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A. ZoBErL (¥

On the variety representing the Z, of S,. (*¥

1. — The purpose of this paper is to determine algebraic bases of all relevant
dimensions on the non-singular variety W (defined to within unexceptional -
birational equivalence) which represents the curve elements of second order (&,)
of 8., to find the intersection numbers of the base varieties of complementary
dimensions on W, and to point out and exemplify methods of deriving enumer-
ative applications. These investigations will be based on the properties of W
obtained by C. Lonego [1] together with a wider use of the method involving
degenerate collineations which I have employed elsewhere [3] to find a base
for surfaces on W in the the case r = 2.

2. — LoNGo shows ([1] §10) that a minimal model of W may be represented
parametrically by

X

abeder — Wa Bo Be Bg Xy Yy

@)
Y, =00 Ya Y Y3 Y
where
(¢) writing X and Y, respectively, for the vectors of the X, .. and of
the XY,n:in, the pair (X, Y) forms a single set of homogeneous coordinates for a
point of W;

(1) ® = (Woy D1y oo 5 o)y ¥ = Yoy Y1y - 3 Yorstr-mpe)y DA 8 = (Uoy Uy, oooy
Uisr—grts) ATE Tespective coordinate vectors of the origin, the tangent, and the

(*) Indirizzo dell’A.: University of Lervs (England).
(**) ‘Ricevuto il 30 giugno 1960.
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plane of the E,, say E, represented by (X, Y), and the suffices a, b, ..., k run
through all values compatible with these facts, except that any admissible
combination (b, ¢, d, e) or (k, i, j, k) is represented by only one of its permuta-
tions;

(#44) writing w = wn', where in u' not only the ratios of the elements but
their individual values are taken to be fixed for a given plane u, u : v is & position
parameter determining F among the E, with origin x, tangent y, and plane u
in such a manner that F is inflexional if # = 0 and cuspidal if v = 0.

Throughout the present paper we take W to be given in this form. Then
the set of B, having the same given origin, tangent, and plane is represented by
a straight line ¢, which joins a point of the variety C representing the cuspidal
E, to a point of the variety ¥ representing the inflexional Z, . Through a point
of W which is not on ¥ there passes a unique ¢; the ¢ through & point of F gener-
ate a linear space L of dimension » —1, representing all E, with given origin
and tangent; through any point of W there passes a unique L. 1f the respective

_dimensions of F, ¢, and W are f, ¢, and w, then

2) = 2r—1, ¢ = 3r—3, w o= 3r—2.

The parametrisation (1) may be used to show that there is & group of col-
lineations in the space of W, arising from the collineations of §,, which leaves W
invariant and which is transitive on W — ¢ — F, on C, and on F; hence a proof
that W is non-singular only requires a demonstration that there exist a single
point of ¢ and 2 single point of I which are simple on W. That such points exist
can be shown by numbering the various coordinates in such a way that
X=(1,0,0,..,0), Y=0 defines a point 4 of ¢, and X=0,Y= (1, 0,0, ., 0)
a point B of I, and then using parametrisations of W near 4 and near B, which
may be derived from (1), to prove that A and B are simple on W.

3. — Since, for all values of 2 and u, (AX, xY) lies on W when (X, Y) does, the
equations of W may be chosen in the form
['H] (X; Y)=0 (.7 =1, 27 .-e)
where each g; is homogeneous separately in X and inY (4). Let ¥V be an irreduc-

ible variety on W with equations

3) f: (X7 Y) =yg; (X7 Y)=0 (7’ =1, 2, ..)

() I am indebted to Professor J. G. SEmpLe for pointing out that in my earlier
paper already quoted ([3] § 3) a statement of this kind should by substituted for the
unqualified assertion that the equations of W are homogeneous separately in X and

in Y.
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which does not lie on €, whose dimension is v, and whose intersection with 7
has the natural dimension v -+ f—w in each component. Then the essential
part of the argument involving degenerate collineations which is referred to
in §1 ([8] § 3) can be applied to the present case with only minor verbal modific-
ations to show that there exist varieties V' and V” satisfying, respectively,
equations

fi(O; Y) == {; (X, Y) =0
and

f(X, 0) =g; (X, Y) =0

which are each algebraically equivalent to ¥V on W.

Suppose now that (X', Y’) lies on ¥’ and that Y’ O; then, remenbering
the separate homogeneity of the ¢; in X and in Y, (O, Y') satisfies (3). Thus
those points of ¥’ which do nof lie on ' lie on the spaces L through the points
common to ¥V and I'; since the dimensions of this intersection_and_of an I
are v + f—w and r —1, respectively, it follows from (2) and the dimension v
of V' that each component of V' either lies on C or is composed of spaces L.
By a precisely analogous reasoning, each component of V” either lies on F or
is composed of lines ¢, Thus we arrive at

Lemva 1. 4 variety on W which has no component on C and meets F only
in varieties of the natural dimension is algebraically equivalent on W firstly to
a variety on C together with a variety generated by spaces L and secondly to a var-
ety on F together with a variety generated by lines t.

On F let (a, a;; i), where a4, ay, © arve integers and
0<ay<a <, 0<<i<1,

represent the inflexional %, whose tangents belong to a given Schubert variety
(@, a,) and whose origins lie in the S,; used to define this variety. On € let (a,,
A1y Gp5 Gy %13 1), Where @y, ay, a,, %, 4, j are integers and

0<ay<<ay <a, <, 0<iy<Ciy <2, 0 <j <1,

represent the cuspidal E, whose planes belong to a given Schubert variety
(@, ay, a;), say G, whose tangents belong to the Schubert variety (@, @),
say ', determined by the Sa, and the Sa, used in the definition of @, and whose
origins lie in the Sa, used in the definition of G'. Let further [a,, a,, 7] be the
variety generated by the L meeting a given (ao, a; 1), and let [ay, ay, @s; %o,
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15 1] be the variety generated by the ¢ meeting a given (aq, a,, @.; %9, %1; ). Then,
writing a, + a, = h, a, -+ ay -+ ay =k, and 4, -4, = %', the dimensions of
(@oy @13 2), [oy @y 1], (Coy @1y @a} Tgy 415 §); B0 [y @yy @ toy 4} )] arve h +i—1,
h+i49—2, k+& +j—4, and & + %" + j— 3, respectively.

A set of results concerning these varieties, due with one trivial exception
to B. MartiverLI [2] and Loweo [1], is formulated in

LevyA I1. The varieties (aq, ay; 1) of dimension d form an algebraic base
of dimension d on F'; the varieties (ty, @y, Q3 1oy 145 §) of dimension d form an
algebraic base of dimension d on C. For these bases, the intersection number of
two base varieties of complementary dimensions on F is unity if the pair of var-
ieties is of the form (ag, @3 1), (~—ay, ¥ — ay; 1 —1) but zero otherwise, and the
intersection number of two base varieties on € is unity if the pair of varieties is
of the form (ay, @y, @s; 9oy By5 1), (P—@ay T"—ay, r——ay; 2—1,, 2—1; 1—7) dut zero
otherwise. An [a,, ay; 1] meets C in an (ay, a5, 75 0, 15 1) if a; <7, but in an (ay,
r—1,7;0,2;4) if a+l<a=r and in aen (r—2,r—1, 7r;1,2;4) if
o +1 = ay =1; an [y, th; Go3 by x5 J] meels T in an (a,, @ 7).

If 7, still an rreducible and v- dimensional subvariety of W, either lies on ¢
or has an intersection of excessive dimension with F, let 7, be the intersection
of W with w-— v generic primals of order n, and V -+ V, the intersection of W
with w— v generic primals of order » through V. Then, for sufficiently large =,
neither ¥, nor ¥V, either has a component on C or has an intersection of excess-
ive dimension with ¥, so that V is algebraically equivalent on W to the variety
V,— V, without components on C or intersections of excessive dimension with Z.
Hence Lemmas I and IT, together with the fact that the ¢ are in unexceptionally
birational correspondence with the points of €, and the L with the points of I,
lead to

THEOREM I. Ior ecach d such that 0 < d < w, one algebraic base of dimension
d on W is formed by the (ay, ar; 1) and the [ae, @y, @53 %, 4 §] of dimension d,
and another by the [ay, ay; 1] and the (ae, @y 25 %y % §) of dimension d.
For d = w—1 (the only case considered by him) LoNGo arrives at the
regult of Th. I in a different manner ([1] § 14).

4. — Denote by 44, (z=1, 2, ...) the varieties (ao, @,; ?) of dimension ¢ arranged
in some order, and by dA; (A =1, 2, ...) the varieties [ay, @y, @sy; %o, %3 ] of di-
mension d arranged in some order. For given values of the integers involved,
[@; @3 4] and (r— ay, *— a; 1 —1) have complementary dimensions on W,
and 50 have (do, &y, @p; Goy 115 §) ANA [ — @y, 7 — @y, 7 — @05 2 — Gy, 2— o3 1 —7];
hence we may, and do, define ,B; to be the [a,, a,; 7] of dimension d such that
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(r—ay, 71— @3 1—1) 18 0y, and B, the (a0, a1, @; iy, 45 §) of dimension d
such that [r— ay, 7—ay, r—ao; 2—14;, 2—14p; 1—j] is , .4, . We say that
the 44, and the dA; together form the A-base of dimension ¢ on W, and that
the By and the dB!'L together form the B-base of dimension d on W. The only
members common to the two bases arve the ,B,;, which also occur among the
(,A,f. ; when d > 2» there are no ,4,, and when d<(r—2 there are no ,B;.
A B, meets F in the ;. 4, defined by the same symbols (in round brackets
instead of square), and a ,4; meets Cin the ,,B,, defined similarly by the same
symbols. Hence by Lemma II, writing | U-V ] for the intersection number
on W of varieties U and V having complementary dimensions on W,
]JA‘x.d"wB[} ‘ = ‘557 l dfi;_'d-wB;t l = 6;}:
where 6;; and 5,’; are Kronecker deltas. ,4_and w—’lB[Il cannot meet since the former
lies on I and the latter on (. If d; and d, are the respective dimensions of the
intersections of ¥ with .4, and with ,,_,B,, then
d<d—1, dy=w—d—r -}1,
go that
dy +dy <w—1r < f;

hence it may be shown (cf. [4] § 5 Clor. II) that these two intersections with I
do not meet if the ,4, and the w-aBg concerned are each generic of its kind,
and consequently that in this case (,A; and ,,..B, themselves do not meet. Thus
we arrive at

TaroreM II. In the intersection matriz on W of the varieties in the A-base
of dimension d with the varieties in the B-base of dimension w-d, the element in
the i row and the §™ column is the Kronecker delta O} if the bases are arranged in
corresponding orders.

The A-base and the B-base of a given dimension each form a minimal base
of that dimension on W.

The last part of Th. II is of course a consequence of the first part.

Let b, and b; be, respectively, the numbers of the ,B ; and of the ,IB,'J; then
by Th. II a minimal base of dimension d on W has b, - b, members. Also, since
the ,B, and no other varieties are common to the A-base and the B-base of di-
mension d, the two bases together have exactly b, -+ 25, members, so that
there exist precisely b, independent algebraic equivalences on W connecting
these members. Now LonGo has proved ([1] § 10) the algebraic equivalence
on W

(4) . 0 ~3P—3Q+R
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where P, @, and R are the varieties representing the F, having respectively
their origins on a given prime, their tangents meeting a given secundum, and
their planes meeting a given tertium. Intersecting (4) with a e, say [ag, @,
g 4, 413 j], and expressing the resulting right-hand member in terms of the
4A-base of dimension d, we derive an equivalence expressing (ay, ¢y, aq; 1o, 453 i)
in terms of this base; by intersecting (4) in this way with all dﬂA;_ in succession
we obtain exactly b, such relations, which are moreover independent since each
involves a different dB!',. Hence we arrive at

Lumya IIT. A mintmal base for the algebraic equivalences on W relating
the members of the A-base and the members of the B-base of dimension d consists
of the equivalences obtained by intersecting (4) with all varieties d+1A,." and express-
ing the resulting right-hand members in terms of the A-base of dimension d.

5. - In practice the procedure outlined in Lemma III, although elementary,
is-laborious-owing to-the meny-cases-which must -be considered, and we omit~
‘the details. ITn each instance the first step is to obtain the intersection of P,
@, and R with the dﬂA;_ concerned as actual sums of members of the A-base
of dimension d by choosing the spaces defining P, ¢, and R in suitably special
position relative to the spaces defining the ,Hl:'l,f.; secondly a verification of the
fact that the members of the 4-base of dimension d which oceur in such an
intersection do so with unit muitiplicity is obtained by taking the spaces de-
fining P, @, and R in general position, and cutting the intersections P- d+1A;,
Q- 4114, and R, A; with the appropriate members of the B-base of dimension
w-—d. The result for the case concerned then follows from (4).

In this way it may be shown that Lemma IIT leads to the following algebraic
equivalences on W, which we shall call the base formulae on W,

(@) (a0, a1y as; 0, 15 0) ~[ag—1, a5, ag; 0, 1; 0]—2[a0; @1—1, a; 0, 15 0]
“‘L‘ [a'o: 27) “2—15 0) 1; 0]
where
[ao—1, ay, ay; 0, 1; 0] is omitted when g, = 0;
[@oy @1—1, ay; 0, 1; 0] is replaced by [a,—1, ay, ay; 0, 1; 1}  when

ay = ay +1>1, but omitted when @, =a, +1 =1;
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[@o, @z, a,—1;0,1; 0] is replaced by [ap, & —1, @13 0, 2; 0] when
a = a, + 1> a, + 2, but by [ag—1, ay, a +1; 1, 2; 0] when
ag=a; +1 =ua, +2>2().
(II) (@0, @y, o5 0y 25 0) ~[ag—1, ay, as; 0, 2; 0] + [0, &3 — 1, az; 0, 2;0]
— 2 [ay, @, a5 —1; 0, 2; 0] — 3 [ag, a;, az; 0, 15 0]
where
[@o—1, ai, a;; 0, 2; 0] is omitted when a, = 0;

[@0, @ — 1, @y; 0,2; 0] is veplaced by [a,—1,a, a;;1,2;0] when
a = a +1>1, but by (0, a,;0) when a, = a; + 1 = 1;

[a, @y, @ —1;0,2; 0] is omitted when @, = ¢ + 1.

III) (o, @y, g5 1, 2;0) ~[a — 1, a;, as; 1, 2;0] + [a, ¢, — 1, a5; 1, 25 0]
— 2[ay, ay, @ —1;1,2;0]— 3[aq, a;, az; 0, 1; 1]
where
[@o—1, a1, as; 1, 25 0] is replaced by (a;, a; 0) when g, = 0;
[@o, @y —1, a,; 1, 2; 0] is omitted when a;, = @, + 1;
[@0, @1, an—1; 1, 2; 0] is replaced by [ao, a;—1, ay; 1, 25 1] when

v

ay = a; + 1> a, + 2, but omitted when @, = a; +1 =a, + 2.
(AV) (@) @15 @230, 151) ~—2[a,—1, ay, @53 0, 1;51] 4 [ag, &, —1, a,30,1;1]

+[ao; ay, a;—1; 0, 13 1] +3[ao> ayy g3 0, 13 O]

(2) The case a,== a,-+1= a,+-2=2 does not arise since (0, 1, 2; 0, 1; 0) is a single
point.
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where

[ag—1, a;, a,; 0, 1; 1] is omitted when @, = 0;
[ag, a,—1, ay; 0, 1; 1] is omitted when a, = a, + 1;

[ao, a3, @;— 150, 1; 1] is replaced by [ao a;—1, @33 0, 2; 1] when
ay = @, + 1> ay + 2, but by [a, — 1, @, a + 1; 1, 2; 1] when

Ao=a; +1 ==a, +2>2, and by (0, 1; 1) when a, = ¢, +1 =qy + 2 == 2.

(V) (aoy @1, a250,251) ~—2[ag—1, a5, ax;0,2;1] + [, ay—1,a5;0,2;1]
%[ao, @ a,—1; 0, 25 17 + 3A[u0, ary ay; 0, 2; 0]
where
lao—1, a5, @s; 0, 2; 1] is omitted when a, == 0;

Qg al—él, az; 0, 2; 1] is replaced by [a, —1, ay, as; 1, 2; 1] when
’ H

o, = q, -+ 1>1, but by (0, a,; 1) when a; = a, +1 =1;
[aoy @1y az— 15 0, 23 1] is omitted when ¢, = «, + 1.
(VI) (aq, a5, az; 1,251) "’[ao‘_ly tyy @p; 1, 2; 1}_‘2 [am a,—1, ay; 1, 2; 1]
-+ [“m gy a— 131, 2 1] +3 [(lm ay, as; 1, 2; 0];““3 [ao’ gy ay; 0, 23 1]
where
[ap—1, a1, a,; 1, 2; 1] is replaced by (e, a.; 1) when a, = 0;
. [@sy a1 —1, as; 1, 25 1] is omitted when a; = a, +1;
[@0; @y, an—1; 1, 2; 1] is omitted when a, =a; - 1.
Evidently the intersection number of two given members of two A-bases

or two B-bases of complementary dimensions on W can be deduced from Th. IT
and the appropriate base formulae.
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6. — We say that an B, is contained in a variety U of S, if it is the E, deter-
mined by a curve branch on U at one of its points. Then the image U* of U
on W is defined to be the variety generated by the points J representing the Z,
contained in U and the limiting points of such J, while the image .D* on W
of a system D of varieties in S, is the variety generated by the images of the
members of D and the limiting points of these images, with the convention that
the component of U* or D* arising from a multiple component of U or D, as
the case may be, is counted with the appropriate multiplicity (%). If w is the di-
mension of U and of a member of D, and if d, u*, d* are the respective dimen-
sions of D, U*, D%*, then

u* = 3u— 2, d*¥ = d -+ 3u— 2,

provided in the second case that d < 3 (r-— u) and that on each irreducible com-
ponent of D* a generic point lies on a finite number of images of members
of D. - . o , B e

The base formulae on W can be used to demonstrate that on both U* and D*
the limiting points referred to in the definitions do actually occur in quite
simple cases, as is shown by the following two examples.

(i) Taking # == 3, let U be a quadric cone. From base formula (V)
(3) (0,1,3;0,2;1) ~(0,3;1) +J0,1,2;0,2;1] +3[0,1, 3;0, 2; 0],

and the respective intersection numbers of the members of the right-hand side
with U* are 0, 2, and 0. Thus there exist two (possibly coincident) or infinitely
many cuspidal ¥, represented on U* whose planes pass through a given line ¢
and whose tangents pass through a given point H of ¢, although no such cuspidal
I, are contained in U for general ¢ and H. It may in fact be deduced that the
threefold representing all cuspidal ¥, having the vertex of U for their origin
lies, and is double, on U*, ‘

(ii) Taking » = 2, let D be a general pencil of conics whose line pairs
k; (i =1, 2, 3) have respective vertices K,.Putp = (0,1,2;0,2;0), p=(0,2;0),
g =(0,1;1), and (as in § 3) ¢ ==[0, 1, 2; 0, 1; 0]. Then by intersecting P, ¢,

(3) This definition, adequate for the purposes of the examples to be considered here,
could for theoretical investigations be replaced by a more formal one, requiring sub-
stantial discussion, which would be based on a definition of a generic B, contained in
an irreducible variety, and which would then resemble the one I have given elsewhere
(e. g., [4] § 8 Def. VIII) in a similar case.
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and O with the image k* on W of a generic member & of D, and from base
formula (I1),

k¥ ~2p + 2q, p ~p—3t.

The image on W of %, consists of two curves ¢; thus D* must contain a spe-
cialisation of k* associated with k -+ %k, which consists, in addition to these
two g, of a curve algebraically equivalent on W to 2p -+ 6f, and which may
now be shown to have for its components the p associated with K, as well as
the two ¢ which are associated with X; and the components of %, (the p being
counted twice, and-each of the the ¢ three times, in this specialisation). The
points of these curves plainly do not lie on the images of any members of D.

7. — We shall conclude by indieating two kinds of enumerative applications
of our lesults, giving examples of each. In doing so we shall always denote a
vauety or system in ;S’, and its image on W by the same 1ettel with an asterisk
added for the image. It will be understood that, if @ is a character of a system D
(which may be a single variety) defined as the number of times which a cer-
tain property is satisfied by .D, and if this number becomes infinite in a parti-
cular case (as for instance the number of inflexions of a curve when the latter
is a straight line), then @ is to be interpreted as the virtual intersection number
of D* with the appropriate variety on W.

We shall restrict our attention to general cases in the sense that we shall,
without further mention, make two assumptions: Firstly, it will be understood
that every system of varieties in S, considered is such that on each irreducible
component of its image on W a generic point lies on precisely one image of a
member of the system (the dimension of the system being chosen sufficiently
small for this to be possible); secondly, any two systems of varieties in S, con-
sidered together, of which one may be a single variety, and whose images on W
have complementary dimensions on W in view of the first assumption, will
be supposed to intersect in & finite number of points, each representing an F,
contained in a unique member of each system, and any two distinct X, of this
kind being contained in distinet members of each system.

Of these assumptions, the first clearly imposes a condition on the nature of
the systems concerned; but from any pair of systems which satisfy this condi-
tion, and whose images on W have appropriate dimensions, a pair of systems
satisfying the condition imposed by the second assumption can be derived
through the transformation of either of the systems by a suitable collineation
of 8,, except when one of the systems has an image on W with an intersection
of excessive dimension with #. I have elsewhere ([4] § 8) given a full proof of
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a largely analogous result in a similar though slightly simpler case; a complete
demonstration would now be disproportionately laborious in connection with
the easy numerical examples to be outlined here, but the reader will find that
the earlier argument can be adapted and extended to deal with the present
case.

It will be seen that each of our two types of application comprises infinitely
many enumerative results; moreover in applications of the first type, to be dis-
cussed in § 8, many of these results not only are theoretically obtainable but
can in practice be read off without much further labour (*). Thus it may be
hoped that the procedures considered below, and especially that of § 8, will
provide both a fruitful source of results required in other mvestlga,tmns and &
check on results obtained by different methods.

Confronted with an unlimited choice of possible examples, I have been
guided by the view that vesults concerning simple objects easily accessible to
the intuition are generally the most interesting, and I have kept in mind that
as a check on our methods is it desirable to include examples leading to results
" which are either known already or easily verifiable by other means.

8. — Our first type of application consists in choosing a system D (which
may be a single variety) in S, and, denoting by d* the dimension of D*, to in-
tersect with D* the base formulae connecting varieties of dimension w — d%,
thereby obtaining relations between characters of D.

(i) Taking U to be an irreducible curve, and intersecting with U* the
formula (4) of § 4, itself a special case of base formula (VI), we find

¢—14 =3 (n—m),

where n, m, and ¢ are the order, rank, and number of cusps of U, respectively,
and 7 (also called the number of apparent inflexions of U) is the number of
points J of U such that either U has an inflexion at J or else, M being a fixed
8,_, in general position in §,, the osculating plane to U at J meets M.
This result is of course known, being reducible (by projection onto a plane) to
one of Pliicker’s famous equations.

(% It will be found that the only remaining difficulty is to debermine, for a given
system D (possibly a single variety) in S,, the multiplicities of intersections of D¥ with
varieties dB#, bub also that even this difficulty is frequently removed by the evident
absence of such intersections.
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(ii) Let U be a surface in S, . Intersecting with U* the formula (5) of § 6
we find that, for non-singular U,

j=m—pu

where m and p ave, respectively, the class and rank of U, and § is the number
of inflexional tangents to U which pass through a fixed general point of §,.
The reason why this result applies only to non-singular surfaces is clear from
example (i) of § 6. Again, the intersection of

(0,1,3;1,2;0) ~(1,3;0)—2 [07 1,2;1,2;0]—3 [07 1,3;0,1; 1]
with U* leads to the familiar result that U, not now a plane but otherwise
arbitrary, has two inflexional tangents at a general point of itself.

(iii) Let U be a surface lying plopelly in 8, (r > 4). For non-singular U
the intersection .of :
(r—3,1—2,7;0,2;1) ~—2[r—4,r—2,7;0,2; 1] 4 [r— 4, r— 3, 7;1,2; 1]

+ =8 r—2,7r—1;0,2;1] +3[r—3,r—2,7; 0, 2; 0]

with U* leads to
e =1m -+ 21— pu,

where m and p are, respectively, the class and rank of U, 1 is the number of
tangent planes to U which meet a general §,., of 8, (°), and ¢ is the number of
osculating planes to curve branches on U which meet a general S,, of S, in
& line. Again, without restriction on the singularities of U,

(r—3, r—2,7;1,2; 0) ~[r—4, r—2, r; 1, 2; 0]
—2[r—38, r—2,r—1;1,2; 0]—3[r—3, r—2, r;0, 1; 1]

(5) This interpretation of Z———} U*-[r —4, r—2,7; 0, 2; 11| is equivalent to the state-
ment that those osculating planes to curve branches on U which pass through a given
tangent line to U form a linear pencil. Hence this known result could be derived from

(r—d4,r—1,7; 0,2; 1) ~—2[r—35,r—1,7r; 0,2; 1] + [r—4, r—2,7; 0, 2; 1]
+3r—4,r—1,7; 0, 2; 0]

(with the first term on the right-hand side omitted when r = 4), since the respective
intersection numbers of U* with the members of the right-hand side are 0, 4, and 0,
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leads by intersection with U* to the known result that for » > 4 the fourfold
cone formed by the osculating planes to curve branches on U at a fixed general
point is a quadric cone.

(iv) Let D be a system of co? primals in 8, (r>3) such that « members of
D contain a curve branch having a given tangent line and a given osculating
plane at a given point, f touch a given line g and have at their points of contact
with ¢ a given tangent plane through g, 4 have at 2 given point an inflexional
tangent in a given plane, and j have a given inflexional tangent. Defining ¢,
P, P, ¢ as in example (ii) of § 6, and putting ¢ = (0, 1, 2; 0, 1; 1), it follows by
intersecting

(6) p ~p—3t, q~q-+3t
with D* that

if the members of D, taken together, have at most oo! multiple points in a
given plane, and

(8) j=p—30

if the members of D, taken together, have at most a finite number of multiple
points in a given plane. Intersecting the members of D with a plane, it follows
further that (7) and (8) remain valid when D is replaced by a system
of co? plane curves of which o« touch a given line at a given point, 8 have double
points on a given line, ¢ have inflexions at a given point, and § have a given
inflexional tangent, provided > is such that these numbers are all finite (9).
These results concerning > may be verified by means of direct algebra and
correspondences.

(v) Let D be a system of co? primals in S, (r 3> 3) in which & members pass
‘through a given point, § touch a given line, u touch a given plane, ¢ have an
inflexional tangent belonging to a given linear pencil of lines, and § have an

(%) This approach is preferable to the direct application of (6) to the case r= 2, since
it is not clear a priori whether and with what multiplicity the surface G representing the
cuspidal F, in the plane of 2, which have their origins on the Jacobian of X is contained
in 23* (cf. example (ii) of § 6); the argument employed in the text shows that @ is in ge-
neral simple on 2*,
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inflexional tangent at a point of a given line ¢ and lying in a given plane
through ¢g. Then by intersecting with D* the formulae

0, 1, 2; 1, 2; 0) ~(1, 23 0)”"3[07 1, 2; 0, 1; 1]9

0,1, 2;0,2;1) ~(0, 2; 1) +3 [07 1, 2; 0, 23 O]
it follows that

(9) j = 3p

if the members of D, taken together, have at most a finite number of singularities
in a given plane, and

(10) i = p— 3

if -the members-of -D -have no singularities in a-given plane. -Proceeding as-in
(iv), (9) and (10) remain valid if D is replaced by a system of co! plane curves
in which o« pass through a given point, § touch a given line, x have double points,
4 have inflexional tangents passing through a given point, and § have inflexions
on a given line, provided all these numbers are finite.

9. — Our second type of application consists in choosing systems D, and .D, (of
which one may be a single variety) in S, such that D] azd D; have complementary
dimensions on W, expressing D] in terms of the appropriate 4-base or B-base,
and intersecting the expression obtained with D so as to obtain a formula, in
terms of the characters of D, and D,, for the number T (D,, D,) of pairs (V,, V,)
of varieties, respectively in D, and D,, such that a curve branch on ¥V, has
osculating contact with a curve branch on 17,. Applications of this kind are more
laborious, and also of rather more limited interest, than those of § 8; we there-
fore give details only for two of the simplest cases.

(i) Let D, be a system of co! curves which, taken together, have singulari-
ties at most at a finite number of points, and of which ¢, meet a given secundum
and f, touch a given prime. For » > 3 let A, members of D, have tangents meet-
ing a given S,_;, and 4, have osculating planes meeting a given §,_, in a line;
for r = 2 put A, = 0 and take 4, to be the number of curves in D, which have
inflexional tangents through a given point. By intersecting D] with the B-base
of dimension w— 2,

D} ~pi [0, 1, 25 0,25 0] +B1 (1, 25 0) + e, (0, 25 1) + 4, (0, 3; 0)
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where by base formula (V)
* ) * D AR D - — N ‘
=D (r—2, r—1, 7; 0, 25 1)| = 3oy + 4, — 24,

Let D, be a system of co! primals of which o, pass through a given point,
B, touch a given line, i, have inflexional tangents belonging to a given linear
pencil of lines, and j, have inflexional tagents at points of a given line ¢ lying
in a given plane through g. Then, intersecting D) with the expression for D,

T (Dn Dz) = Ity O /5’1 jz ooty 22, g,

so that from § 8 example (v)
(11) T (Dy, Dy) =30ty 0t5 + 301 fa + 0y 8y + 0ty 14

if the members of D, taken together have at most a finite number of multiple
“points inagiven plane. In particular, taking 7 = 2;(11) gives the number of
3-point contacts between the members of two systems of co! ecurves in a plane
which, taken together, have only a finite number of multiple points. (7)

(ii) Let U be a primal of order »n, whose general plane section has the class
4y and the number 4, of inflexions; for » > 3 let a general solid section of U
have the class m; and the number j, of inflexional tangents passing through a
general point of the intersecting solid. Then by cutting U* with the members
of the 4-base of dimension 3,

U% ~ny (r—2, r—1, r; 0, 1; 1) +p (r—2, r—1, »; 0, 2; 0)
A iy [r—2, r—1; 0] + 20, [r—3, r—1; 1] 4 4, [r—3, r; 0],

the last two terms being omitted when » = 2. Let D be a system of oo? curves
among which ¢, touch a given prime N at points of a given 8,., lying in N.
For r > 3 let f, members of D meet a given S,-;, A, have tangent lines in ¥
meeting a given §,.; of N, ¢, have at points of a given §,_, osculating planes

(') A simple verification by elementary methods is available when D; and D, are both
pencils of conies. For by considering the representation of the conics in the web containing
both D, and D, on the points of an S;, it may be shown that in this case T (Dy, D,) is
the number of lines of a general linear congruence in S; which are inflexional tangents
to the cubic surface in which the chord locus of a Veronese surface & is cut by the S,
when the latter is general in the space of G.
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which meet this S,_, in lines, and j, have osculating planes in N. For » = 2
pub B, = 4, == 0, and let i, members of D have an inflexion at a given point,
while §, hav: a given inflexional tangent. Then, intersecting the expression for
U* with D*, and using base formulae (IV) and (II) to evaluate | D* - (r—2, r—1,
r;0,1; 1) and | D*-(r—2, r—1, ;5 0, 2; 0) |, we find

T(U, D) =my (— 2% + o + 30) + p (fo + 52— 300) + Gro + 2m A + f1
== fy fo iy de F (B0 — 3y + i) o + (i + f) e
In view of examples (i) and (ii) of § 8 this result reduces to
T(U, D) =0y js -+ tty i + my B
when » > 3 and U has no singularities in a general solid, and to
T(U,y D) ==nfjs < it el o

when r = 2 and the curve U has ¢, cusps.
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