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Stresses Due to a Certain Type of Nucleus of Strain
in an Infinite Slab ‘

of Transversely Isotropic Material.

Introduection.

~Some special problems of semi-infinite solid with transverse isotropy have

been discussed by ErrioT (1948) who has shown that the results can, in general,
be expressed in terms of two functions and that in the case of axially sym-
metric stress distribution in terms of a single stress function. Sex (1954)
obtained the result by a simpler method in case the elastic solid has only axi-
symmetric distribution of shearing stresses. The object of this paper is to
find the distribution of stresses in an infinite slab of transversely isotropic
material when a nucleus of strain in the form of a centre of rotation is situated
inside it while one of its plane faces is free, the other being rigidly fixed .

1. — Method of solution.

We take the origin on the free boundary z = 0 of the infinite slab and the
axis of z is drawn into the body at right angles to this plane. Assuming the
axis of z to be the axis of elastic symmetry in a transversely isotropic material,
we obtain the following stress-strain relations:

——

% = Oy Cex + Crp 6, + Cpye..

{

—

Yy = Cpy €un + Oy €y + Oyz e,

(11) Ze == 013 (()Jca. + C’w) -+ 033 Cpz ,1;
yz == Uy, ey, 2w = Cy e,

xy :{ (Cu— 012)/2 } Coys
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where Cy;, O, ... arve elastic constants. The equations of equilibrium in the
absence of body forces are

| Bxx Oy  Ore
S 1
dgr ' oy | o

oy ‘ ayy oyz

2 iR 42
(1.2) dxr ' dy = & 0
pwr gz oa
— =0.
o - oy - oz

Also, in the usual notation, if u, v, w are the components of displacement, then

du ov ow
B Coo=7,0  tw=gs == oo
(1.3)
ou ov Jw ‘ dv ou ow
Ca’u:_'%“:t’ 01/22“',—”‘1"—:7 Crp == "3~ .
oy ox oy 0z 0z ox

For solving problems under consideration, let us assume

oD oD " — 0
(1-4) u"_a_”a U‘"E? ==Y
where @ is a function of coordinates.
The stress components are now abtained as
—~ o d —~ P2 —~
——— e == _A. = 2 ==
( o 4 dxdy’ vy dxoy ’ # 0
(1.5)
— 02D - 0P — (0D Rl
—_a I = G — = (4/2 —
-2, o w=um(ir-22),
where

A = Oy~ Cha G=Cu.
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By substituting the values of the stress components as obtained in relation
(1.5) into the relations (1.2) we find that the third equation of (1.2) vanishes
identically while the other two are satisfied if

2D 02 R
]"6 ] 2 fresneied
( ) ox? - ot + L dast O?
where
k= 2G/A .

2. — We consider a nucleus of strain at a point (0, 0, ¢) defined by the relation
2.1) v @ = P[R,,
where P is a constant and
(2.2) R = 2® + y? -+ (z2— e)*/k>.
Corresponding stresses as obtained from relations (1.5) ave
(2.3) g2 = 84Ps (:—0)J@R),  #h —=—3APy ¢—)/2RY), B =0.

So the nucleus of strain gives rise to the following stresses on the plane 2 =0:

(2.4) ('.&21):30 = — 34 Pwc/(2R?), (321):=0 = 3.APYc/(2R?), (551):’:0 =0,
where
(2.5) R2 = g* 4+ y® + c*/k*.

Considering axially symmetrical coordinates we superimpose a stress system
to nullify the stresses on the boundary z==0 as given in relation (2.4) such that

(2.6)  (22)s=0 = O, (72)sms = 0, (02),—g = 3APcr/{2(r> + c¥/k2)¥2 }.
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The nucleus of strain gives rise to the following displacement components on
the plane face 2z = b + e:

(u’é))z::b—!-c = (

dr

('ll’Z)z=b+c = O)

Ad)

Pr
o = T
(u'r):=b+c = 0.

As the other plane face z=b ¢ is rigidly fixed the displacement components
as given in relations (2.7) must also vanish on the plane face z = b 4 ¢ by
the superposition of a stress system .

3. — The equation (1.6) reduces to

(3.1)

if 2 = ke, .

o

or?

1o
Y

O
w Tam =0
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As a solution of the equation (3.1) let us assume

(3.2)

So from relations

obtained as

(3.3)

D == J. o fd; osl* + A, G_M”q J oleer) dex .
0

op
WUg =
6 ar
U, =0,

(1.4) and

Uy ==

(3.2) the displacement components are

El h.[ ot [4, el 4 4, enaz/k] Jy ofr) de
]

Also we obtain the stresses from the relations (1.5) and (3.2)
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Hence fron the conditions (2.6) and the relations (3.4) we get

G @
(3.5) —_ foc“ (A, — 4,) Jy(or) dor =

[

3APer
201 + /K232’

By using HANKEL inversion theorem, the equation (3.5) becomes (SNEDDON,
1951)

o @ (Ay— Ay)[l = (3/2)APc [ 12 Jy(an)[(r® + o*fk?) dr = (1/2)APka o™,
0

So

X I

Ay ={ APk*/(2Ga) Yo~ = (Plaje*F,

Also, from the conditions (2.7) and the relations (3.3), we get
(3.7) __J*az [Ax o Otk 44, e—a(b-!-c)/k] Jo(or) doe = Prf(r® + bz/kz)alz_
0

By using HANKEL inversion theorem the relation (3.7) transforms into (SNED-
DoN, 1951)

(3.8) afdy e OTW LA, o7 RN — — P92 Jy(ar) /(24 D3[R dr =P 7"
o

The relations (3.6) and (3.8) are satisfied of we write

/

Ay = — (Pla) e~ @+ cosh (ca/k)/cosh { a(b + ¢)/k }
(3.9) ‘ :
\ Ay

I

(P/a) sinh (bor/k)/cosh { (b + ¢)/k }.

Thus the stress distribution is given by the sum total of the stresses due to
the nucleus of strain and that due to the superimposed system with the values
of the constants as in (3.9) substituted . ' o
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The values of u, on 2 == 0 is given by

(3.10)

o]

( (Ug)smg == Pr/(r® - /%" —
z — [ [Perfeosh {or(b+c)/k }] [sinh (befk)—e ™+ cosh (ca/k)] T, (o) o

To find the value of this expression (3.10) for different values of » numer-
ically, we suppose

b=1¢=1,
O = 2746, (5 =2409, (O, =980, (=674, (,, = 666,

these being the values of the elastic constants in case of hexagonal crystals
like beryl (cf. Love).

Here the constants are expressed in terms of an unit stress of 10® grammes
weight per square centimetre. So

k= ‘/2G/A = ]’/2044/(011—‘ Cy,) = 0,866 .

The results of calculation for (u,).., are given in Table I:

Table I
¥ = 0 0,25 0,50 0,75 1,00 1,50 2,00
— (Ug/P) o = 0 0,289 0,488 0,566 0,543 0,424 0,326

In conclusion I offer my grateful thanks to Dr. B. Sex for h1s kind help
in the preparation of this paper.
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Summary: In this paper the distribution of stresses in an infinite slab of
transversely isotropic materials has been obtained when a nucleus of strain in the
form of a centre of rotation is situated inside it, one of its plane face being free
and the other rigidly fixed. Numerical results have also been found.






