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Generalized Length and an Inequality of Cesari

for Surfaces Defined over Two-Manifolds. (*%)

i g ,Introductign,“

In his book Surface Area CESARI introduced the notion of a contour of a
surface and used techniques associated with this concept to dovelop some of
the most basic properties of Friicuer surfaces. CEsArr and the present author,
both jointly and separately, have published other papers [1 Db, ¢;25;5 a, b, c]
which investigate properties of contours in more detail. The use of methods
involving contours yields intrinsic methods of proof of theorems in the theory
of surfaces and avoids the necessity of using coordinate systems and other
methods which are essentially extraneous to the true notion of a surface.
Thus it would appear that the possibility of generalizing the theory- along
certain lines is much enhanced by using such techniques.

One of this directions in which advances of this type can be made is that
of generalizing the domain space of a mapping which defines a surface. The
work on contours which has been done to date by CEsArI and the author has
largely been confined to contours in a simply connected JORDAN region in the
plane. More recently, results of this nature have been obtained for mappings
on a multiply connected JORDAN region. CESARI [1 d, e] has introduced and
studied the concepts of retraction and fine-cyclic elements for such mappings.
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These notions have been studied from a topological point of view by NEUGE-
BAUER [7 a, b] and results on representations of surfaces over such sets and
over manifolds have been obtained by FLEMING [4 a, b]. CEsARr and NEu-
GEBAUER [3] have also obtained results on the coincidence of the LEBESGUE
and GeOczE areas of such surfaces. Since the structure of open subsets on
compact two-manifolds is more cbmplicnted than in the plane, the discussion
given in [1 a, sect. 20] will not be valid for mappings from such spaces. The
author in [5 ¢} has developed a prime end theory for open subsets of two-mani-
folds which helps to surmount the difficulties involved and these properties are
used here in defining and studying generalized lengths for contours and, in
particular, in proving the CAVALIERI iﬁequavlity of CEsARI [1 a, p. 327] for map-
pings on two-manifolds. This inequality has already proved extremely useful
in the study of mappings defined on planar sets and its validity for mappings
on two-manifolds should prove equally useful in developing similar theorems
for that case.

2. - Notations and basic definitions.

Let M be a compact two dimensional metric manifold. By this we mean
that 3/ is a metric space such that if p € M then there exists a neighborhood
N, of p which is homeomorphic either to an open disk in %, with the counter
image of p as the center or to an open half disk plus its bounding diameter with
the counter image of p as the center of the diameter. Points of the latter type
are called boundary points. of 3. Neighborhoods of this type will be called
coordinate neighborhoods of p in M . We assume that M may or may not have
boundary and that A/ may be orientable or non-orientable. The classification
of manifolds of this type is well known [6] and, in particular, it is known that
they are triangulable, a fact which we shall use later on.

Let @ be a connected open subset of M and denote its boundary components
by{y},. Let ye{y},. Then the set 4 (, y) is defined to be the component
of M — y which contains ¢ . Ends are defined for 4 (@, y) as follows. If pey
is accessible from 4, an arc from a point of 4 to p intersecting y only at p
defines an end 5 of 4 ending at p. Two ares by, b, of this type ending at p are
equivalent if either for every neighborhood of p, (b, — (p)) n (b, — (p)) s~ 0, or in
every neighborhood of p there exists a third arc ¢ joining a point of b, to a point
of b, such that b, U b, U ¢ bounds a simply connected JORDAN region in 4. An
end 7 of A is admissible if some arc defining » intersects @ in = set of points
which have p as a limit point. The set of ends of 4 (@, y) ending on y can be
divided into segments as follows [5 ¢]. Let y be covered by a finite family 9le
of coordinate neighborhoods { ¥¢} (¢ =1, 2, ..., ). This is possible because of
the compactness of M. Let K be a component of (N? —p) n 4 for some 7.
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Then K has a portion of y on its boundary and ends of K ending on p can be
defined and assigned an ordering as explained in [1 a]. Since the N7 overlap,
this ordering can be extended along y both ways from K and an order can
be built up for a portion of y. A maximal ordered set of ends o, formed by such
a construction we call a segment of ends corresponding to the covering 9o,
As in [5 ¢] for different Do these form a lattice under inclusion and the maximal
element of this lattice is called a segment of ends ending on y. Since the ordering
is linear, prime ends may also be defined on the segment and the ordered set
of ends an prime ends will be called simply a segment. Evidently every end
belongs to a unique segment. These concepts have been introduced in [5 ¢] and
their properties have been studied. In particular, it was shown that every seg-
ment of ends consists entirely of admissible ends or entirely of inadmissible ends.
It is also shown that if #;, < #, are in the segment ¢ and are defined by arcs
by, b, and if £>> 0 there exists an arc ¢ (n, 1.) which begins at b, ends at b,
and is such that every end in ¢ can be defined by an are wich intersects ¢, (1, 1)
..in.a.point.within e distance.of y. By appropriately joining.these ares at their
end points, the union ¢, of all such ares for a segment ¢ is either a simple arc
or an indefinite are, i.e. & homeomorphic map of the open or half open unit
interval. If the arc is indefinite in one of the above cases it defines one or two
prime ends of second kind.

Let T : M — E, be a continuous mapping from the manifold M into N
dimensional euclidean space E,. Then T will define a surface S over 3 and the
usual definition of FRECHET equivalence will give a class of mappings defining S.
The LEBESGUE area of § can be defined as follows. Let P, a triangulation of 3
and let 7, : P, -~ E, (n =1, 2, ...) be a sequence of quasi linear mappings,
each from P, to E, such that the mapping 7, approaches 7' uniformly in the
sense that given any &>>0 there exists a k, such that | T,(p) — T(p)| <e
for n > k, (the absolute value denotes distance in %£,). Foreach (T,, P,) let
a(T,, P,) be the sum of the areas of the triangles 7',(4,), where 4, are elements
of the triangulation P,. Define L(7) = L(T, Q) = inf (im, _  a(7,, P,), where
the infimum is taken over all such sequences of mappings 7', and triangulations
P, (see [8]). Admissible subsets of I and areas of surfaces defined over such
subsets can also be defined as in [1 a].

3. - Contours and generalized length.

We define contours and generalized length in a manner similar that of
Comsari [1 a]. The development follows in much the same manner and the result
are similar. ‘ )

Let T be a mapping from M into E, as defined in section 2. Let [S] denote
the set of points in E, occupied by the surface § and let f :[S] — Reals be
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a real valued continuous function defined on [8]. Since M is compact, f has
a maximum and a minimum value t; and {, respectively. If i, <i<(i,, let
D~(t), D*(t), O(f) be defined as the set of points of 3 for which f(T'(p)) < {,
H(T(p))>t, f(T(p)) =1 respectively. Since f is continuous, C(t) is closed
and D—(t), D+({) are open. C(¢) is said to be the contour determined by ¢, f, T
Evidently the boundaries of D-(t), D) in M both lie in C(z).

To define the generalized length of the image of a contour we proceed as
follows. Let ) be a component of D—(¢) for some fixed ¢. Let{ v } o be the family
of boundary components of @ in A . Let 4(Q, y) be the set defined in section 2.
Let o be a segment of admissible ends of 4 ending on y. Let { M1y Yoy Nay ooy N }
be any finite subfamily of ends of o, 1, <9, <®s << ... <M. Let Py, Py, oovy Dy
be the end points in M of arcs defining 7y, s, 75, ..., 7. respectively.

k—1
Let s = 3| T(p;) — T (p+-y) | (it is possible that p, =p, in which case the
i=1

obvious minor modifications in this definition must be made).

Let. 4., = sup.s, where the supremum is taken over all ordered subfamilies.... ...

{m} of ¢ of the above type. Let A, = 3 A, , where the sum is taken over
all segments o. Let A, = > 1, where y runs over all elements y e{ Y } o Liet
finally U(t; T, M, f) = 3, A,, Where the sum is taken over all components @
of D—(f). The quantity I(#) is called the generalized length of the image under 7'
of the boundary of D~(t) in M or, more briefly, the generalized length of the
image under 7' of the contour C(f). (A similar definition could be made for
D+(t) and the length in general would be different but we shall use D—(t) thro-
ughout). Asin[1 a, p. 317]it can be seen that if I(7) is finite then only countable
families of the 4, ,, 4,, 4, can be different from 0 and A, =0 if and only if y is a
continuum of constancy for 7in M . Also from the definition above, it is easily
seen that for any e >0 if {(t) < co there exist finitely many elements {17,,, }
{on}, {7} With 9,1 € 0, all 4, 0;,, & segment of y, for all j and such that

E
»

n Lig—1
W-e<2 Z | T
It I(t) = oo, then for appropriately chosen { 7y },{ i} { y: } the sum can be
made greater than 1/e.

If [(t) << oo and wis any prime end of first or second kind with limiting
continuum F, then 7 is constant on F_ . This follows again in exactly the
same manner as in [1 a, p. 319] and the fact proved in [1 b] that the limiting
set of any prime end is connected.

puk T(pi’{*l,]’k) l < Z(t) .

I|
,..

Theorem 3.1: Let o be a segment of ends and prime ends of A(Q, y)
and let y, be the set of points of y which are end points of the ends and prime ends
in o. Then if 2, << oo the set T(y,)CE, is a continuous curve of length 1, .
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Proof: Let w, be the first prime end of o, w, the last. By the definition
of prime ends of first and second kind it can be seen that such prime ends exist,
although they may coincide. Then o consists of all prime ends w for which
w, < o < w, and where all @ can be defined locally as described in [5 c].
Let #', " (' <7") be two ends in o and consider the interval o' <w <7".
The proof given in [1 a, p. 319, iv], shows that the mapping T operating on the
sets B, for this interval defines a continuous curve in Z, and the generalized
length of the image of these sets is the same as the ordinary length of the con-
tinuous curve. Now assume that the interval o' <o <n"is considered to cor-
respond to the real interval 1/3 <t< 2/3 and that the mapping defining the
images of the corresponding T, as & continuous curve be considered as mapping
this interval into B,. Let {9’} (i =41, £2, £3,..) beendsing such
that ... <y <y t<y <7 <L define a sequence of intervals I* in o which
cover o . Then each such interval defines a continuous curve. Let n? correspond
to 3¢ for 4 < 0 and to 1 — 3~ for 4 > 0. Then the intervals I, will correspond to
_.a-sequence.of intervals filling the open interval 0<t<1 and ealcll one ean
be mapped continuously into ¥, by a mapping v such that =(t) = T(p.), where
p, is in the set B, of the prime end w corresponding to ¢, 0 <t < 1. Since 4,< oo,
T is constant in E, and on E, and if p;,—>pew, Tp)—>Tp) = TE,)
by continuity of 7. Since the intervals I, have terminal elements approaching
B, as I — — oo, and B, asi—> oo, if we let 7(0) = T(w,) and 7(1) = T(ws),
the entive map 7 from the closed interval 0 <t <1 into is continuous and
hence defines a continuous map of 0 <t¢ <1 into B,. However, 7 [0, 1] =
— T(U E) and hence the image of B, w, <o < 0y, is a continuous curve.
wEo s . : . . :

4. - Semi continuity of the generalized length.

From the definition of I(¢) = I(t; T, M, f) it can be seen that I(¢) is a function
of ¢, T, M, f. We shall assume that I is a fixed manifold and we shall investi-
~ gate here the dependence of I upon the other three entities. In particular, it
will be shown that in a certain sense the function 1 is lower semi continunous
in ¢, T, f. These properties are needed in the proof of CESARI’s inequality.
Theorem 4.1, which follows, is the key theorem in this investigation and the
other semi continuity theorems will follow from similar considerations.

Theorem 4.1: Let M, T be given as before. Let {fs(m) } be a one parameter
set of continuwous real valued functions defined on a compact subset V in B, which
contains the points of the surface defined by T, where the parameter s ranges over
a set S of real numbers with upper bound s, (possibly infinite). Let the family
{fs}‘ have the properties (a) f, (%) > f,, (2) if $1< 8y (D) fs (@) > f,, (@) for



158 R. E. FULLERTON [6}

al se 8, s #s, (c)lim f(z) ={, (@) uniformly on V. For each fo(m) let 1(t)

be the generalized length defined in section 8. Then L, () <liminf 1,(t) for all ¢,
— oo < t < oo . ‘ 8>S

Proof: If I (1) =0 the theorem is trivial. Thus assume I, (t)>0 and
let D = D—(t) for the funection fs,s Dy = D (t) for the function fg(lﬁo Then D
and D, are all open subsets of M and D, LCD, for s; <s,; 8, 8,68, D,cD
for all se 8, ¢ s58,. This follows since we h‘We assumed that f, (z)> f(@)
for s, << s, and hence that the set of all z for which fo(2) <t is mcluded in those
for which f, (#) <<t. Hence all boundary components of D, are included in D
and in D, for s >s,.

We proceed to the proof of the theorem by first proving two lemmas.

Lemma 1: For any &> 0 there exists an s, € S such that for §$>8,, every
point of D} in M is within e distance of some point of D* in M and every poinb
of D* in M is within ¢ dlstance of some pomt of D in M ie. lim D} = D*

in-M a=sy

Proof: The uniformity of the convergence of f, to f,, implies that for
every ¢>0 there exists an s; such that f,(») — (@) < § for 8§ >s; and all
z € V. Consider the set P, of all points p € D such that the distance d(p, D*) > ¢.

Let t — & = sup f, (T(p)). Since P, is compact, f,(®) attains its maximum
PE",

value on T'(P,) and hence 6 > 0 since if § = 0 there would be a point #, € T'(P))
with f, (z,) =¢. However, this would imply that P, n D* 50 contrary to
the construction of P. Now let s, be chosen so that f,(z) — f.,(@) < 6 for s > s,
weV. Thus f(x)>f(#) +3J for x€V, s>s; and fsw)<t—6+6wt
for xe T(P,). Thus all boundary points of D, are in the complement of p,
and are hence within & of some point of D*

Suppose that there exists a point p € D* in M such that if N_1is an ¢ sphere
about p, then ¥, n Dn D, =0 for all D,. Let p’ € ¥ n D and let 1T (p") =
=1—p. However, by the uniform convergence of the family f, to f,,» there

exists an ¢ such that for s>s,, f(@) — fo(w < p/2 -for all ze V. Thus at p’
we have f(T (P)) <t—po +(0/2) =t —(p/2) <t and p'eD,. Thus every
point of D* is within ¢ of a point ‘of D, for all sufficiently large s .

Lemma 2: Let @ be a component of D, y a component of Q* in M, o

a segment of ends and prime ends of 4(Q, ) ending on y which are admissible
and let 7, <9, <9y <C ... << yn be 2 finite set of ends of ¢ (n, and 7, may coin-
cide). For 6 >0, let C, be an arc (possibly indefinite) corresponding to o as
in[5 ¢] such that each point of C, lies within § distance of the portion of y which
consists of end points for ends and prime ends in o, C,ny = 0. Let b, b,
, bn be arcs which determine 771; N2y .-y Nm Tespectively, and which do not
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intersect each other except possibly in points on y and let b, n C,= p, (j =1,
2, ..., m), where p;e@ forj=1,2, .., m. Let k be fixed and let b, e { b, }
Then there exists an index s;e 8 such that for s>s,, D, has a boundary compo-
nent y, which intersects either all ares b,, by, ..., b Or byy briyy -ooy by and if
H c 4 is the set bounded by b, U b,,u C, Uy, then a single component of H n y,
intersects these arcs.

Proof: By definition of the sets D, and by lemma 1, if Fc D is any
closed subset of D there exists an s’ such that F c D, for s > s'. Since 7, is ad-
missible, there exists an infinite sequence of points ¢y, ¢., ...Cb, 0N @ converging to
a point of y. Since ¢, € @ for each ¢ and since ¢ contains points not in H by
the choice of the p,, if p, € @ — H there exists arcs I; connecting ¢, to p, for
i=1, 2, .., all lying in ¢ and disjoint except for p,. Since l;ny =0 for
all 4, each I; must intersect H* in b,, C,, or b,,. If for some 1, the first infersec-
tion point of I; with H* is on b, or b,, then I, n H intersects all arcs b, b,

y br or by, brgy ...y b, . However, for some s € §, there exists a component
“of “D;-which~contains I; -H.8ince -y D == 0;there-must-be-a-component
of D which separates [; from y and this component must intersect all the b;
between b, and b, or between &, and b, and furthermore, the portion of this
component lying in the set H, bounded by b;, y, bi, O, 0 bum, by, y, C, which
separates I; from y has the ends determined by the b, as admissible ends.

If the first intersection of each I, with H* is on C,, let ¢, be the first point
of C nl,; for each ¢, then for each set I, there exists an index s, € § such that
l:c D, for s > s; and some component ¥, of D, separates I,n H from yp. If
Ve, does not intersect all the arcs b; for 7 =1, é woykori==Fk k-+1,..,m,
then there exists a first q, point on C (where pomts are considered as ordeled
both ways from p,) in which y, intersects O, since y, must then intersect C, .
For each 4, choose an s; and a ;/s, with this propertyl, where the s; are chosen
in such a way that lims; =sg,. Then the points ¢; approach a point on y. If

{—>c0

for some 1, Ve 0 by #0 or y, N b, =0, then y, is a component of D with
the desired plopeltles Tf this i not the case, the points { 1 q }c O have a limit
point ¢, on C,. If q” -, as § —> oo, then {q,,} approach a - poin
on » and the continua Vs, also have a limiting continuum p. However, by
lemma 1, f ¢ D* and smceﬁ ny #0,pcy However,q, e€finC,andyn C, =

which yields a contradiction. This proves that for some s,, Ve, must intersect

all b; for ¢ ==1, 2, ..., kor for ¢ =4k, k +1, .., m.
To prove the theorem, let I(t) be defined and choose ¢ > 0. We can assume
I(t) > 0 since the trivial case has already been discussed. Let oy, 0o, ..., On

be a finite set of segments of admissible ends of D, each corresponding to a por-

o
tion y; of D*, each having length A, ({ =1, 2, ..., #) and such that 3 A,>

=1
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> I(t) — ¢/3 this is possible by the definition of I(¢). Let 6 > 0 be chosen in such
a way that it p, p.€ M, |p—p.|<§, then | T (p) — T (p.) | < e/(12 ).
Tn each segment o, choose a finite set of ends #; (4) (=1, 2, ..., ki3 ¢ =1,

2, .1, ), gy (i) > sy (8) for each 4, j such that if p, ey, is the end point of
Ry—1

417,-(73) then for each 4, | pi; — pi ;21| << 6 and such that for each 1, > Tpsy) —

— (i) | > A — ¢/(Bn) . Then =1
n kg1
z z‘z(pn) - T(?’zﬂ-l)! Z}” ——-‘S‘/S‘\Z(t)“~ 8/3
=1 g=1

Let k = 3 k, and let 6'>0 be chosen in such a way that if ¢, . € M,

i=1 .
l¢s — @] < &', then ) — T(q.) | < &/(6kn). For each 4 =1, 2, .., n
choose an index s, € § such that for s > s, the set D’ has components of the
type found in lemma 2 which arve within 6’ of 4,. Let P, (s) be the first inter-
section points of these components w ith the deﬁmn ares b; (1) of #; (4) . Let

§, = 1Aax s;. Then for each i =1, 2, ..., n, let [, be a numbe1 kin lemma 2
- i
such that there exists a component y’ ¢ D, which intersects all arcs bl, by, ...,Abki
or two components y', ¢” with p’ intersecting by, by, ..oy b1 and y" intersec-
ting b, by ooy b,‘.i. ‘This is possible since by the lemma, if a component y’
intersects by, b, ..., b, but no component intersects by, b, ..., b,, then there
must be a component 5" which intersects by, byryy oory by, - In this case the fol-
lowing Telation holds:

Fp-1

S| T(pi() — T's)] + EIT J8) = T (Wls4als)) | >
illi’g)1, — TPy ;41) [—e/(()‘n)—e/(ﬁn

Let 1,(t) be the generalized length of the image of the contour determined by D, .
Then flddmo with respect to the index i:

T FUs | ‘ 7.‘—1 ‘
>3 [T P.; ) = T@i@) | 4 2] T@y6)) = TWesuals) (12
i=1" j=1 i=1
nook—1 : n .
23 31700 = )| = e3> T 2e 2ef3 210~
R =1 ’

1=1 je=1 .

for all s>s, This implies then that liminf I,(2) > U(1) .

If Z(i) = oo, the same.type of mdument shows also that lim inf 1 (1) = oo.

58,
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Theorem 4.2: Let T be a continuwous mapping of M into K, and lef f be
continuous over V. Let I(t) be defined as above, where (1) = 0 if 1 is outside the range

of f. Then I(t) <lminfl(z) as v =t —0 for all t, — co <1 < co.

Proof: If v<<t,let p =¢ — 7 and f (%) = f(#) + u for all we V. Then

ful®) > f, (@) for wuy;>p, and limf (#) = f(#) uniformly for xzeV. Then
w0+

as in the preceding theorem if we define I(7) =1,(f) we have liminf [ (f)=
= lim inf I{(z) > I(?) . prot

T—>t—0

Theorem 4.3: Let {Tn} be a sequence of mappings from M into H,
with Hm T,(p) = T(p) uniformly for pe M. Let f be a real valued continuous

Nr O

function from some compact set V C B, which contains each of the sets { T.(M) },
T (M. Let Uty be as defined above and let 1,(1) = Ut; Tn, M, f). Then for
all 1, —co<<t<C oo,

ey nrind linvint (o) o

Tt — o Ny

Proof: The proof is analogous to the proof in theorem 4.1 and references
for details will be made to that proof. We firgt prove a lemma similar to lemma
2 of that theorem and from this lemma the theorem follows as in 4.1,

Lemma: Let o be a segment of admissible ends and prime ends in
A(D~(t), y), where y is some component of the boundary of D-(). Let ,
oy ---y N be @ finite set of admissible ends of ¢ with defining ares by, by, ...y b
and with the are C_ as defined in lemma 2 of theorem 4.1. Let b; be any such arc.
Then there exists a number 7 < ¢ and an integer n, such that for all % > n,,
the set Dj(v) = {peM|f(Tup)) <t} has a boundary component
which intersects b, and all ares by, by, ...y Deoqs OF Driyy Drsoy .oy 0y 0T all arves by,
Bay --.y by in points lying between €, and p on the respective arcs.

Proof: By theorem 4.1, lemma 2 and by theorem 4.2, there exists a
7' <t such that D-(z') has boundary components having the above property.
Let 7 be a number with ¢ < 7 < t. Choose o << min[(v — '), (t —7)]. Let 1,
be chosen so that -

| H{Tup)) — HT ) | <o for n>mne peldl.
Evidently D-(z')c D (r) c D=(f) and the inclusion in each case is proper
for m>mn,. Thus if 3’ is a component of [D~(z)]* intersecting all the {b,}

or if 9, »" arve two components which together intersect all the {b‘,}, then
D7 (z') has boundary components which must do the same since these compo-

11. — Rivista di Matematica.
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nents must separate ¢’ and y” from » and hence must cross the {Z)j}. The
proof that these arcs define admissible ends proceeds in the same manner as
in 4.1. Thus the lemma holds in this case. ! _

By the same proof as that used in theorem 4.1, for any &> 0 there exists
¢ <<t and an n, such that for all n > uy, L(r) > 1) — &. Thus lim inf [lim inf
L(n)] =) . Eoe e

5. - The inequality of Cesari.

The establishment of the semi-continuity theorems for the function
Ut; T, M, f) in the last section enables us to prove the CAVALIERI inequality of
CEsARI in essentially the same manner as in {1 a, p. 327]. We first state several
lemmas given in [1 a] and then state and prove the inequality. The proof
differs from that of CESARI on only minor details but we include it for the sake
of completeness.

Lemma 1: Every real single valued function F(f), e <t<b, — co<
< P(t) << oo, satisfying the relation F(f) <liminf F(7) for a <t < b is measu-
reable in [a, b]. o

Lemma 2: If 4 is a triangle in the w plane, w = (u, v), if @(w) = au +
-+ by <+ ¢ is a linear non constant function, if ¢,, ¢, are respectivelr the minimum

and maximum of ¢(w) in 4, if 1 (t), {, <t <t, is the length of the segment of
: "

A on which @(w) ==¢, then Var + 2 lo(d)] == J-l(t) dt, where «(4) denotes
the area of A . X ‘

Lemma 3: Given >0, a compact set K c I, and a real function f(z),
we B, with |f@) —f@)|<G-|x—a'| for every z, #' € B, and some cons-
tant G > 0, then there exists a real piecewise linear function ¢(x) on K with
|p(@) — f(x) | < e and |grad ¢| <G + & for all ze K .

Lemma 1, 2, 3 are proved in [1 a; pp. 325, 326] and their proofs will not be
repeated here.

Theorem 5.1: If T is any continucus mapping from the manifold M into
the space B, if f(x), v € B is any real single valued function such that | @) —
—f@) | <K-|z—a'| for al @, @'eB, with K>0 a constant, if l(t) =
Ut; T, M, f) is the generalized longth of the image of the contour C(t), —co<<t<(oo
as defined in section 3 and L(M, T) the Lebesgue area of T. Then

KE-L(M, T)> J’ I(¢) dt .

—
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Proof: The proof will be divided into parts (a), (b), (¢) as in [1 a, p. 328].

(a) Suppose that M has been triangulated, that 7' is piecewise linear from M
into E, and that f is a piecewise linear function defined over a triangulation
of E,. Then by considering the intersection of the triangulation of B over
which f is piecewise linear with the triangles defined in T'(M), it is possible to
refine the triangulation of 37 in such a way that 7 is piecewise linear over the
new triangulation and f is linear over each image under 7 of a triangle in the
triavngulf\)tion of M.

Let { L4 } be the family of all non-degenerate triangles in I'(A) over Whl( :h f
is non con%ani; and let { } be the family of triangles in M from which { L 4 }
arises. Tor a fixed 4 < T(3) choose a planar cartesian eoordinate system
(£, ). Then f(z) = a& + by + ¢ for (£, ) € 4 and for some real constants a,
b, c. Let g, ¢' be respectively the gradient of f(=) in 4 and in the cell of linearity
for f in K, which contains 4. Then evidently 0 << (a* + PR =g g < K
by lemma 3. Let 1, {, be the minimum and maximum of f(x) in 4 and let

U(D), 1, < t<1, be the length of the segment of A on which & + by + ¢ =1,
U'(t,) = U'(t,) =0 and we define I'(t) =0, t<<1;, or t>1,. Then on M, the
boundary of D-(f) is the union of segments () contained in triangles v and
whose images are the corresponding segments in Z, plus sides of triangles of
constancy for 7' plus segments A'(t) whose images are points. Each segment
J'(t) of the first kind separates D—(f) and D+(#) in 7. HT(P)) is constant
on each of the other segments. Thus, since the number of the 7 is finite, there
is at most a finite collection of values of ¢, t; <t <1, for which A’({) does not
separate D-(t) and D+(f) in triangles . For all other f, the number I(f) ==
= U(t; T, M, {) is equal to the sum Y I'() of all I'(¢) for the given value of t.
Thus by lemma 2

v

Ke(t) > K 3 o >(§}j t) dt

{z;

fw Uy dt = jmm) ds

{r

Z

(b) Now assume T : M — E, is still piecewise linear over a triangulation
of A but that f is any Lipschitzian function in K, with constant K > 0. By
lemma 3 there exists a sequence f.(z), meE_v of continuous functions piece-
wise linear in %, such th‘lt | fi@) — f(w) | <1/n, |grad ] <K -+ 1 for
allze B, . I f.(%) = = fi(z) + 1/n for all weL’ then f(w) < fal@) < f(x) -+ 2/n
and |gradf,|=|gradf,|<K +1/n. By (a)

(K oIy = [ 1a(2)
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where 1,(t) = I({; T, M, {,). By theorem 4.1 and by FATou’s lemma

-]

lim{ (K + E) oT) } = Ko (T) > lim [?n 6 dt > fl(t) de .
n

n—rw Ti=> 0
-0 —

Thus if 7 is piecewise linear and f any Lipschitzizm funetion, the inequality
holds.

(¢) Finally let T be a continuous mapping from 3 into Z, and let f be any
Lipschitzian function on E,. If L(M, T) == oo or if K =0 the inequality
is trivially satisfied. Thus assume K >0, L(M, T)<<oco. Let T, : M — I,
be a sequence of piecewise linear mappings from A into F, with lim Tp) =

= T{(p) uniformly on M and such that L(IM, T) = lim (T, M), where

o(T,, M) is the area of the piecewise linear surface determined by 7, as com-

_puted in the ordinary manner. The definition of L(M, 7) insures that such a

sequence exists. Let [(t) =1(t; T, M, f). Let ¢t)< lim inf ,,(¢) for all ¢,

—oco<t< oo. By part (b), K (I, T,) fl,, ydt. If n — co, by FaToU’s

oz

lemma we have K L{M, T) > ( @(t)dt. The substitution ¢ =1 — & leaves

-

the integral unchanged and hence

K LM, T)> [t —h)dt.

—

However by theovem 4.3, I(t) <liminfg( — ) and again, by using FarTou’s

lemma, il
K LI, T) > [U at.

Thus the inequality is established for mappings I’ on the two manifold M .
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