nary hypothesis to this effect:

In a body subject to elastic deformation and creep the tolal strain can be
spiit into the sum of elastic and creep strains, separately obeying different laws:

(e)

— ().
Cni == O

!
T O

(5.11)

. pley o om e (p}.
& == C 1 € ] ’,‘/m; - ’yhk + yhk 2

in particular the elastic portion of the strain in still velated to the stress through
eqns (5.9) .

We may note incidentally that the statement does not imply that the dis-
placement itself can be split in a manner similar to the strain: in general only
the total strain can be associated with a displacement in accordance with the
eqn (5.6), not the individual ef;, ¢ . From a geometrical point of view one
could in fact choose either of these two tensors arbitrarily; on the contrary
the sum e, must satisfy the conditions of compatibility of de Saint Venant,
conditions which follow from the fact that there are three components of the
displacement available to fit the six independent components of the strain
tensor. The fact that sometimes the removal of external loads frcm a body
subject to creep is not followed by the vanishing of stress must be attributed
to the geometrical circumstance just mentioned. :
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Let us go back now to the question of the effect of stress on change of vo-
lume: experimental evidence seems to show that ereep deformation is not
associated with any appreciable change in volume and that a hydrostatic
pressure does not cause creep ([15], Appendix 11). Hence our second hypothesis:

During creep the mean normal strain e is purely elastic
e(p) — 0, e =— 6,(e)
e s related to the mean normal stress by the formula
(5.12) T =3Ke.

The formula which corresponds in our case to the second elastic formula (5.9)
remains to be stated. In this 1*espeeb we have remarked in Sect. 1 that a direct
relation seems to exist between stress and creep strain rate rather than between
stress and creep strain; eqn (1.3) already reflects this circumstance. However,
the possible generalizations of the unidirectional formula (1.3) are still manifold,
even when the choice is restricted by the assumption of isotropy. The similar
question in the field of plastic deformation has been dealt with conclusively
in [16] and [17], where the most general relation has been obtained; this involves
linearly the two tensors ¢ and s, and also the deviation of the square of s
with coefficients depending on the invariants of the tensor s, .

Here we must on the one hand allow also for the effect of strain-hardening;
but otherwise we follow a criterion of simplicity, and we assume that the relation
between stress and strain rate involves only the tensors y"” and s, with coefficients
which depend on time and on the second imwvariants of ¥ and s, only

1 1
2 2 2 2 2 2 2
J = :‘3' Spe = 5 (811 Sas 833) ~S1a i Sas Sa1 -
hk

(5.13)
I=2 }. el=2{ P +Da P+l + 4{ 2P+ 2+ 21 )

explicity the relation is writien

38y,

2ETIV3T, VI[3;4’

(5.14) Vi =
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where the numerical coefficients are arranged so that uniformity with formula
(1.3) is obtained; in fact for the case of uniaxial tension P in the direction of
the a,-axis one has

811 == Saq == — P[3, 85 =2P[3; 8, =0 for h #%k;

J == P3y I =3[Py pP = 2,

6. — The special case of constant stress or constant strain.

Tt is of interest to examine in some detail the consequences of the hypotheses
made in Sect. 5 in the particular case of constant stress or constant strain.
Some of the implication appear then more clearly; also cases of technical in-
terest can be studied in all generality.

When. the tensor s,,-is constant.its. components. appear..in. eqns-(5.14).as
mere parameters; with the substitution

3 sy
e =5 e 0
all eqns (5.14) reduce to the single one
aF V3T

d  prV3TiFig ]

the solution of this equation, which corresponds to the initial condition
F==10fort == 0, can be given if the function «, introduced in Section 1, is known

P(t) = (V3J/E) o (V3T ; 1);

in fact (P/E) o (F, t) satisfies eqn (1.3), and vanishes for ¢ = 0. We have
then for the components of the creep tensor

Y2 (1) = (35m/2B) « (V/3J, 1),
and for the total strain deviation

» 1, 3 «(V3J,1)
(6.1) Yar (B) = Y -+ 3 ﬂ”*E"'““ Shk -
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This means in particular that for a body subject to constant and uniform siress
the strain and the displacement is expressed by the same formulae which are valid
in the pure elastic case if only the shear modulus G is substituted by a pseudo shear
modulus I given by the formula

(. S3a(V3J,1) )1
6.2 — LB ,
(0:2) F=G)t 2(1 + p)

The theorem has an immediate application in the prediction of the behaviour
of thin-walled tubes under internal pressure, axial load and torsiom.

When the total strain is constant eqns (5.9) and (5.14) can be combined to
give

3841

2+ WTTV3IL VI ]

(6.3) Sy =

and the problem of finding the dependence of s, on time can be reduced to
the simpler problem of relaxation treated in Sect. 5 provided that the body is
completely incompressibie. In that case u = 1/2 so that eqn (6.3) can be simplified

Snr

- 1’[\/§j;\/173—;a ’

(6.4) S =

Note that the hypothesis of incompressibility is not too restrictive: at
high temperatures Poisson’s ratio for some metals and alloys has been found
to approach the limiting value 1/2 [18].

If 7., 52y, are the constant values of the components of strain deviation,
with the substitution

Skk“:% l/é '\/33 T};hl:’

(where I is the second invariant of the tensor y,:) all eqns (6.4) can be reduced
to a single one :

5 4 WET — V37 .
(6.5) = (V3J) = VRV FERYer AT

in fact the creep-strain tensor can be written

) ) 5 /37
yg:m—mﬂEzm@*V?F%

4, - Rivista di Matematica
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and its second invariant

%I(lﬁ_ P \/3J).

On the other hand eqn (6.5) can be solved explicitly if the function g defined in
Sect. 2 is known; by comparing eqn (6.5) with eqn (2.4), and using the solution
(2.5) one obtains

V3T = BVIB{1—pWIB, 0}

and hence
2 ¢ =
Spe = I Var 1 —“[)) (\/1/3: ) ;-
3 L

At this point one may wonder if it were possible to extend also the results
of Sect. 3 regarding the behavior of a rod under stepwise varying load. In fact
the extension is possible under the time-hardening hypothesis but not in
general under the strain-hardening hypothesis. Tn the first instance the system
of equns (5.14) can be written more simply

6.6 ‘o A.,,
(6.6) Ve -ﬁ"lb‘”('\/gj;t) ’

and it can be immediately realized that, if B, (t) is a solution of this system,
80 is also By (1) + G, where G, is an arbitrary constant tensor. This property
can be used directly to find the creep strain in a body where the level of stresses
is represented by the constant tensor sy, in the interval of time (0, t;) and by
another constant tensor s, in (4, t,). If the second invariants of s, s are
written respectively JP, J® the creep strain in (0, #,) is of course

(6.7) V(1) = (3s%/2B) o (V3T ¢t
and in (f,. t.)
(6.8) YR = Bs2/2E) {« (V3I®, 1) — a (V3TD, 1)} +

+ (3sQ/2E) « (V3JD, 1) .
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In fact the function (6.8) not only satisfies eqn (6.6), but also assures con-
tinuity with the function (6.7) for f =t,. ‘

Under the strain-hardening hypothesis it remains true that if . () is a
solution of .

3s RhE

6.9 o S
(6.6) " o mr (VAT VIR

50 is also B, (¢ + 7), where 7 is an arbitrary constant; but this property is not
sufficient to build a continuous solution of (6.9) under conditions of stepwise
varying load when the components of s%) are not all in the same ratio to the

corresponding components of s}, .

7. — A restricted time-hardening hypothesis. Flexure and torsion of a heam.

To treat, to some degree explicitly, particular stress analyses, we adopt
here a restricted time-hardening hypothesis: we assume the time function to
be of the type [see formula (4.7)]

(7.1) T (V3T; 1) =t TyV3J/B) T. (t]y) .

The restriction does not make the original hypothesis much more onerous in
practice: most time functions used so far are of the type (7.1): on the other hand
the form (7.1) for the function 7' is attractive from an analytical point of view
because it leads to developments substantially identical with those which follow
from the much more restrictive hypothesis of constant creep rate.

In fact eqn (5.14) can be reduced to the form

dyie _ 38y,
dt, 2RI, (V3J/E)’

(7.2)

by introducing the « modified » non-dimensional time

i

7.3 , P [ di
(7.3) ' ‘“} £, (/)

]

We intend also to disregard in this Section the elastic strain, hence restricting
further our considerations to cases where the creep strain is of a larger order
of magnitude.
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We consider fivst the problem of the flexure of a beam under the action
of constant couples of intensity I acting on the bases. For convenience we
take the z-axis as the line of the centroids of the cross-sections and the plane
(@, 2) as the plane of the couples; the y-axis has then the direction of the vectors
which represent the moments of the couples. We will show that it is possible
to solve the problem by taking all components of the stress tensor to be zero
except 7y, and 1y to depend on # and 4 only

Tys == Lip (2, Y) .

The conditions of equilibrium (5.4), (5.5) are identically satisfied inside the beam
and on the lateral surface. The exact stress distribution on the bases is not
specified, only the stress resultant and the resultant couples are given; hence
the equations of equilibrium impose upon ¢ only the global conditions

[ty y) dd =0,

4

B J w@ (v, y)dd = M, J Yoz, y)dd =0,

A 4

where A is one of the bases.

The stress/strain rate relations (7.2) assure that all components of strain
with & =k are zero and that y,; and y,, both coincide with —- (y4,/2); putting
& == Vg3, G0 simplify the notation, the only relevant stress/strain relation can
be written

(7.5) e=q [Ty (o)™

Eqn (7.5) shows that ¢ depends on @, y and ¢, and we will take simply

(7.6) g=(ax + by +0)ty

where a, b and ¢ are three constants, which we will choose properly later.
We have not yet stated a property of the function ¢/T(|¢|) (which is

obvious on mechanical grounds): that of being a monotonically increasing

function of ¢; the property is needed here to make the inversion of the relation

(7.5) possible, giving say

o = D (&fty),
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or, because of (7.6),
(7-7) @ = ([) (a-.'U .‘%_ I)"I/ ,t_ (7)’

where @ is an odd monotonic function of its argument.

The expression (7.7) of ¢ must now be introduced in eqns (7.4). For the
solution of these equations in terms a, b, ¢, approximate numerical methods
will be usually required; but in principle the problem is solved.

We consider next the problem of torsion of a beam having circular cross-
section, of radius R, under the action of twisting couples of constant magnitude M.
Tor convenience we take a cylindrical system of reference (g, 6, 2) with polar
axis along the axis of the cylinder. We will show that the problem can be solved
by taking all stress components to be zero except ., and 7,, to depend on g only

Tgy-==Hap (o).

The conditions of equilibrium arve thus identically satisfied inside the beam
and on the lateral surface. On the bases one must have

(7.8) [w(e/R) o 44 = M/E.
4

The stress/strain rate relations assure that all components of the strain
tensor are zero except y,, which must be a function of ¢ and ¢ only

3p(o/R) .
2BET(V3 | ple/R)])

(7.9) Vos = 1 (0/R, 1) =
We will take for » simply
n = Boly,
where B is a constant; hence by inversion of eqn (7.9) we have, say,
¢ =¥ (n/ty) =¥ (Bo).

Finally by introduction of this function in (7.8) an equation is obtained whence B
can be determined; the problem is thus solved in principle.
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8. — Flexure of a beam of rectangular cross-section.

We give here further attention to the problem of flexure of a beam already
studied in Sect. 7. Here, however, we will not disregard the elastic strain; on
the other hand we will restrict our analysis to the case of a beam of rectangular
cross-section bent in one of its planes of symmetry. That plane can then be
chosen as the plane (a, z) for instance; with the consequence that the
function ¢ does not depend on y and the first and third equns (7.4) are
automatically satisfied. The second becomes

ala
(8.1) fa; @ (w, t) do = M/bE,

—af2

if @ and b are now the lengths of the sides of the cross-section. When the elastic
strain-is-not neglected the following relation between strain rate and stress-
takes the place of eqn (7.5)

(8.2) L U
ot ot Tlle )

as can be seen by combining and specializing eqns (5.9), (5.10), (5.11), (5.14).
The problem is made definite by taking again for e, an expression which is
linear in «; the type of the dependence of e on ¢, cannot be immediately spe-
cified, however,

2
(8.3) %sfmm.

Then our problem is reduced to that of finding two functions, ¢ (», ;) and A(t,),
which are defined for — /2 <a < a/2, {, > 0, satisfy condition (8.1) and the
equation

ad  op @

(8.4) Col) G = T T

and for #; = 0 reduce to

Ma 2z Ma
(8.5) ple, 0) = YT A0) == SFL
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The reason for the last condition is that for ¢ = 0 the stress distribution is
that given by the theory of elasticity.

An approximate solution of eqns (8.4), (8.5), (8.1) valid for small values
of {, can be given explicitly; when {, is small one can take

Ma 2z

@ (2, 1) = SHT @ 1+ ty (0],
L) =20+ o
A’(1)*’2_E;("T‘ 1)a

and determine the function y(») and the constant € so that eqns (3.4), (8.1)
are satisfied within quantities of the first order in ¢,: from eqn (8.4)

) = 0— | ()|

-1

H

I

and from ‘eqn (8.1)

af2
L 12 wde
et | Ty(M|x| (ED)
—af2

Actually the process could be repeated to an approsimation of arbitrary degree,
leading to power-series developments in t, for ¢ and A.

In practice it is usually found more convenient to transform the differential
problem in a finite-difference problem. One first introduces in the strip 0 <@ <
< /2, t, > 0 a rectangular mesh defined by mesh poihts (@ny tw) (B =0,1, ... N),
(m =0, 1, 2, ...); one replaces the equations (8.1), (8.4), (8.5) with equivalent
finite-difference equations, for instance

N

zn &y ([U-n - wn—-l) (Pn,m—f—l = ﬂI/ZbE )

1

(8'6) (2]}11/(1’) (fim+1 - flm) = (7)11.m+1 "'(Pngn + (pn’m (t’m+1 - tm) [111 ( l (pn,m ‘)]_17
Pno = (Ma2EI) (n/N), Ay = (Ma/2BI),

and computes the unkn ,wn functions at the mesh peints by succersive steps.

Finite difference methods are of course powerful tools for the approximate
solution of differential problems; more will be said in the next Section on their
application to problems of creep. Sometimes, however, they may fail because
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of «instability »; in simpler cases concerning linear systems, when « explicit »
formulae of the type (8.6) are used, the phenomenon of instability occurs if
the step in time is greater than twice the minimum relaxation time in the system.
Although the extension to problems of our type is rather far fetched, it has
been found in practical caleulations that the rule still holds approximately.

9.

A general method of stress analysis for bodies subject to creep.

We put forward here an approsimate method of ecalculation of the strain
developed in a body subject to creep over an interval of time (0, ¢). Precisely
we show how the calculation can be carried out in a number of steps in each
of which the solution of a « pseudo-elastic » problem is required, i.e. of a problem
of linear type as in the classical theory of elasticity. The method obtains under
the time-hardening hypothesis and is similar to one proposed by [lyushin for
the solution of elasto-plastic problems [19]; it is based on a simple generaliza-
tion of the remarks of Sect. 6 regarding the development of creep under step-
wise varying load.

The generalization in question is most simply introduced if we write first
the stress-strain relations (5.9), (5.11), (5.12), (5.14) in integral form:

T (t) = Ke (1),

(9.1) t
() = [ 026 + 5 [ 0 g
7hk o= 123 ~ i 2 R bl 1{,\/371@5 5] .

0

These relations show that, if the stress distribution is suddenly changed at
a certain instant ¢, from s;3” to sin+" [z to 7™+D] and then kept constant
over an interval of time (t,, f,41), the strain at ¢, is given by

Ke () = 70D
(9.2) )

’ i m Y i 3
'yhk (fm+1) - '}/hk (tm) - [S;lk) - S;,k -H)]/ZG '{_ e

——_.._.d »
2 [ BT/ 3Jm+D &) &
tm

ML meD

“hk

the second formula can be written in an explicit form, if the function e is known
(m) (m 1) g6 \

(93) ’}’hk (tm—{—l) = ?/hk (tm) . [5;:: - 'S;:;: v ]/‘IG e

_vr (38;7;+1)/2E) [(X (\/3J(11!+1)’ tm+1) — (*\/3(](7)1-%«1), tm)] .
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Now, if we want to determine approsimately the amount of creep developed
over an interval of time (0, 7) in a stressed body, we proceed as follows.

We divide the interval of time (0, 7) in a number of subintervals (¢, t,),
{tiy ta)y von (fueq, 1) [wWith ¢, =0, ¢, ::3] so that we can presume the change of
stress to be negligibile in each of them. We then accept the approximate for-
mulae

Shr (t) == 5‘;":), (h’ k x]’ 2, 3),

(9.44)

T (1) == 7™ for by <1< 1p;
and
(9.4,) : J (1) = Jm-v for ey <<

where sy, v J o form-a-succession-of -quantitiesindependent of - time; we

also indicate with s\, 7%, J the measures of stress deviation, mean normal
stress and Mises’ invariant which are related to the initial elastic condition
for ¢ =

By introducing the approximations (9.4) in (9.2) we obtain in particular

L1 3 e
v () = s {52 4+ 5= @ (VBI9, 1) ¢
(9.5)
Ke (4;) = 70,
also
(96) Yk (tz) ""{ Yk (tl) - [3(;.‘:: 2G} } =
= s {(26) 4+ 3 2E) [« (VBJD, ) — & (V3TD, )] I
Ke (t;) = 1'%,
and so on.

Formulae (9.5), which determine the strain at ¢, can be interpreted as stress-
strain relations for a pseudo-elastic non-homogeneous body, whose bulk modulus
is still K, but whose shear modulus is reduced from G to

o = BG{ B + 36 « (V3T9, 4) } .
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Similarly formulae (9.6) can be interpreted as stress-strain relations for a pseudo-
elastic non-homogeneous body, whose bulk modulus is still K, bat whose shear
modulus is reduced from @ to

I'® =BG{E + 36 [a (V3ID, ) — o (V3ID, )]},
and which is subject to a non-uniform and anisotropic pseudo-thermal expansion
Vhe (1'1) - [3353/2@] .

Therefore, in the cases where a method of calculation of elastic strain is avail-
able, which can care for lack of homogeneity and isotropy, it is also possible
to carry out an approximate calculation of creep strain if the funetion o is
known.

For a more complete discussion of this numerical metod see Ref. 20.
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Riassunto.

St fa un esame delle ipotesi, a volte contrastanti, che stanno alla base delle teorie fenome-
nologiche delle deformazioni per scorrimento (creep) dei metalli e delle leghe ad alta tempera-
tura e si metlono a confronto aleune semplici consequenze di tali ipotesi. Si precisa anche
come si possa giungere ad una decisione civea Ueffeilivo valore fisico di aleune delle ipotesi
atlraverso esperienze relativamenie semplici. Infine si discutono aleumi problemi di inte-
resse teenico.
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