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On some dynamieal problems arising

in the theory of lubrication. (**)

1. — Introduction.

Great technical interest lies in the study of the movements of a cylindrical
body within. a. fixed hollow -cylinder of -larger-internal radius when the clear-
ance space is filled with a viscous fluid (lubricant) and the speed of rotation
of the first cylinder around its axis is kept constant by an external drive. This
mechanical system can be taken as a simplified model of more complex devices
associated with rotating machinery (journal bearings). The study can be split .
in three successive stages. In the first an analysis of the movements of the
lubricant for any kinematic condition of the inner cylinder (which we will call
the journal) is required. An exact solution of the general equations of hydro-
dynamics is of course out of the question; but an approximate treatment is
possible. In the second stage the forces and couples which act on the journal
and are due to the pressure and friction in the lubricant must be calculated.
Finally the dynamic behaviour of the journal must be explored; from a mathe-
matical point of view this implies a qualitative analysis of a system of non-
linear equations.

2. — Generalities.

Before we proceed to the first stage of our work we must deseribe in greater
detail the system which we ave considering. The necessary notation can then
be introduced, the boundary conditions stated and the grounds on which sim-
plifying assumptions are accepted can be made clear.

(*) Indirizzo: 30, Greenfield Road, Stafford, Inghilterra.
(**) Ricevuto il 18 febb. 1960.
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The external cylinder (the bearing) is taken as immovable throughout our
analysis; there is consequently an advantage in choosing for reference a system
B, of cylindrical co-ordinates (2, p, 9, £), with the origin at midway along the
axis of the bearing, so that the inner surface is represented by the equations
0 =R (R radins of the bearing),

—b/2 <z <b/2 (b width of the bearing).

The journal is a homogeneous cylinder of radius R—¢ (¢ radial clearance)
and height b, having a mass m and hence principal moments of inertia

3R —e)2 4 b2 m .
A =B ="m BT — C = 5 (B —¢)2.

Its freedom of movement is thought to be restricted only by the condition that

its “centre “of gravity O be'on theé plane ¢ = 03 how this Testriction can be in
practice enforced need not worry us here.

To define the instantaneous position of the journal we introduce a moving
frame of reference B,(0, z, ¥, 2) fixed to the journal; it is natural to choose the
z-axis as the axis of symmetry. The position of B, is then defined by the modulus
¢ and anomaly f of the vector 20 in the plane ¢ = 0, and by the Buler angles
0, v, ¢ of the axes of &, with reference to G, .

The annular gap between journal and bearing can be defined as the region,
A, where R—h<p<R, 0<9< 27, —b2<2<b/2, if we call h the radial
measure of the gap. This annular space is filled with lubricant, which can also
flow freely at either end of the bearing to and from conveniently placed re-
servoirs where the pressure is taken to be constant. Hence, the radial, trans-
verse and axial components of the speed of the lubricant, v, v,, v, and the
pressure p satisty in & the general equations of viscous flow:
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here 6 and % are respectively the constant density and viscosity of the lubri-
cant. Further, p is a constant and may be taken to vanish for z = - b/2;
Ty Vs, ¥ Vanish for o = R and coincide with the respective components of the
surface speed of the journal, say B,, B,, B;, for 9 = R—h. As we have al-
ready remarked, an exact analysis of eqns (2.1) cannot be contemplated. The
usual approach, when dealing with the flow in lubricating films, is in the nature
“of an approximation, where account is taken of an important circumstance not
yet mentioned but a first reflection of which can be found in the simple boun-

“dary condition specified for p. We are interésted in cases where the clearance ¢
of the bearing is so much smaller than its radius R and width b that in all our
formulae it is possible to disregard inessential terms of higher order in ¢/R or
¢fb . This circumstance leads to overriding simplifications; for instance, apart
from terms of higher order in ¢/R, the function h can be written as

(2.2) WO, &) = c—ecos (—f) + 00 sin (§ —y) .
Within the same approximation B,, B, and B, can be specified as follows
B, = ¢ cos (& — B) - efi sin (§ — f) — we sin (& — ) +
+ (3 — w)£0 cos (9 — p) — 0 sin (& — p),
(2.3) B, = — ¢ sin (9 —f) + eff cos (¢ — ) — Oy sin (& —p) +
+ o(R— ) — {0 cos (& — ), |
By = R[0 sin (9 — ) + (0 — 1}))6 cos (9 — )]

It is perhaps in order to explain briefly how one arrives at these formulae.
The first two addenda in the expressions of B, and B, are simply a reflection
of the movement of O; all the remaining terms must be put in relation with
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the rotation of the journal around 0. Now, the components of the angular speed
on the axes of ©,, are given by the well-known formulae

“feosp + Opsing, —Osing + p0cosp, v + ¢

where, in accordance with our assumption, 6 has been written for sin 0 and 1
for cos . It follows that the components on the same axes of the speed of
a point P, which is on the surface of the journal and belongs to the
plane (z, z), are

(2.4) Z(—Osing + 90 cos ), (R— ¢)w—2(0 cos ¢ -+ Oy sin ),
(R—¢) (0 sin ¢ — 0 cos ).

The triad &, of axes in the radial, tangential and axial directions at P does not
coincide with the triad ©,, of axes z, y and 2 respectively. To bring about the
coincidence within the usual approximation, ©,, must be rotated through an

angle — R~ sin (p +¢— B) + 20 cos ¢] around the z-axis and through an

angle — A around the line of nodes. Hence to obtain B,, B,, B, at P one must
transform the vector of components (2.4) with the matrix

1 — Re sin (9 +p—p) -~ 20 cos p] 0 sin ¢
R esin (y +p—p3) -+ 20 cos ¢] 1 — 0 cos
— O sing 0 cos 1

The condition for P to fall on the plane (x, 2) is in no way restrictive as the
choice of the x-axis was left open so far; but it is better to avoid in the final
formulae any reference to an arbitrary element and use 9 — o instead of ¢;
this is permitted within the usual approximation,

~ An this point only the significance of the symbol o remains to be explained
in formulae (2.3); the sum o -+ @ is replaced by w to mark the fact that the
angular speed around the z-axis (or, apart from a negligible error, around
the { -axis) is a constant in our problem.

3. — Reynolds’ equation.

In Section 2 emphasis has been laid on the simplifications which ensue
in the expressions of k, B;, B,, B, from the hypothesis of smallness of the
ratios ¢/R, ¢/b. Even more drastic simplifications can be introduced in the
hydrodynamic equations if we assume on similar grounds, but with wider impli-
cations, that: (i) if the variable p is substituted by a new variable R(1 — &)
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in vy, s, ¥y, p these functions are developable in power series of £ in the interval
(0, 1/R)

© w0

(3.1) v =3, 000, 0§ (1=1,2,3), p= 2.0, )&

0 0

(ii) in these developments only the first two terms, which do not vanish
as immediate consequence of equs (2.1) or of the boundary conditions, are
significant; (iii) finally it is possible to disregard ¢/R and ¢/b when compared
with unity.

The full use of these assumptions leads to a partial differential equation
involving only the first term p” in the development (3.1) of p; this is the well-
known « Reynolds’ equation » of the theory of lubrication

2 73 ap(o) o Ias Bp“” ] B2 2 Bs .
8.2)  w= |— 2 2D qop enr— (B2} Lgne 2 (B
B2 T [,, Raf}} o [77 o B 6ht s \7) T 5 3

In fact, under assumption (i), because of the boundary conditions we have
(3.3) 2 = 0 = vl = 0;

further, as a consequence of the equation of continuity [eqn (2.1.4)], we get

(e8]
vy =0,
9@ do> o b
-
(3.4) : 29 ' ac’
@ ¢ @
3@ — p® L av; vy o
1 Y 08 ac ’

and from the Navier-Stokes equations [the first three eqns (2.1)]

B op*® — 2D D

(8.5) n 00 i :
Z)f ap® = 2p® __
n o °

Note that, becanse of eqns (3.3), no trace is left in eqns (3.3) of the inertia
terms. : .
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Taking now into account the remaining boundary conditions for the speed
at the surface of the journal and assumption (ii) above we get

) o [ R\2 h\s ]
’Ule)% + ?);2) (%)2 == Bﬁ:
h h\2
(3.7) @;1) E + 'U:(;E) (E) o B3 .

At this stage it is possible to obtain from eqns (3.4), (3.5), (3.7) expressions of

o, v, i, o2, vy o) p® in terms of p® and B,, B;: -

o 0 ho\-1 R R op'™y R op®
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If the expressions (3.8) of v, »¥ are now introduced in eqn (3.6) and account
is taken of assumption (iii) the Reynolds’ equation (3.2) results.

In the right-hand side of this equation B, B,, B, must be specified in ac-
cordance with formulae (2.3); after substitution simplifications may be again
achieved by disregarding terms of the second order in &/R or § and the final
result is ‘

= —2¢ cos (J — ) +-

: o [ op©@
(3.10)

Rad |6y RoD

3 [ 1 apw]
"% [on ot |
+ (w ~2/3')e sin (8 — ) 4 280 sin (9 — y) + (0 — 29)L0 cos(d — ).

Formulae (3.8), (3.9) and the first eqn (3.5) can be also eombinéd to give, within
the usual approximation, ‘

oo (5 [om = (B o (5= o),

R | ' R\ I 2pw@
0y M‘EE[BZ + (EMT?>2_)] 6:‘}}’

E ) RN R apo
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(3.11)

Here o/ has not been written down explicitly; it is given by the formula
1 .

Lo op®  REohop® | 6RB, . @ (B .. @ [Ty
« ] 2(2):__ ) 1.__2 (2 __ope — T’ .
(3.12) 20t R aa( ) R h,)

nod o9 | goc o | k2 I

At this point the problem might appear overdetermined because the boundary
condition that remains to be satisfied (i.e. p = 0 for { =-- /2) seems to imply
that both p” and v® must vanish for # = + 5/2 [compare the last eqn (3.11)].
Whereas the first implication satisfactorily completes the specification of the
differential problem (3.10), it might be impossible to reconcile the second with
formula (3.12). However, if we want to be consistent, the boundary condition
for p must be stated as follows: for { = - b/2, p vanishes apart for terms of
higher order in ¢/R or ¢/b; this imposes upon v, only a qualitative condition,
which is always satisfied. In fact from eqn (3.10) it appears that p'” is of the
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order of (R/¢)?, whereas v”/R is of the order of R/e, so that the correction in-
troduced by the second term in the right-hand side of the last eqn (3.11) is
of the second order. On these grounds we will not worry henceforth about the
term &p® and we will write simply p for p@.

4. - Solution of Reynolds’ equation for small values of eccentricity
ratio and angle of tilt.

The integration of eqn (3.10) presents grave difficulties in general, but there
are several cases where the integration succeeds by elementary means. The
simplest of these cases obtains when eccentricity ratio ¢ == ejc and angle of
tilt 6 ave negligible if compared with 1, i.e. when the conditions prevail which,
as we shall see later, are of interest in studies of stability. The case is discussed
in some detail in this Section. |

Solution of eqn (3.10) follows from the remark that, apart from a
coefficient ¢*/6y, the right-hand side is reduced to the laplacian of p, when a is
infinitesimal, because h* can be then replaced by 3. p is simply

612y { cosh (£/R)

({1;_1) P = -— m] [(2/9—“ U))O sin (l? - [3) + 2(:’ [0 (ﬂ—ﬂ) "‘f“

03
+ £0(2y — w) cos (9 — p) — 260 sin (9 — w].

The force and the moment of the couple acting on the journal because of the
presence of lubricant in the bearing can now be calculated. Tn general the
component F, of the force in the direction of the vector Q0 is given by the in-
tegral

bf2 27
(4.2) P, o= — fdcj fp cos (9 — B)R v,
—bf2 o

and the component ¥, in the normal direction by the integral

. : b/2 2
(4.3) S P, =—(d¢ fy; sin (& — B)R dd;

—-bf2 0
the moment A7, of the couple acting around the line of nodes is
bf2 25t

(4.4) M, = [¢ac[psin(@—yp)k ad,

—b/2 0
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and the moment M, of the couple acting around a line normal to the line of
nodes in the plane { =0 is

13/2 n
(4.3) My =— | g‘d:;”f p cos (8 — p)R .
—bj2

[

All these formulae are approximate, with an error of the order of ¢/R.
Substitution of the expression (4.1) for p in formulae (4.2), (4.3), (4.4),
(4.5) gives

(4.6) P, =—28ca, F, = §(w—2p)ca,

with

=

~  GaRbu tanh (b/2R)
(4.7) ' = (b (b/2R) ] ’
’a,‘ndw
(£.8) My — — 20, M, = Mo — 24)0,
with |
(4.9) i — { 5 7 |37 Ot 5 -1 } 5

both & and M are positive quantities.

5. — Stability of a perfectly aligned journal.

We devote this Section to a study of the behaviour of a rotating journal
for which perfect alignement with the bearing is assumed. We will not discuss
here the devices that may in practice assure the fulfilment of this condition;
we will deal only with the analytical consequences of the hypothesis 0 = 0.

- Hence, our concern will be the motion of the centre O of the journal in the plane
{ =0 under the force F of components ¥,, F,. We will disregard effects of
weight on the journal, but we will assume that an elastic restoring force acts
on O, besides F'; this assumption does not prevent us from obtaining in particu-
lar the results for the.case when such force is absent and, on the other hand, it
leads to results which have some bearing in the study of mechanical systems
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which are of greater complexity and practical interest than the system under
consideration.
In polar co-ordinates the equations of motion of O become then

mea = meaf® + F,— kea,
(5.1)

meap = — 2meaf + P,
where k is the stiffness of the sprih}r which provides the restoring foree.

In eqns (5.1) we were unable to specify in general F, and F, as functions
of a, @ and f. However, we can say at least this: F, and F, vanish if ¢ and
vanish (and, as specified in this Section, § is identically zero); in fact, if 0 =
and « = a =0, the right-hand side of eqn (3.10) and hence p itself is zero. The
property is almost trivial, but had to be stated explicitly: now we can infer
from it that the system (5.1), has a «steady-state» solution « = 0.

This solution corresponds, of course, to a uniform rotation during which
journal and bearing are coaxial. '

Actually our main concern here is a discussion of the stability of this uniform
rotation; for the purpose we need only to know the behaviour of the solutions
of the system (5.1) which correspond to small values of a, . These solutions
can be studied using for I, and F, the expressions (4.6):

(5.2) ma = mafit — 28a — ka,
maf = — 2maf + Flo—2p)a.

This system admits of some particular solutions of the simple type
(5.3) a == a(',’”, ﬁ =,

where &, # and y are suitable constants. As we will show, these solutions alone
give already a fairly complete picture of the behaviour of the journal. They
represent whirls of constant angular speed and increasing or decreasing ampli-
tude according to whether » is positive or negative; circular whirls correspond
t0 n = 0. ‘

For (5.3) to represent a solution of (5.2) n and y must satisfy the equations

(5.4)

Few
N I e —
‘ 2mn + &)
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These represent in the (y, n) -plane two hyperbolae, which we call here respec-
tively K, and K,. K, has the straight lines

F F
no=-—— -ty o= — —
m m

as asymptotes and actually degenerates into the asymptotes themselves
for k = &*/m; it has only one point in common with the positive y -axis: the
point of abscissa 4/k/m. K, has the straight lines

&

o= — and y =10
m

as asymptotes and cuts the y -axis in the point of abscissa w/2. From these
properties it follows that K, and K, have only two real points in common;
one; ¢;, in the half plane y >0 and the other, ¢),, in the half plane y < 0. ITn
other.words,. there.are.only two.real solutions of the system (5.4} (yy,-9y)-and
(¥s2y, Ma), wWhere the first pair represents the co-ordinates of @, and the second
pair the co-ordinates of ), .

The solutions of (5.2) of the type (5.3), which correspond to the root of (5.4)
represented by @,, have little interest. They represent highly damped whirls
(as m, is less than — &/m), whose sense of rotation is opposite to the sense of
rotation of the journal; but there is little chanee that these movements can
be ever realized by experiment, because, as we will show in the next Section,

_their character can be completely altered by a small disturbance.

The main features of the behaviour of the system under consideration are
shown in evidence by the properties of the solutions of (5.2) which have the
form (5.3) and correspond to the root of (5.4) representeéd by @, . For the usual
values of the parameters, y, is not much different from w/2 (i.e. the freqﬁeney
of the whirl is approximately half the running frequency). At the same time
n, is positive or negative according to whether w is greater or smaller than
2(kfm)"; n, is zero if w = 2(k/m)’*. The bare existence of solutions of the
gystem (5.2) of the form

(5.5) \ @ = Clemt, b=

indicates that whirls of increasing amplitude are possible when the frequency
of rotation of the journal is more than twice the frequency of the vibrations,
which the journal would perform under the action of the restoring force alone.
But the importance of the solutions (5.5) is much increased by the following
property (for which evidence will be provided in the next Section): all solutions
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of the system (5.2), (with the only exception of those related to , which we
discussed above) behave asymptotically for ¢t — -- co as do the particular
solutions (5.5).

6. - Complements to the discussion of stability.

Some general properties of the solutions of the system (5.2), which are
relevant to the discussion of stability, are proved here. They can be derived
most easily if account is taken of the following remarks.

In correspondence to any non-trivial solution of (5.2)

a == a(t), = pt)
consider, in the plane (y, n), the curve € whose parametric equations are

dag- Ledge
b 2—»n(t)~———.

(6.1) y=rt) = 3, T

The set of all curves © coincides with the set of characteristics of the autono-
mous system of two differential equations of the first order

0 dn . 25 . ;

2 — = Y — R R —

(6.2) di v m nm
dy &

F .
— == 2y b — 2,
dt v mn (e ?)

This system has properties which reflect those of the system (5.2) but is much
simpler and can be studied with known methods of the theory of non-linear
differential equations.

For the sake of brevity the discussion is carried out below under the as-
samption J/m >‘\/Wz; it could be shown, however, that the results do not
change substantially in the alternative case. v .

We have already mentioned in Section 5 the hyperbolae K, and K, which
are defined by eqns (5.4). K, and K, divide the (y, n) -plane in seven regions.
The sign of one of the direction cosines of the isoclines of the system (6.2)
changes in passing from one region to a neighbouring one. On K, the isoclines
are parallel to the y -axis, on K, they are parallel to the # -axis.

The two real points of intersection between K, and K,, Q, and Q,, arve the
singular points of the system (6.2); it is easy to realizé that they are both focal
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points. But whereas ¢, is a stable focal point, @, is an unstable one. So a point
Q(t) of co-ordinates y(t), #(t) which at ¢ = 0 was very near to , tends to move
away from it along a characteristic €. At the contrary, if @(f) had been very
near to ¢, it would have moved towards @, .

The property that Q(f) tends to @, for ¢ — + oo, if it is sufficiently close
to @, at any instant, can be generalized. For instance we can show that along
any curve C which crosses the positive n-axis we have

(6.3) lim n(t) == n,, lim p(t) =y, .

-} 0O t—>- o

The statement can be proved as follows. Let £ be a closed line having the
form of the perimeter of a rectangle with the sides parallel to the axes of »
and y and with the corners smoothed by quarter-circles each of which belongs
to one of the four regions which have @, as vertex and the hyperbolae K, and
K, as boundary. One of the sides of £ can be chosen to lie on the n-axis and,
of course, £ must belong to the half-plane n >— §im . -

We call ¢ the set of points which contains ¢, and has £ as a boundary;
G and £ have the following properties:

(i) G can be made to contain points whose ordinate is arbitrarily big.

(i) & does not contain limit-cycles of the system (6.2). In fact, if we
call Py(y, n) and Py(y, n) respectively the right-hand sides of the eqns (6.2),
we have

or, 9P, &
— s =—d4{n + ).
on oy (In )

m
As this quantity is always negative in & no limit-cycles can exist in & by a theo-
rem of Bendixon.

(iii) € is a cycle without contact for the characteristics of the system
(6.2). Therefore any point @(¢) which describes a characteristic © and enters ¢
can never leave it for ¢ — + co but necessarily approaches the singular point @, .

So formulae (6.3) are proved. We can interpret them as follows: Suppose we
have caused a small disturbance on the journal (which was rotating uniformly
in steady-state conditions) so that its centre O is slightly displaced (« > 0)
and has a small positive radial speed (de/di > 0). The movement that follows
is regulated by eqns (5.2) and, because of the properties (1), (ii), (iii), must
develop in such a way that

m lim (t)
I — = == 1 1101 = Y.
ot a(t) dt v t—>+4 o 4 "
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' As a consequence of the first of these equations the asymptotic behaviour
of a(t) is given by

(6.4) a(t) ~ emt,

& being a suitable constant. In (6.4) the sign of =, is the same as that of the dif-
ference w — 24/k/m; hence if o is less than 24/k/m, O will move again towards
the steady-state position 2, the eccentricity decreasing exponentially after a
transient. If instead o is greater than 24/k/m the eccentricity will tend to
increase exponentially; although it is not possible to follow the successive
stages of the phenomenon in this case (beacause the validity of our equations
is limited to small values of ¢ and a), we can conclude that for o >24/kim
the journal is in an unstable condition.

For o =24/ kjm circular whirls are possible, with a frequency equal to
half the running frequency; during these whirls the oil forces vanish and the
journal moves as if it were under the action of the elastic restoring force alone.

~The--reader -may-remark —thatthe-resultsjust--stated -are--completely-
independent of the dimensions of the bearing and of the value of the viscosity
of the lubricant. It may be also observed that, although the considerations of
this and the previous Section are carried out on the hypothesis that an elastic
force acts on the journal besides the force due to the lubricant, there is no
difficulty in stating the corresponding results for the case when such elastic
force is. absent.

In most formulae it is sufficient to put k& = 0; and one obtains in particular
that the uniform rotation of the journal is unstable whatever is its speed w .

7. - ‘Whirls of large amplitude.

In Section 6 we found that any disturbance in the position of the centre
of a rotating journal subjeet to lubricant forces only is magnified with time.
However, we were not able there to describe the successive phases of the phe-
nomenon because the formulae involved have no meaning when the eccentricity
ratio ¢ is not small. If we want now to push our analysis further we must re-
strict our considerations to cases for which a solution of Reynolds equation
is available without restrictions as to the size of . One such case obtains when
the bearing is very long: ¥, and F, are given then by

’ F, =— 127511331)0“277(2.(1 — a3,
(7.1) .

B, = 12aRbena(w — 2f)(2 + a?)(1 — a?)-11z,
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and the system (5.1) becomes, in absence of the elastic force,

ma = map?-—2F, a(l — a?)/2,

(7.2)

map = —2maf -+ § a(w-— Qf;’) (1 +- %ﬂ)d (1— a?)~1/2,
with
{7.3) &, = 6aRbey.

A complete analysis of the behaviour of the solutions of the system (7.2) is
difficult; we endeavour here only to prove some properties, whose statement
allows us to decide upon an important question: does the eccentricity ratio @
increase in unstable conditions towards its maximum permissible value 1 or does
it tend to a value less than 12 ,

To answer this wé start by assuming that « and § have approximately con-
stant values, 4 and y say: - -

(7.4) aft) = A—08(t),  ft) =y + elt);
here 6 and e are taken to be small so that appropriate simplifications can be
carried out when the expressions (7.4) are introduced in eqns (7.2). The most
relevant of these simplifications causes the disappearance of ¢ from the first
eqn (7.2), so that an equation in J only is obtained. To write the equation (which
is particularly relevant to us, because our interest centres around the beha-
viour of §) we must distinguish two cases: (i) .4 is less than 1, (ii) 4 is equal to 1.
In the first case we obtain

A =0, 8§+ @F/m)d—y26 =0,
and hence for §
(7.5) 0 = Cexp{— (§,/m) +V(S/m)? +* } -+

+~D exp { — (Fy/m) — V(T m)? + 2 }

In the second case we have instead

o omPa/2
(5 = 53/“,

&
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and hence for ¢

(7.6) 8 =

In (7.5), (7.6) € and D are arbitrary constants.

The interpretation of formulae (7.5) and (7.6) is clear; the assumption that
a(f} has a nearly constant value less than 1 is contradictory: the absolute value
of the first addendum in the right-hand side of formula (7.5) increases without
limit when ¢ — + co. Formula (7.6) suggests that « tends instead rapidly to 1,
the difference 1 -—« being infinitesimal of the second order in 1/,

8. - Stability of a journal suspended by its centre of gravity.

In this Section a second problem of stability of the steady rotation of a
journal is"studied: the assumption is made at the outset that the cenire of =
gravity O of the journal is kept immovable in the centre of the bearing by a
universal joint without friction, while arbitrary rotations are allowed.

In absence of lubricant the movements of the journal would then be regular
precessions with a speed of precession which is [1 — (€/4)}] times the angular
speed w around the  -axis. This fact has a decisive influence on the rule of
stability which we shall obtain; it will become apparent that the steady rotation
is stable if, and only if, » is less than twice the « natural » speed of precession
of the journal. Stated in this way the rule is attractice, because it sounds si-
milar to that reached under different circumstances at the end of Section 5;
but, in faet, it might be misleading. No condition on the value of w is actually
involved, because the «natural» speed of precession is itself proportional
to w. The restriction is purely geometrical: stability is ensured at any speed if,
and only if, the moment of inertia € is greater than 4/2.

To study the movement of the journal, we use the nodal equations, i.e:
the equations which involve: (i) the components of the moment of momentum
on & nodal system of reference and (ii) the moments M,, M, of the couples
caused by the action of the lubricant, as defined by formulae (4.4), (+.5). If A
and u are the components of the angular speed along the line of nodes and in
. a normal direction in the plane { = 0 respectively, the first two nodal equations
can be written as follows

(8.1) Al — (A — Qop + Aup = M,

A + (A — O)wd— Adg = M,.
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The third equation has no interest here; it would only specify the moment of
the couple required to maintain the angular speed around the ¢-axis constant,

in accordance with our hypothesis. 1, x and w are bound to the values of 0,
1, @ and their derivatives by the approximate relations

=0, = Oy, = +p,

so that, in terms of 0 and vy, eqns (8.1) become

e
o]
o

~

A0 -+ Colyp— A0y = M,,

A0y + 240y — C mO == M,.

In these equations we cannot specify in general A, and M, as functions of 6,
0, 1/). but what we know from the results of Sects 3 and 4 is enough to assure

us that the system (8.2) has a ste ulv-st@te solution 6 = 0. The solution corres-
ponds to the steady rotation, the stability of which we intend to study here;
for this restricted purpose we need to discuss the behaviour of the solutions
of (8.2) only for small values of 0, hence we may use for M, and 3, the expres-
sions obtained at the end of Section 4:

(8.3) Al 4 Colp— A0p> +2M0 =0,

A0y + 240y — Cwl — MO(w—2p) =0 .

A procedure can now be followed, which is very similar to that described in
Sections 5 and 6. First of all some particular solutions are found; from the
properties of these solutions it is possible already to decide for the instability
of the steady rotation of the journal, if C is less than 4/2. The proof of the rule
can be then completed, again on the basis of general theorems on non-linear
differential equations. V

The particular solutions we were referring to above are of the type

(8.4) 0 = Oemt, =y,

with 6, n and y suitable real constants. Obviously the movements represented
by formulae (8.4) are conical whirls of increasing or decreasing amplitude ac-
cording to whether » is positive or negative; conical whirls of steady amplitude
correspond to n = 0.
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For (8.4) to be a solution of (8.3) n and y must satisfy the equations

(8.5) An® ++ Coy — Ay? + 2Mn == 0,
w On 4+~ M
'}/ == o ny
2 An + o

These represent two hyperbolae in the (y, n) plane, which have only two
real points in common: one, ¢,, in the half-plane n >-— 3M/A the other, @,
in the half-plane n < — 3 /4. In other words, there are only two real solutions
of the system (8.5): (y,, #;) and (y,, n,) where the first pair represents the co-
ordinates of ), and the second pair the co-ordinates of Q,. %, in always negative,
whereas n, is positive or negative according to whether 4/2 is greater or smaller
- than € and it is zero for C = 4/2.

The results obtained so far already prove that whirls of increasing ampli-
tude may occur if € is less than A/2. That all solutions of (8.3) (with the only

exception of those «related » to §,) behave asymptotically for ¢ — 4 co as do
0 = Gemt, p =y,

can be proved with developments which are so similar to those involved in the
discussion of the system (5.2) that it is hardly worth entering into details here.

The conclusion is that if € is greater than 4/2, all golutions of (6.3) tend
exponentially to zero after a transient, whatever is the value of the angular .
speed .

9. - Bibliographical note.

Theoretical and experimental papers on lubrication of bearings are so
numerous that a compilation of a list of references would be a major undertaking.
Here we quote only a few recent papers which had direct influence on our work.
The early analyses of REYNOTDS (1886), SOMMERFELD (1904), HARRISON (1913,
1919), Stopora (1925), RoBERTSON (1933) have been referred to so often that
they need not be cited once more; for this reason we have used in Section 7
the expressions of the oil forces for long bearings without further explanation.

In our derivation of Reynolds equation from the general equations of
hydrodynamics we have generalized a procedure of G. H. WANNIER [Quart. Appl.
Math. 8 (1950), 1-32]. The developments of Section 4 extend results obtained
by M. Muskat and F. Moreax [J. Appl. Phys., 9 (1938), 393] for conditions of
steady state and perfect alignment. The problem of stability of Sects 5, 6



{19] ON SOME DY NAMICAL PROBLEMS ARISING IN THE THEORY OF LUBRICATION 19

and 7 has been partially dealt with before: see H. Porrrsxy, Trans. ASM.E.,
75 (1953), 1153-1161. There are many recorded cases of « bearing instability »;
the experimental investigation in which the set of idealized conditions assumed
here was satisfied more closely is that carried out by G. F. Borker and B.
STERNLICHT [Trans. A.S.M.E., 78 (1956), 13-19]. Some of the results obtained
here have been applied in a study « On the Vibrations of Shafts Rotaling on
Lubricated Bearings », which will appear in 1960 in the Annali di Matematica
Pura e Applicata. Note added in proof: For a more complete treatment of
the topies of Section 3 see a paper by H. G. ELroD in the Quart. Appl. Math.
(January 1960).
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Sunto.

Un completo studio del comportamento ecinematico della pellicola di lubrificante in
un supporto cilindrico di unm corpo ruoiante ha notevole inleresse tecnico, perché in tale
comportamento va spesso ricercata la causa di indesiderabili vibrazioni autoeccitate. Nel
presente lavoro si é cercato di porre su basi razionali lo studio in questione (metiendo,
ad esempio, in diretta relazione la equazione di Reynolds della teoria della lubrificazione
con le equazioni generali della idrodinamica) e si sono discussi in dettaglio i problemi
di stabilifd per il perno a perfetto allineamento e per il perno a cut sono permesse solo
rotazioni attorno al baricentro: due sistemi meccanici piuttosto idealizzati, le cus proprietd
riflettono perd abbastanza fedelmente quelle di dispositivi piic complessi, tanto cle sono
stati oggetto di varie ricerche sperimentali.






