Riv. Mat. Univ., Parma #® (1959), 257-263

L. C. Youxea (%

Partial Area.
Parr III: Symmeirization and the Isoperimetric

and Least Area Problems. (*%)

18. — Let » = p + 1, m = p; in the notation of the previous parts q =1
and the p-dimensional horizontal, and one-dimensional vertical, projections
of a point # € [#] will again by y, 2. The terms length and graph will be used
for dimensions < p, usually for the dimension p — 1, while area and hypersur-
face are reserved for the dimension p = m, and volume and solid for p + 1 = n.
When the dimension % is kept arbitrary, we shall substitute on occasion the
neutral terms k-measure and k-variety. We note the following corollary of (9.1)
of Part II:

(18.1) A closed generalized solid is always singular.

We term adjoint L~ of a generalized variety L, the generalized variety
derived by reversing the orientation, ie. defined by L-(f) = L(f~), where
(@, J) = flz, —J). .

Given a closed generalized (k— 1)-variety I, we define a generalized k-var-
iety L, termed cone of I with vertex x,, or simply cone of I, as follows: we as-
sociate to any k-integrand f the (k¥ — 1)-integrand : ‘

1
glw, J) = f f(mg + t(2—mp), (@ — ) XJ) -1 de,

0
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where » € [n], J € [n]*, and we define L by writing L(f) = I'(g) . A simple
calculation with corresponding exterior differential forms shows that we have
f = Dg whenever f is exact, and hence that the cone of I' is bounded by I '

Again, if I' is any generalized (k— 1)-variety situated in [p], we define a
generalized k-variety L in [n], termed cylinder on I' between the levels z and = 2o,
or simply ecylinder on I as follows: we associate to any k-integrand f in [n],
the (k —1)-integrand g in [p] obtained by writing, for y e [p] and J, € [p]*1,

9, J,) ff[Jy 7C><Jp]dz

where ¢ is the veltlcal unit vector; and we define I by writing L(f) = L(g).
We shall only be concerned with the case in which I is bounded by a gener-
alized (k — 2)-variety I™* and a simple calculation then shows that I is bounded
by the sum of the corresponding cylinder on /™ and two horizontal generalized
(k—1)-varieties consisting of the translate of /" in the hyperplane 2 ==z and
_.that _of its adjoint in the hyperplane .z == z,. e e

We term minimal generalized k-variety in a given class, one of smallest
k-measure in that class. The minimum is attained if the class is closed and
not empty, provided that the k-measures are not increased by restricting the
varieties to be situated in some fixed ball. In particular a minimal generalized
k-variety with given boundary, or bounded by a given closed (k — 1)-variety,
exists.

14. - We come to a lemma which will be the main tool of this part. Let @,
be in [n] a horizontal strip of height %, and let @ be any horizontal substrip
z < 2<% whose height z,—2z we denote by % Tet I and > denote
respectively a closed generalized hypersurface sitmated in ¢, and a mini-
mal generalized solid bounded by L, let L,, >, be their intersections with @
and let V, V,, 4, A4, denote the volumes of 3, 3 and the areas of L, L,. We
denote further by s(2), or simply by s, the length of the slice s ,L, and by o(2),
or simply by o, the area of a minimal generalized hypersurface with the same
boundary as L truncated below the level z.

(14.1) For almost any z, the slice s .Y is a minimal generalized hyper-
surface of area o(z) bounded by s, L and we have

(i) V<Ehod, () V,=[ocds (i) 4>[4/s*d + do?,
where this last integral is in the sense of Burkill and where K denotes a cer-
tain constant factor depending only on n.
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Proof. We first deal with (iii). ~We denote for z = #,, by L, the (or ay,
minimal generalized hypersurface whose area was defined to be o(z1), and we
observe that the corresponding class for 2 = 2, for which the minimum of the
area was defined to be o(z,) includes the generalized hypersurface IL,- P Ly
where P L, is the horizontal projection of L, . Hence o(z,) < o(z) -+ A(P L),
and by combining this with the inequality derived by symmetry

A(P L,) > o(2) — a(2) | .
Further, by (10.2) of Part II,

a(L,) > fs dz.

Moreover, since |J|>]|j|- cosa + |7, |-sina for all o, we evidently have
VA(LG) = a(Ly)c08 o+ A(P L) sin «, and by. choice of «,.

A, = A(Ly) >{ a(L,)? -+ A(P L)} v2.

Q

Substituting from the previous inequalities this leads to

4> {(J's 42 + [ot) — o)} o2

2

and since this inequality holds for every @, we deduce (iii).

We next reduce the remaining assertions to (i) which we therefore assume
while doing so. We consider in the first instance the substrip @ for almost
any z;, in which case s .L may be taken to be, for z = 2, a closed generalized
graph I such that L, is bounded by I'y. We denote by Y, the cylinder on L,
between the levels 2, and 2,, and by >, a minimal generalized solid bounded by
the closed generalized hypersurface consisting of the sum of the following three
terms: ‘

L .

.3 the adjoint of the cylinder on I'; the translate in z =g, of the

adjoint of P L, .

For fixed z,, the area of each of these three terms tends to 0 with A, and the-
refore by (i) the volume of Y,is << eh where ¢ —0ash —>0. Also by the
p-dimensional analogue of (13.1), 3, and >, + 3. have the same boundary, so
that, from the minimal property, V, cannot exceed the sum of the volumes of
- S,and ¥,. Since V,is by (10.3) the integral from &, to z, of the area of s .3,
it follows that for almost every z,, by dividing by » and making h — 0, o(z;)
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coincides with the area of s,> forz =z;. Hence o(z) is the area of s .2 for
almost every z and this establishes (i) for an arbitrary . It is clear also that
s, is, for almost every z, a minimal generalized hypersurface bounded by
s L, since it is bounded by the latter and has the minimal area of(z).

t remains to establish (i), which we rename (i), where the suffix denotes
the dimension, and we shall do this by induction, in conjunction with the fol-
lowing statement, to which we shall refer as (iv),:

Let 4 denote the part of [#] obtained by restricting certain horizontal
coordinates ¥, to inequalities a; <y, < a, + h, and let L be a closed gener-
alized hypersurface of area A situated in 4. Then, for some subdivision of the
s-axis into intervals d, of length %,, there exists for each » a closed generalized
surface L,, situated in the part 4, of A for which z€d,, with the following
properties:

() L =0 except f01 a finite number of values of »;

(b) The sum of the areas of the L, does not exceed a consmnt mul-
tiple of 4,

{(e) The sum of the L, may be written in the form L -+ L*, where L*

is singular.

15. — We proceed with our proof. From (iv),. by an easy induction combined
with suitable rotations of axes, we deduce that with the hypotheses of (14.1)
there exists a finite sum of closed generalized hypersurfaces L', where this sum
differs from I only by a singular generalized hypersurface, such that:

Rach I/ is situated in a cube of side hy .

The sum of the areas of the L' does not exceed'som‘e constant multiple
of 4.

But this in turn implies (i), since we construct a generalized solid of volume
< K hy A bounded by L, simply by adding together cones on the L’ with ap-
propriate vertices. ' :

Thus (iv), implies (i),.

We verify next that (i),-, implies (iv), The statement of (i),—, will be in
terms of lengths and graphs instead of areas and hypersurfaces, since the
dimension is lowered. ' :

To this effect, with the hypotheses of (iv),, let s(f), 0 <t < hq, be the sum
of the lengths of the slices s L at the levels 2 =1 4 yhy for v =0, -1,



(5] PARTIAL AREA - IIT 261

‘We note that this sum has only a finite number of non-vanishing terms, since L
has to be situated in some ball of [#]. By (10.2)

hy .
A> j s(t) di
0

and therefore there exists a value of ¢ for Whlch s( (t) < A/hy. Such values of ¢
occupy positive measure, and we choose one for w hich the numbers 2, =1+ vk
(» =0, 41, ...) are never among the sparse levels of the formula (10.1) of
Part II. _

We denote by 6, the interval z,_ <<z <%, so that 4, is the corresponding
part of 4, and by I, I, the shce s L and its adjoint, When z=12,. By ()au
there exists a genemhzed hyperusrface L,, bounded by I, whose area does
not exceed a constant multiple of the product of h, and the length of I,. We
denote by L the adJomt of L,, bounded by F‘, and we write L’ (droppmg the

suffix) for the sum of -

L L7

._; L7; the intersection of L with 4, .
Bvidently I/ is a closed generalized surface situated in 4, and the sum of the
areas of the I’ (for varying ») is < K F s(f) < KA. Further the sum of the L'
consists, by definition, of L together with the sum of singular generalized sur-
faces L, + L. This establishes (iv), as a consequence of (i),.;.

To complete the induction it now only remains to verify (i), in the case n = 1.
This is easily done with the appropriate definitions (*) of k-variety, etc when
L =0, so that the proof of (14 1) is now complete.

16. — We now consider briefly the isoperimetric property of the n-dimensional
ball. We denote by @ the volume of the unit ball in [n] and by 0 that of the
unit ball in [m]. We write H for the class of generalized hypersurfaces whlch
possess Lipschitzian tracks.

(1) A k-integrand, for & = 0, is a function f(=, j) where j takes only the two values
4 1, so that there is no longer any homogeneity in j. From well-known theorem of
BANACH it is easy to obtain the general form of a k-variety when %=0. In particular we
find that a closed k-variety for k == 0 is a finite sum z a, {fz,, 1) + f(z,, — 1) } where
the a, are > 0 and the =, m are points.
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(16.1) Let A be the area of a closed generalized hypersurface L € H and
let V' be the volume of a minimal generalized solid bounded by L. Then

BRts

We prove this by induction, the case n = 1 being easily verified. With the
notation of (14.1) the inductive hypothesis ensures that, for almost every
level z,

{ 8/(m0) }m }{ 0-/0 }m—l.

Writing ¢ = Oum, it follows that s > m § um! so that (ii) and (iii) of (14.1)
yield

R f W ds A mﬂ'f N T a

Here the two right-hand members are, however, the volume and area of the
solid and the hypersurface derived from the curve u = u(z) by revolution about
the axis of z in n-space. The corresponding minimum problem being well known,
we deduce the validity of our assertion for n; and so the truth of our theorem.
The argument used is the well-known symmetrization process of SCHWARZ.

17. — Finally we come to our application to the least area problem. Let L be
a generalized hypersurface in H with the boundary Iy -~ I', where I, and I,
are separated by a strip 2 <<2z<C2,(=2, + h), that is to say I is situdated in
the half-space 2 <<z, and I, in the half-spacé #>2,. We denote by 4, and 4,
the least areas of two generalized hypersurfaces, bounded respectively by I
and I%; and we write A*(4,, 4,, k), or simply A* for the least area of a
hypersurface of revolution, whose boundary is the sum of those of two m-dim-
ensional balls-of areas: A;, A, at a distance h apart. The determination of 4*
in terms of 4,, 4,, h is an elementary variational problem, and in particular
80 is that of formulating the conditions under which A* = 4, + 4,. We ob-
serve that the function 4% as an immediate consequence of its definition as
a minimum, is subject to an inequality of the form

A*(A,, Ay, b) < A¥By, B, k) + ] 4, — B1] + t Ay~ B,

We shall prove that
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(17.1) The area of L is at least A*.

In particular if A% = A; - 4, we necessarily have a similar degeneracy
in the least area problem for the boundary I, + I%.

Proof of (17.1). Let @ be the strip 2, <z <z, and let A, be the area of
the intersection of L with . We shall apply (14.1) to the closed generalized
hypersurface obtained by adding to L a minimal hypersurface bounded by Iy
and a minimal hypersurface bounded by I, where I'7 and I, are the
adjoints of I and ;. We find that k

A,>[ Ve &t do?

and we again substitute ¢ = Ou™, so that, by the isoperimetric inequality,
s > mfOu» and therefore

A, >mb J ym1 \/dz2+ dus,

It follows that A,> A*(B,, B,, k), where B,, B, arve the values of fu™ for
2 =2, and for z == z,, i.e. the corresponding values of o(#), o(2).

Now if A_ and A, are the areas of the intersection of I with the half spaces
z< 2 and 2>z, we evidently have

B, +A_> A, and 4, +A_> By,

ie. A >|4,—B,|. Similarly 4, >>| 4,— B,|. Since the area of L is 4_
+ 4, + 4., we find that it is

> A*(By, B,y h) + ] 4‘11""B1] + I 4, — B,

> A¥4,, 4., b)),

which completes the proof.
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