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A Generalization of Some Polynomials

Related to the Theta Functions. (%%)

1. - Introduction.

The polynomials

Hyn(2) = (1 + o) Holw) — [”’] @ H (@),
(1.1)
Ho(») =1, Hy(z) =1 + @,

where [n]=1-—g¢", have been studied by Szrad [6] and recently by
Carvirz [3].
We recall that the ordinary HERMITE polynomials satisfy
Hepn(@) = @ Hey(@) — n He,y(a),
Heyx) =1, ‘ He(z) = x.
Pavamd [5] and Toscano [7] generalized (1.2) by studying the polynomials
/ Gn,v (x) =& Gn—l,x'(m) — (/n' + ’V) Gn——z,v(m) (’)7/> 1)}

(1.3)
G, () =1, G .(2) =2

(*) Address: Department of Mathematies, College of Sciences, University of Baghdad,
Baghdad, Iraq. ‘ ‘
(**) Received August 2, 1957.
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The purpose of this paper is to generalize the polynomial (1.1) in a similar
manner. In particular we shall obtain several g-analogs of some relations in-
volving the polynomial G, (x) of Toscano .

Let us define HY(%) and F%@) by means of

A (@) = (1 + w) H)(@) —[n + v]e H2 () (n>1),
(1.4)
[ HY @) =1, HY(w) =1 4+ o,
and
, 3O (7)) = (1 4+ w) GV(@) + 7" [+ ) e GLL(@) (n>1),
(1.5)
GPx) =1, GMw) =1 + .

Clearly we have
| H,,(n;‘)‘ ‘: ﬁﬁ,‘”(;;v) .
Wicerr [8] and Carrrrz [3] studied the polynomial
Gu(z) = G2(z) .

1t is obvious from (1.4) that HY(xz) is actually a polynomial in the two
variables # and z = ¢*. TFor example we find below that

(O™ vy a0l n—s] s mk
HN(z) = X 2 ¢* b RS
k 5 'z

8

where
[m] _ =g =g (g [nl} 1
7 (@) ’ 0 ’
and
(@), = (L — &)1 —aq)... (1 —ag™), (a)g =1 .

We shall also have occasion to use the notation

[’)']! - (Q)r
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Another formula which we shall prove below is, for m <'n,

m

(1.6) H,(») H(#) = X

Fe= g

e B

This formula is a ¢g-analog of a generalization of \I]"LSE\ s formula obtained
by the present writer [1].

2. — The recurrence relation (1.4) together with the given values of H\x)
and A “’( z) (letermine uniquely the value of H"(»). In fact from (1.4) we have

(2.1) H)(2) =
1+a [n-+v-1]a 0 0 e 0O 0 0
A 1+e [ntv=2}z 0 .. 0. . 0 0
0 1 1+a [+y—3]z .. O 0 0
0 0 0 0 v 1w [p2]e 0
0 0 0 0 .1 1+z  [v+1]e
0 0 0 0 0 1 1+a

The corresponding expression for G%(x):

2.2) G(z) =
14a —¢ "7 atrv-1]z 0 .. 00 0
1 ' 1+ - mtv-2]z ... 0 0 0
0 1 14w W00 0
0 0 0 o 1 142 —g™ " [v+1]a
0 0 0 .. 0 1 1+

obtained from (1.5) .
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Also from (1.4) and (1.5) we see that
am A1 /x) = H (%) and o GO(Liw) = GY(x) .

Tt is also obvious from (1.4) that G{(z) can be obtained from H,’(#) by
replacing ¢ by ¢*. This shows that for any finite formula for H(x) one can
obtain a corresponding one involving G9(x).

We note here that, when » =1,

H2 (%) = ()

where u,(#) is a second solution of (1.1) for which u, = 0, w,(x) =1 (see [3]).
We remark further that

77(1)( ) H(1+l)(m) T/f,’)(a) —

is a second solution of (1.4).

3. — We prove here by induction the formula

@) mnave =3 e e B e <,

.
For m =1, (3.1) obviously holds. Assume it holds for m = k. Then

Hin(w) HY(@) = (1 + @) Hy(w) B (2) — [k] 2 Hia(e) H (@) =

1 okl {n 4w y
= (1 +a) EO H [ . }[ﬂ!mf HY o ol@) —

k=1 ) — NI
—[k]z = [ ) 1} [" N ’1 D]t e HY oy o) =
r=0

3

E Tk} [»n 4+ 2 i
= 2 [,J [ T 1} 1l e { Hnproad@) + [k + 2 4+ v — 2] @ Hy}pog—er®) }—
Tz g T

B=i 0 —1 4+ \
—wa s [T T e Bt =
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[’]’ xr H;‘%)—nﬂ zr(l’) +

hi‘l‘ k nt+w . ! ! ] )
+ E., , ;1 [7'—1]![7’& + k-t —r~2-—.,7']:v’H 1 ®) —

EOTE] Ty
— 3 H r ‘ 1} [P]V ar Hb s o) .
=1

i |7 -1

Bat [k+n+v+2—2r]=[k—2» +1] g [n +y—r +1]. Hence

k ’
_ J } BT H gy o) =

Hieo) B0) = 2 [ * ]ms{H -

- /.:J,-]] 7;-4—1:}
,

[’] Lar H(w B 2r(lv)

7

Thus-the-proof-is-complete -
In a similar manner one can prove the inverse formula

(32)  Hle) = 3 (—1)r gm0k {'j"’] [ : } [ @ Hoper() B3 (@)
L]

r

[ ]

We also remark that in (3.1) and (3.2) we can replace Hy'(z) by U\(»),
where U"’(m) is any solution of

UL)H(fv) (1 + o) U(" (@) —[u + v]w U;f) (),
/o and » being arbitrary complex numbers in this case. In the right hand side
f (3.1) and (3.2)
o

>

{n N V} is to replaced by

In the next place if p‘ “(x) denotes an arbitrary solutmn of

7{r)
T pt1

(@) = (1 4 o) V,)(2) + ff“ "[u A+ ] @V (@),

then as above we can prove

m {Hj‘ ][7]'.’17’ ](|)+“ 2r(,v)

(33) Gofe) T0) = 3 (— '1>fq""“"""""’*"""""’ﬂ[

7
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and

(B4) VO @) =3 gnemeen m [ﬂ . 1} (]t 2r Gslr) V22 ()

r=0 r

In particular (3.3) and (3.4) imply, respectively,

(3.5)  Gulw )G"’( z) =

T

L
<o

( 1) qT (F—men—p)fr-(r— 1)/0[,] [n , v} [7]‘?37' G(l)m ZT(T)

(3,6) Oi:—lm( ) X qr.(r~ M7 1) [}ﬂ} [‘)I- j V} [’)~] L Gm~r(w) G:Zr(-'v) .

r=0 T

4. — From (1.1) we see that
Hyw) — Hoa(0) Ho(@) =
= [n—« 1] H_((#) — Hy(@) Hpeo(m) + 2 gt (L—q) H: (@) .

Thus we get

(4.1) Hy(#) — Hoa®) Hoey(@) = (1 —q) [n—1]! S o g Hy_(@){[n—r]!.

n
r=1

This formula has indeed a striking resemblenee to the formula of DEmir [4]
for the HERMITE polynomials

HeX@) — Hep(z) Heper(2) = (n—1)! S He_(z)/(n —7) L.

r=1

Formula (4.1) can be easily generalized by means of (1.4). We get

(B (@)} — B, (@) B, (0) =

2 (1 —q) (#Q)n— 5‘ ar g { L () }¥/(2q) s

re=1

which in turn resembles the formula obtamed by Toscaxo for his generalized
"HErMITE polynommls
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In a similar fashion we find

g {60() }* — 67,(0) 622 y0) =
4.3)

n

[ = U= G0 S = ale) g7 {6 (0) ) e

oo

where as before z = ¢'.

5. — From (1.4) we have

(1 n+l—L1) H"+1(' )/(z_([)11+1 (1 -+ 7’) H(”(/I/)/(zq) — & HU) 1(30)/(3(1)11—1 .

Now let

By S F(z):gt"‘ HI(@)](2¢),

n=0

where » is not a negative integer. Hence we find from above

(5.2) 2 () = (1 —1t) (1 —at) B(f) +2—1 .
Consequently

53) B0 =0,HO + (1 —3) I #H {0},
where

9, =
1 if oy =0
and
(5.4) Ht) =11 A—tg) (1 —tw ) = 3t Hu#)/(q)n -
0 n=0

Thus, if » 20, —1, —2, ...

F(t) = (1—2) .2 221/ { () (), }.
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By means of the identity

we obtain

) =(1—2) 3 3

k=1 m,n==

©® @ {n 4k — l] [m + k=1
9

k—1 k—1

k

:(1"‘2) 2 tj E M E {] "i‘k“"ﬁb}[
. e

From this we find, using the notation of basic hypergeometric functions,

(5.5) H (@) = (2)pm = @ ﬂh[
$=0 q
The campanion formula
n
(5.6) G;)({E) —_ (.._ 1),14,1 q(n+1)(2y+1)/2 }: 23 2@1
§=0
can be easily obtained .
Now since
: nil e 1L
@ = 2 (= 1)1 ¢ ”"[ '_
rog 1

then

1 e
(js‘l, q 841 z}

(2) s 2(*61[ .
q

k=0 r-i=x

8

= 2

o g)E gD [

q,

} fmin pm o pk—1 .

qs-H‘,' '(17:—s~x‘«1 H T

[qs—H,

_ ‘Z“ g S (—1)r qr¢(r—1)/2 (qs+1)j (qn—-s-i—l)j [”k‘i‘—ﬂ /{ (Q):i (Q)j

N + ([_k’ qs—H, qn——s+1; q
| 2|

(8]
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But [2, p. 68]

q——k’ qs+1’ qn—s~H’ q . (q—-s)k (q—'l+s)7;

@, -

(J’ (1"_[{%‘2 (q)k (Gl""_l)k '
Then (5.5) and (5.6) become
(5.7) H (@) =3 S(q ) (@) 2* (2q ) { (@) (g 1) } ==
85=0 %k
e [H— & 8§
=3 S g s gk
20 [ K ] AR
(5.8) @) =3 () () ¢ @0 275 { (@) (@ } =
s=0 .3

e

I

sl |n—s
il ene
ok |F k 1

We observe that although (5.5) and (5.6) do not hold for » = 0 and certain
negative integers, nonetheless (5.7) and (5.8) hold for all values of ».

An interesting functional relation can be obtained from (5.7). Indeed it
easy to show that

§

I

(5.9) HY(w)— Hy V(@q) = o HY (@) — » ¢ HS (g») .

This formula can be use to characterize our polynomials. In fact we prove
the following theorem .

Let W,(x, z) be a polynomial in the two variable # and 2 =g¢ of total
degree n. We have:

Theorem. Let the sequence { W, @, 2) satisfy the functional equation
(5.10) W, &) — Walzg, 271 = & W,(@, 2) —x g W,alxg, 2) (n=1,2,..)
such that
(5.11) W0, 2) =1, Walz, 1) = H,(x), n=0,1, 2, ...

Then W(z, 2) = H(x) .
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Proof.

Assume W, (z, 2) = H{(z) + g.(#, 2) where g, 2) is a polynomial of total
degree <<n. Hence

(5.12) gu(®, 2) — gu(2q, 2¢7") = @ guy(z, 2) — 2 ¢ Gna(g, 2),
where

(5.13) galz, 1) = 0, ga(0, 2) =0, (n =0, 1, 2, ...

Now (5.13) and (5.11) imply that go(z, 2) = 0. Similarly, if we put n =1
and z =1 in (5.12), we get gy(x, ¢1) = 0. Hence

(@, 2) = (1 —2)(1 — 2q) f(=, 2),
where f(z, ) is a polynomial in # and 2. This contradicts the assumption that
g1 is of total degree <1. Thus g,(z, 2) =0 .
Now assume .
gnl, 2) =0 (n=0,1, 2, .., k.
Hence (5.12) gives
Gen(®, 2) = ginal@g, 207") = Grna(Sq? 2¢7%) = ...

Thus by (5.13)

-]

(@, 2) = Gz, =) II (1‘“‘zqk)~

k=0

This is obviously a contradiction and.completes the proof of the Theorem.

6. — We next prove by induction the formula
©1) HISP(@) = (1 + ) BP@) — (1 — ¢') & HS () (n>1).

Indeed this forinula can be seen to hold for » =1 and all values of ». °
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Assume (6.1) hold for n = k. Then by (1.4)

HY7 () = (1 + o) Hy V@) — (1 — ¢ o Hi S @) =
=1 +a){Q + o) B (@) — 1 —¢)e B @) }—
— A= a{ (4 @) By @) — (1 —¢) o B (@)} =
= (1 +a){ (1 + ) HY,@) — (L— ¢ 2 H (@)} —
(L= q) {1 +a) BV @) — (L — ) e Hy X (@) § =

= (1 + @) HY(#) - (1 —¢) 2 H (@)

which complete the proof.
The corresponding formula for G¢’(») is

(6.2) Giibw) =1 + o) G @) +-¢7 (1 —¢")a G (@) .

Formulas (6.1) and (6.2) are essentially relations between three solutions
of the difference equation. The following generalizations are easily proved:

(6.3) CHY G @) = H, ") H (@) — (1 — ¢) @ By (@) B a),

(6.4) GUiP@) = GYP(@) GY@) 4+ ¢ (L—¢) @ G50 ) 6750 (@)

4

7. — We prove here an analog of Toscano’s formula expressing his gener-
alized HERMITE polynomial in terms of HERMITE polynomial, namely, we
prove that

n-—r

7

(1.1) HOz)= 3 (—1)rar qr-(r+l)/2 (), { , H, . (7).

2rsn

This formula is obviously is true for # = 0 and n =1. Assume its truth
for n = k. Then, by (1.4) and the induction hypothesis,

HY @) = (1 + ) T (—1) @ ¢V ), l" 77} H o) —

2 1 e
. (1 - qn+r) T 2 (_ l)r xr qr(r+1)/2 (z)r V[n . 7] Hn_l_er(w) _
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n-—r
= I (= 1) ar ¢ (2), Hoypier(®) + [n—2r] @ Hyyor() }—
q ,
N

{n,——'r—l

Lo

- [% =+ 7}] @ X (— 1) ar (IWH)/Z (Z>r } Hﬂ—l—‘zr(m) -
r

n—1r

w= S (1)@ O (2), [7._ 1

r

j {Dn—2r + 1Y)} Hysrmar(e) —

w417

=S e, [T
r—

r

I [~n 42— 27'] H,,+1—2,-(113) =+

o no— 7
+ [+ 0] S (1) ar g (o), {
4 ) t

} H7z+1-2r($) =

r-—1

N T

= 3 (— 1) " .
=Sy 7

}(z )1 7 [0 4 7] Hyprogr(@) -
' { qr [’ﬂ + 1 — 27']/[1'] + T } e

41—
= 2 (—1)r g (z), """ [n . 7} H, () .

This completes the proof.
Similarly we have the formula

(7.2) GPw) = 5 are (@), ¢ ["’ - "} Goesr(@) .

2r=n

Now since (see [3])

A7 H () — H [r]! 2" H,(),

then
(7.3) HY(@) = X (—1)7 ¢ { (2),][r]! } A7 H,_(a),
where

Af(@) = [0 —flgw), A (@) = q" A" f(0) — 4" flga) .
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Therefore

(7.4) H,(#) = 3 ¢{v) ATH] ,(«),

r

where c¢,(») is the coefficient in the formula

{ S (—=1)7 g @), ¢r/[r]1 } 7 = S ev) v,

r=0

For » =1, (7.4) reduces to formula (£.12) of [3].

8. — We now consider the polynomial HP(z) for » a negative integer. Let »
a positive integer such that 0 <r<<n. Then we prove first

H:,* r)(m) == Gr(a;) Hn—r(w)
(8.1)
G’(‘—r)(m) = Hr(w) G71—r(w) .

For v = 0 (8.1) is obvious. For » =1, put » =0 in (6.1) and (6.2). We
see then that (8.1) follows immediately .

Now assume that the first of (8.1) is true for » = %k . Then employing (6.1)
we see that

H@) = (1 + o) B=(a) — (1 — ¢ ) o B a) =
= (1 + @) G@) Hypey (@) — (L — q77) @ Gry(@) Hpoyy (@) =
= Hpsed@) { (1 + @) G(2) — (1 — g7) @ Gry(@) } = Houy (@) () .

This completes the proof. The proof of the second part is omitted .
We next prove, for arbitrary pu,

H " 0() = G (x)
(8.2)
G0 (g) = H ) .
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We can verify easily that (8.2) holds for n = 0, 1, 2. Assume the first
member is true for n =0, 1, ..., k. Then by (1.4)

H;;;—u 1)(w) (1 4‘@) H( T gy 1)( ) (l____q—/l I)WH( LRy T l)(%)
=@ +2) GF ) — (1 —g " 2 G15a) .
The right hand side the above formula is, by (6.2), G¥ (2). IIenee (8.2) is tlue
9. —~ Let F(t) = H(t) W(t), where F(t) and H(t) are as in (53.1) and (5.4) res-
pectively. Thus by (5.2) we have
W) —2 Wig) = &)[H(tq) .

But [3, formula (2.3)]

8

1/H(lq) = S (—1)r ¢""* 12 ¢r G () /(q), -

We therefore have

(9.2 W) =1—2) Z(—1)" gt G (@)/{ (q). @ — 2¢™) }.

n=1

Substituting in (9.1) from (5.1), (5.2) and (9.2), we get
9.3) HP(@) = {(2)an/(q) } Z ) g [?]Hn—r(a}) G (x) (1 — 2zq7).

By means of (8.1), this formula becomes

n

9.4) H'®@) ={(@w/(@n} 2 (— 1) gtV [ JH‘ (@)1 — 2q")

r==0

or

05) B ={@uln} 3 1y g ] e — ).
r=0
Both of (9.4) and (9.5) can also derived from LAGRANGE interpolation formula.
Two more formulas can be written nnmedm,tely if we change ¢ into ¢
in (.4) and (9.5).
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