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W. H Freming (%

Irreducible Generalized Surfaces. (%)

1= Introduetion.”

The notion of generalized surface is due to L. C. Youne [10 ¢, e]. It was
introduced to obtain desirable closure and compactness properties in the study
of double integral problems of calculus of variations. Ior surfaces of finite
topological type and sufficiently elementary boundary a remarkably complete
theory was given in Youna’s Memoir [10 e]. It includes very general existence
theorems for two-dimensional problems in parametric form, regular or not (?).

A generalized surface solution to a problem of minimum is, in the first
analysis, merely an element of the completion in a certain topological vector
space of a set of «elementary » surfaces. To obtain a meaningful theory, one
must find a suitable representation for the solution. It has been known since
Youna’s work on generalized curves [10 a] 20 years ago that one should expect
a representation in terms of an ordinary surface and, attached to almost every
point of the surface in place of the normal vector, a certain measure on the
space of all possible unit normal vectors. ‘

In the context of [10e] one wishes to find, for a wide enough class of
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generalized surfaces L, a micro-representation by a vector integral:

(1.1) L= H M,, du dv,
Q

where ¢ is a square. The key result of [10 e] is the existence, for any connected
generalized surface L, of a micro-representation whose carrier is a vector function
on ¢} subject to identifications on the perimeter of the same topological type
as L. The proof is based on DIRICHLET integral methods. It therefore relies
ultimately on the existence of representations which are conformal in a certain
generalized sense (specifically, MORREY’s theorem) to establish a bound for
the DIRICHLET integral in terms of the area.

There are two main innovations in the present paper. First, we apply
conformal mapping for polyhedra of higher topological types, in a way similar
to the author’s recent extension [4 a] of MORREY’s theorem to two-manifolds.

“Second, the set of generalized surfaces of given topological type ‘which admit
a given set I' of curves in space as boundary in the sense of [10 e] is enlarged
to include those which admit I" as boundary in a certain limiting sense. We
give general conditions (irreducibility) under which an element of the larger
set necessarily belongs to the smaller and possesses a micro-representation.
Various improvements are made in the results of [10e]. Boundary identifi-
cations are pointwise and piecewise linear, instead of merely arcwise. TLess
restrictive assumptions are made about the set I" of boundary curves. The
curves need not occupy two-dimensional measure 0, and many of the results
apply to boundaries with multiple points. '

The main definitions and results are summarized in § 3. Paragraph 10 is
devoted to applications to minimum problems, including existence theorems
of a very general nature.

After this paper was written a paper by Sicarov [13 b] appeared, which
also treats the problem of minimum for parametric surfaces of prescribed fi-
nite topological type. His results partly overlap [10 e] and the present paper.
However, they are limited to positive definite, semi-regular problems. The
methods are extensions of the ones developed by S1GALOV to prove his earlier
existence theorem [13 a] for surfaces of the type of the 2-cell. The most im-
portant step in the proof is to find a uniformly convergent minimizing sequence
of parametric representations, using a certain smoothing operation for surfaces.
This same approach was also used by CESARI [11] and DanskiN [12] in their
basic existence theorems for the 2-cell case. ,

Young’s approach, which is continued in the present paper, is to replace
uniform convergence by BEPpPo LEVI convergence [10d, e] of parametric
representations and weak convergence of certain associated linear functionals.
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In this way one gets existence theorems for minimum problems which may
have discontinuous solutions, and for non-regular problems. Under a weak
normality assumption (much less restrictive than the conditions on the integ-
rand imposed in [11], [12], [13 a, b]) Youna proved [10 e, 9.9] that any solution
must possess a continuous representation. See §10 for further remarks in
this direction.

Like the present paper, Si¢arov [13 b] does not confine himself to bound-
aries free of multiple points. The notions ‘of surface improperly of given top-
ological type and of limit boundary, §3 below, have counterparts in {13 b].
The same is true of the operation ~ for boundaries with multiple points, con-
sidered in §9. SIGALOV uses as parameter domain a square with boundary
identifications.

The identification of boundary segments in [13 b] is essentially of the same
sort (i.e., arcwise) as in [10e]. A device [13b, p. 90] which SicaLOV uses to
achieve one-one pointwise identifications is valid only if the class of admis-
sible parametric representations is enlarged to admit representations not
“absolutely continuous in TONELLI’S sense. e B

2. — Preliminaries.

(a) Genmeralized surfaces. R™ is euclidean m-space and o a generic point of
Rm. 8m is the set of all skew-symmetric m x m matrices j = [j~] of rank 0
or 2. Let |j]=[3()%. For a, beR" let axb = [ab*— ab7] (cross-

r<s
product). F denotes the vector space of all continuous funetions f(z, j) on

R™ x Sm satisfying the homogeneity condition f(z, kj) = k f(=, §) for k> 0;
and I, the subspace of all f e F satisfying the symmetry condition f(z, — j)} =

An oriented [nonoriented] generalized surface is any non-negative linear
functional on F[F,]. The norm (or area) a(L) of a generalized surface L
equals L(i), where i(», j) = | j| for all (#,7]). I is situated in a closed subset
W of R» if I has support in W x S». The statement L, tends to L shall mean
all I, are situated in the same compact set and L(f) = Him L,(f) for all f (weak
convergence, also called weak convergence by some mathematicians) (*). This

(2) The set of generalized surfaces was originally [10 ¢] defined as the weak closure
of the set of elementary surfaces, in analogy with Youne's earlier definition of genera-
lized curve. By [10 ¢, (8,3)] this set comprises all non-negative linear functionals on F.
By restricting the topological types and boundaries of the approximating elementary
surfaces, as done in the present paper, a much more restricted set of generalized surfaces
is obtained. '
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defines a pseudo-topology on the space of generalized surfaces. For generalized
surfaces situated in a fixed cube K, the pseudo-topology is equivalent to the
metric topology defined by the McSHANE distance:

(2.1 d(L, L') = sup | L(f) — L'(f) |,
rEd

where @ is the set of f € I (or F, in the nonoriented case) such that on the car-
tesian product of K with the unit sphere in S, [fw, §)| <1 and f satisfies a
LipscHirz condition with Lirpscurrz constant 1. In this paper the word dis-
tance always refers to (2.1), a convention which does not agree with [10 e].
As is well known, closed sets with uniformly bounded norms and cairiers are
compact.

(b) Admissible domains. The square with boundary identifications is vep-
laced here by more general domains, which we proceed to define. By ecell in

& (u, v) plane let us mean a figure of the form « < u < b, ¢c<<v<<d, where
a<b, ¢ <d, a and ¢ are finite or — oo, b and d are finite or + oco. If a cell
G is not finite, we consider G to have a single point at co . TLet Gy, ...y G, De
cells and suppose the perimeter of every @, is subdivided into finitely many
segments and half lines 2. Let A be the set of all 1 of our subdivision. An
identification process d on . is termed admissible provided: (1) For every
A€/, either 2 is unidentified or 1 is identified with exactly one other member
of /; and (2) The identification of any pair 4, 4, € A is achieved by a linear
homeomorphism of %, onto 1, (in particular, half lines are identified with
half lines).

The cells Gy, ..., @,, A, and J define a space B, which is called an admis-
sible domain if J is admissible and B is connected. B* denotes the boundary
(union of the unidentified 1) and B° = B-— B* the interior. An admissible
domain B is a compact two-manifold which is determined topologically by
its orientability or not, the number s (> 0) of components of B*, and the char-
acteristic ¢. One has ¢ =8 +-20h—2, g =15 -~ k—2, where h, &k are the
number of handles, cross-caps in the oriented, non-oriented cases, respectively.
For these facts we refer to SEIFERI-THRELFALL [8, Ch. 6]. The symbol 7 will
designate two things: first, the topological type of B; and second, if B is orien-
table whether B is oriented. In later paragraphs we shall use the notation
q(z), s(z) for g, s, respectively.

The distance between two finite points w, %’ € B is defined as the length
of the shortest path in B joining w and w'. By elementary paih in B we shall
mean a connected polygon composed of vertical and horizontal line segments.
A cross-cut in B is an arc with endpoints on B* and otherwise disjoint from B*.
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{¢) Stit domains., The class of admissible domains includes the parallel alit
domains, the definition of which we take from [4 a]. Buriefly, a slit domain
A without boundary (s == 0) .consists of a compactified plane with a finite
number of horizontal slits, semi-infinite to the right. On the slits there is a
piecewise linear identification process such that identified points have the
same abscissa and co belongs to an open 2-cell in 4. A slit domain with boundary
consists of a compactified upper half plane with a finite number of slits with
identifications of a similar nature. The unidentified points on the slits and the
real axis form the boundary 4% For completeness, the full plane and upper
half plane with no slits are regarded as slit domains.

We also take from [4 a] the definition of normalized slit domain, and con-
vergence of a sequence of normalized slit domains with similarly arranged
configurations of slits, vertices and edges. The limit of a convergent sequence
4, 1s again a slit domain, not necessarily homeomorphic with 4,. These con-
cepts are all substantially the same as those used by SHIFFMAN [9] in con-
nection with the PrLATEAU problem.

(d) BL and Dirichlet functions.  To simplify the notation the fol-
lowing definitions are given only when B is defined by cells Gy, ..., G, which
are nonoverlapping subsets of a single (, v) plane; moreover, if B is oriented
its orientation shall agree in every G, with the natural orientation of the plane.
In particular, B may be any slit domain. The extensions to general admissible
domains are fairly obvious; moreover, it turns out that everything can be re-
duced to the special case by a change of parameters.

The letter w denotes a generic point of B. A point w interior to some cell
G, is uniquely determined by its (%, v) coordinates. The correspondence between
other points w and points (u, v) is determined by the identification process J,
and is not generally biunique. We write f ¢(w) dw for the LEBESGUE integral

B
of g(u, v) = g(w) over G U...U G, if it exists.

Let a(w) denote a vector-valued function with domain B and values in R™.

If the vector partial derivatives a,, =, exist almost everywhere we write:

(2.2) D(w, B) = (1/2) [ (@} + ) dw (DIRICHLET integral),
B ' '
a(@, B)=[|a&, X @, | dw ; (area integral) .
B

In addition, for any line parallel to a coordinate axis or elementary path y
for which the indicated integral exists we write:

(2.3) Dy(w, y) = j [} du + o} dv] (simple DIRICHLET integral) .
¥ '
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We call #(w) a BL (BEPPO LEVI) function [10d] in B if: (1) for almost
all lines I parallel to a coordinate axis the restriction of »(w) to any finite segment
A of I n G, is absolutely continuous as a function of one variable, ¢ =1, ..., n;
and (2) D(@, B) is finite. We write ©@(z, B) for the set of all elementary paths y
whose segments do not lie on exceptional lines I/, such that D,(x, y) is finite.
The restriction of x(w) to any y € O(x, B) is continuous, including across iden-
tified edges of B. ; .

A continuous BL function is termed Dirichlet. A BL function whose
restriction to B* is continuous, generalized Dirvichlet [10d]. Generalized
DiricaLer functions are needed to obtain a compactness property not pos-
sessed by DiricHLET functions.

(e) Parametric and micro-representations. Let x(w) be bounded and gen-
eralized DIrIcHLET in B; and j(w) the cross-product =z, X w,. Then z(w)
represents a parametric surface L, as follows:

- (2.4) SRR L(;f) — ff[ar;(«w% :j(u))} drw’,,, ST ol 751-77 [QI-HFO]‘; S

The term micro-representation is used as in [10e, p. 7] except now the carrier
z(w) of a micro-representation M, is a generalized DIrICHLET function (or
a BL function in case B has no boundary) on some admissible domain B rather
than a square. M, is a micro-representation of the generalized surface L if:

(2.5) L(f) = [ M(f) dw, all fe 7' [or F,].

B

3. - Main definitions and theorems.

The first definition pertains to surfaces with no boundary (s = 0).

Definition 1. £(r) denotes the closure in the space of generalized
surfaces of the set of all polyhedra P such that P has a piecewise linear repres-
entation on an admissible domain (defined by finite cells only) of type v with
no boundary. A generalized surface belonging to £(r) for some 7 is called
closed generalized surface of finite topological type. If g(t) = — 2, the elements
of £(r) are termed generalized spheres.

These definitions are essentially the ones given in [10e]. A representation
theorem for closed generalized surfaces of finite topological type is given in § 11.

Let Cy, ..., O be closed FRECHET curves in R™, none of which reduces to
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a point. We write I” for the set { ¢y, ..., €, }. [I'is termed oriented if C, ...,
(' ave oriented curves. If I"={(y, ..., C;}, I" = {C,, ..., C}} and both are
oriented or both nonoriented, d(I, I') denotes the sum on i of the FRECHEET
distance between ', and ;. Let B be an admissible domain of type = whose
boundary B* has s components. A vector function x(w) which is generalized
Diricarer in B is said to be of type (v, I") if, for every ¢ = 1, ..., s, there is
& component w; of B* with w; % w; for i s j such that the vestriction of
x(w) to w, represents (f; . Naturally, if 7 is an oriented type both B and I' are
taken as oriented.

Definition 2. £(r, I') denotes the closure in the space of generalized
surfaces of the set of all parametric surfaces L such that I has a DIRICHLET
parametric representation of type (v, I).

Definition 3. $(r, I') denotes the set of all generalized surfaces L
such that L = lim L,, where L, has DIRICHLET parametric representation
a,(w) of type (v, [,) for n =1,2, ..., and im d(I",, ') =0 .

—..Naturally, we.shall consider only those [’ for.which £(z, I').is.not.empty.

We say that L is of finite topological type with boundary I' [limit boundary I']

if Lel(r, ') [Lesfz, IN] for some v. We must be careful in referring
to I" as the boundary of L, since I"is by no means unique [10 ¢, § 6]. Ho-
wever, a generalized surface can admit at most one boundary with no mul-
tiple points (it may of course admit no such boundary). For oriented types
this was in effect proved in [5 ¢, § 3, Remark 2].

Limit boundaries were considered briefly by Youxa in [10 ¢], but no theory
involving them was developed there. Their use allows us to make all approxi-
mations with polyhedra, and to apply a certain pinching process (§ 5). The exis-
tence of generalized conformal representations is needed only for polyhedra;
and hence neither MORREY’s theorem nor its extension to 2-manifolds will
be used. It is clear that £(r, I'yc &{r, I'). We shall establish the not-so-
obvious fact that under suitable restrictions on [, enough elements of £y(z, I")
actually belong to £(z, I').

Definition 4. We say that L is an improper element of $,(z, I') if
L is the limit of some sequence of the sort described in Definition 3, such that
for n =1, 2, ..., @,(w) is constant on an elementary path (§ 2b) y, in ibs
domain B, satisfying one of the following:

(3.1) (a) y.cCB) and v, is simple closed not null homotopic;
(b) y, is a cross-cut joining different components of B .

(¢) ya is a cross-cut with both ends on the same component w;,
of B¥ and the oscillation of #,(w) on neither arc of Win— 7y, bends 0 0 as n
tends to oco.

17, — Rivista di Matematica.
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An element of £,(7, I') which is not improper is termed proper. The improper
elements are characterized in §’s 8 and 9. ‘

o

Definition 5. By least element of a set 2 of generalized surfaces we
mean an L e such that L, < L with L, eQ implies L, = L. An element of
£i(z, I'y which is both proper and least is called irreducible.

Our main theorem concerns the validity of the following statements.

(3.2) The generalized surface Loe &(t, I') actually belongs to SL(z, I).
Moreover, L, has a micro-representation whose carrier is a generalized Dirich-
let vector-function of type (v, I') with domain a parallel slit domain.

(3.3) Theorem. The statements (3.2) are valid in either of the following
sttuations:

1. L, is irreducible, I' is arbitrary.

I1. Ly is a least element of (v, I'), I' has no multiple points.

Of course, to say that I'has no multiple points means that its curves C,,
...y U, arve disjoint and simple closed. A proof for I is given in § 7, and for II
in § 8.

The condition that I" have no multiple points is to some extent unavoidable
for the full validity of both parts of (3.2) for least elements, as a simple example
in § 9 shows. However, the second part of (3.2) remains true for boundaries
with a finite number of multiple points, provided the requirement that the car-
rier be generalized DIRICHLET is relaxed. It is an open question what the most
general conditions on [” are in order that the first part of (3.2) be valid for all
least elements of S(z, I').

For comparison purposes, let us for the moment impose the setting of [10 e];
namely, we consider only the set £(r, I') and assume that I" has no multiple
points and occupies zero 2-dimensional HAUSDORFF measure. Then (3.3)
implies that any L e £(v, I') is the sum of a generalized surface I, and an
element L, of £(r, I') with micro-representation whose earrier is of type (z, I").
In {10 e] this appears in a stronger (°) form where L, is a generalized sphere.
For it one needs the existence of a microrepresentation for all connected
elements of £(z, I7), not just the irreducible ones. Very probably this latter
result can -also be proved with the present notion of micro-representation.

(®*) Except for the weaker sort of boundary identifications in [10 e].
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The argument seems to involve substantially repetition of several deep parts

of [10e], namely, §s3 and 7 and (8.2) (1), together with the extended
MoRrrEY theorem [4 a].

4. - Conformal representation.

A polyhedron P is called nondegenerate of type (r, I') if P has a light
piecewise linear representation of type (v, I) on an admissible domain defined
by finite cells. Any orientable nondegenerate polyhedron or admissible domain
may be regarded as a RiEMANN domain by introducing an analytic structure
in the usual way [2, p. 66]. The nonorientable case is treated by introducing
the orientable covering surface. When we say conformal mapping between
nonoriented domains, we mean conformal under suitable choice of local ori-
entations. We use in a fundamental way the theorem [2, p. 85] that every
nondegenerate. polyhedron. and. every. admissible. domain. is . the conformal .
image of a slit domain. The decisive feature of conformality here is the fact
that it implies the equality of DiricHLET integral and area.

(4.1) Every polyhedron P nondegenerate of type (v, I'") has a Divrichlet
representation x(w) of type (v, I') on a normalized slit domain A for which D(z, A) =
:(L(CE‘, .A) == a(P) .

(4.2) Let w = () be a, homeomorphism of an admissible domain B, into
an admissible domain B, conformal in B}. 1'hen, for any a(w) Dirichlet in B,
Y(&) = a[p()] 4s Dirichlet in B, and:

(i) the partial derivatives of y({) are given almost everywhere by the usual
formulas for composite differentiation;

(i) Dy, B)) <D(w, B).

If @ is onto, then for every z(w) generalized Dirichlet in B, there exists
(&) generalized Divichlet in B, such that y({) = x[p(l)] almost everywhere.
and (i) and (il) hold. .

Remarks. Naturally, if B has no boundary we read BL in place of gene-
ralized DIRICHLET everywhere in the last statement of (4.2). The hypothesis
« onto » is then superfluous. We may also consider the case when B, and B
are defined by finite cells only and ¢ is piecewise linear rather than conformal.
Then (4.2) is still valid, and the proof is the same except a constant factor
must be supplied in (i) . '
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Suppose in (4.2) that ¢ is onto. If M, is a micro-representation on B of L
with carrier @(w), then ¢ transforms M, into another micro-representation
on B, of the same generalized surface L with carrier (). This is an exercise
involving only the definitions and a well known change of variable theorem
for double integrals.

Proof of (4.2) . We suppose that B and B, are of the slightly special form
described in § 2 (d). The extension to general admissible domains involves
merely notational complications. TLet x(w) be Diricarwr. If Gy, ..., G,, G,
., G| denote the cells defining B and B,, vespectively, let ¢,; = G, ngp=Y(&,) .
Let 4 be any interval contained in some G3;,. By [10 b, (11.2)] the restriction
of y(¢) to 4 is Diricurgr, (i) holds in A, and D(y, 4) = D(x, p(A)) . Since
countably many such intervals cover almost all of By, (i) and (ii) follow
by addition. It remains to show that y({) is DiricHLET on B, . Clearly y(¢)
is continuous and D(y, B,) is finite. Let I be any line parallel to a coordinate
axis such that Dy(y, 1) is finite and the restriction of y({) to any segment of

Ulying in some (7, is absolutely continuous. Let A be any finite segment of
! lying in some G, . Since ¢ is analytic in B°, 2 is the sum of the sets 1 n &,
and a set having no limit point in B}. By continuity of y(¢) and finiteness
of D,(y, A) it follows that y({) is absolutely continuous on A. Since almost
all lines ! have the properties described, the proof that y(Z) is DIRICHLET is
complete.

Now suppose ¢ is onto and x(w) generalized DIRICHLET. Let K by any
figure in B which is either an interval in a single cell G; or a pair of intervals
in different cells joined along a common identified edge. Suppose the restric-
tion of x(w) to K* is continuous. By a result of Youne [10d, (7 .2)] given
0> 0 there exists a set W c K of measure < § containing no point of K* and
2 DIRTCHLET function #'(w) in K such that z'(w) = x(w) for we K — W and
D', K)y< Dz, K).

Let § be the finite set in B, whose elements are the vertices and points at coin
B, and the p~! images of such points in B. Write B, — § as the union of a locally
finite set of nonoverlapping figures 4,, 4., ... each of the same nature as K
above; let B, =4, u...ud,. Forn =1, 2, .., (B, is contained in a set H,
which is the union of finitely many nonoverlapping figures K for which the
restriction of @(w) to K* is continuous. Then there exists a DirrcuLer function
@a(w) in H, such that; (1) @,(w) = x(w) at all points of HF and except for a
subset W, of H? for which both W, and Y, == = (W,) have measure < 2-7;
(2) D(@,, H,) < D(z, H,) < D(», B). Since ¢ is onto, Y, contains no point
of BF.

Let y.(0) = z.[@(0)], ( € B,. By what is already proved, #,(¢) is DIRICHLET
in B, and D(y,, B,) < D(®, B). Moreover, y,({) = x[p(l)] except in ¥,, and
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at every point of K, n B . The following reasoning was used by Younec in
proving a compactness property for BL functions on a square [10d, (5.4)]
analogous to the one we now obtain for the sequence ¥,(¢). We sketeh it and
refer to [10 d] for details. For almost all lines I parallel to a coordinate axis
in the {-plane there is a subsequence of # (depending on ) for which Dy, 1)
is bounded. This is by FaTou’s lemma and boundedness of D(y,, B,). Let V
be the set of all such lines which in addition meet no finite point of §. For
any finite part o lying in B, of a line l € V, y,({) is eventually defined on all
of w . Bxcept for { in a null set y,(Z) is constant with value a[@(6)] for n = n()
large enough, and so is bounded. Then there is a countable dense subset V;
and a fixed subsequence of n (again denoted by 1, 2, ...), such that for every
leVi: (*) Dy (., 1) is bounded and y,(¢) tends to a limit y(¢) uniformly on
any finite part of In G, ( =1, ..., m). Whe then extend y(¢) by continuity
to every line of the set V' corresponding to V for our subsequence, and to B .
At the remaining points of B;, y({) is defined arbitrarily. TFor every le ¥V,
__there is a further subsequence of n (depending now on I) for which D, (¥,, 1)
is bounded and (*) holds.
Moreover,

D(y, B,) <lim, inf D(y,, E,) <D, B) (v =1, 2, ...).

It follows that D(y, B,) < D{z, B) and y({) is generalized DIRICHLET .
Let Z, = U Y, . Foralmost all f € B, — Z,, ¥.(0) = y(£) for every m > n.
mzn
Since Z, has measure <C2-"*1 this implies y({) = 2[@()] almost everywhere
in B,. At any point { which is a point of linear density of the intersection of
I, — Z, with both the vertical and the horizontal line through { and at which
the partial derivatives of both y,({) and y({) exist, these partial derivatives
coincide. This happens almost everywhere in F,— Z,. Since the analogous
statements involving the partial derivatives of x(w) and =,(w) also hold, (i)
of (4.2) follows from its validity for z,(w) and ,({) . This completes the proof.
The following theorem solves the converse of the problem of micro-repre-
sentation. Except for the use of (4.2) it is due to YouNe .

(4.3) If L has a micro-representation M, whose carrier x(w) is of type (z, I'),
then LeS(x, I'.

Let K, ..., K, be non-overlapping admissible 2-cells whose union is the dom-
ain B of z(w), such that the restriction of w(w) to K is continuous for every
i==1, .., 7. To prove (4.3)it suffices to show that, for every 4, the restric-
tion of M, to K, represents a generalized surface which is the limit of param-
etric surfaces L, with DIRICHLET representations #,(w) on K, such that z,(w) =
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= a(w) for all w € K and every ». But this follows from [10 e, (2.2)] together
with conformal mapping of a square onto K,.

Representation on a square, With the following discussion the representations
we shall obtain can be compared with [10 e]. Let L have micro-representation
M, on an admissible domain B, with carrier x(w). There exists a continuum
k which is the union of B* with finitely many elementary ares y,, ..., v, bel-
- onging to O(z, B), such that 4 —k is an open 2-cell. There is a conformal
mapping ¢ of the interior of the unit square @ onto 4 — % . Moreover, ¢ has
a unique extension as a homeomorphism from ¢ to the admissible domain B,
obtained from B by cutting along v, ..., ¥Ym. By (4.2) and the Remark fol-
lowing it, L has a micro-representation on . Its carrier is subject to piec-
ewise analytic boundary identifications by the SCHWARTz reflection principle.

If B is defined by finite cells ¢, only, one may use instead of @ a piecewise
linear homeomorphism y of @ onto B, obtained by a well known elementary
process [8, Ch. 6].

5. - A pinching process.

In this section we adapt to generalized surfaces a certain deformation
process whereby the part of a surface near a given point x, is contracted into Zy .
Processes of this sort have been used in connection with the PLATEAU problem
[2, p. 154] and in the proof of cyclic additivity theorems for LEBESGUE area
[1a, p. 69], [1b], [7, V. 2].

We may suppose @, = 0. Given ¢>0 let 9 = exp (— ¢=). Let:

1, r>=0
(5.1) P(r) = ( 1 + {log (n/r)/logn}, »<r<ng
0, 0<r<n

Let x(w) be DIRICHLET in an admissible domain B; suppose that the set of
w with |@(w)| =mn or |a(w)| = has measure 0. Let p(w) = P( [ a(w) | ),
and y(w) the product of the vector a(w) by the sealar p(w): ‘

2 gy = plw)-a(w).
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The partial derivatives of y{w) exist and are calculated almost everywhere by
the elementary formula. Moreover:

(3.3) D(y, B)< (L + ¢ Dz, B) [2, p. 155] .

It is not hard to show that y(w) is DiricaLET. Moreover:

S y(w) = x(w) if | 2(w0) | =7

(5.4)

e | y(w) | < g if | o(w) | < 7.

5.5) Let L, L' be the parametric surfaces represented by w(w), y(w) respec-

tively, where y(w) is-defined by (5.2) . Then there exists a generalized surface L”
situated in the sphere with center x, and radius n such that the Me Shamne
distance between L and L' -+ L" is no more than 3¢-D(z, B).

eProot: ;
Let j=a, X2, and § =4, X Yo =P T +P x,) X (P T+ D ).
Using bilinearity of cross-products and the fact that o X ¢ = 0:

(5.6) J' =0u P (@ X @) + P Py (@ X @) + P
Let Qo, Q:, Q. denote the set of w for which |a(w)| <% 72 <|aw)| <7,
and | #(w)|>n, respectively. By hypothesis, these sets comprise almost
all of B. In @, and @, p, = p,= 0, while in @, we have by elementary calcul-
ation:

[pul<elau]ll=], lp.|<el|a]/|2].
Then, since |p|<1 and |a xXb|[<|a||b]| for any a, b:

[ pu p (@ x )| <ela||a], 0. (@ x2)|<e|a.]z].

Therefore, by (5.6),
(5.7) i —p2 i <2e|w || o] <el[al + al].

Let K be any cube with center the origin containing the set #(B). Consider
any fe® (§ 2 (a)). It isan exercise to show that, for all », ¢’ € K and j, j' € 8™

| fw, ) — ', D<|e—a|]]], | f@, D —fla, )| <]i—7"].
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By (5.4) we then have, since 5 < /2,

6.8) | [[ Ui, ) —1t, D dw| <e[[]j]dw = ¢ alo, B) < e-Dia, B).

Using (5.7) and the fact that p¥(y,j) = f(z, PEe):

(5.9) | [[ [Py, 3)—1(y, §] dw | <2e-Dia, B).

Define L” by the formula:

(5.10) L'(f) :ff(lmpﬂ)‘f(g/, j) daw, all fe F [or F,].

Clearly L" is linear, non-negative. Thus, L" is a generalized surface (not
necessarily parametric). Sincep = 1if |#|>n, L" is situated on the. sphere.
@] <#n. Finally, the sum of the left sides of (5.8) and (5.9) without absolute
value signs is L(f) — L'(f) — L"(f) . Therefore, '

| L(f) — [Z'(f) + L"(H] | <3e-D(z, B).

Since fe® is arbitrary, this proves (5.5).

6. - Lemmas.

Our first statement is an approximation lemma. It is simple eompared with
other known ones, which unfortunately do not cover precisely the present
sitnation. :

(6.1) Let L have Dirichlet parametric representation z(w) of type (v, I').
Then L is the limit of nondegenerate polyhedra P, of type (z, I'), where I', tends
to I, - :

Prooi.

First, we may ignore the requirement of nondegeneracy, since this can be
achieved afterward by slight modifications of P, . Second, it is enough to as-
sume that the domain B of w(w) is defined by finite cells and that each
component of B* belongs to &(w, B). If this is not so, we replace B by a
subdomain B, with the required properties and the same topological type,
such that a(w, B-— B,) is small,
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By the construction described in the last sentence of § 4, L has another Diri-
cLET representation y(w) on a square ¢ with piecewise linear identifications
on the perimeter sz, such that z € &y, Q). By an elementary « sewing » process
deseribed in [10 e, p. 35 bottom] there is a square @' with @ c @', whose per-
imeter is subject to the same type of identifications as ¢, and a DIRICHLET
function y'(w) piecewise linear on the perimeter of @’ and equal to ¢(w) in @,
such that a(y’, @' — Q) is small (*). Our conclusion now follows from [10 e,
(2.2)] . ‘
If #(w) is BL in B, l(y) denotes for any y € O(x, B) the length of the curve
represented by x(w) on y. If B is not a 2-cell or 2-sphere, let (2, B) be the
set of all simple closed elementary curves y € O(x, B) such that y ¢ B® and y
is not null homotopie, together with all elementary cross-cuts ye Gz, B)
such that there is no arc 1 of B* with y U A closed and null homotopic. Let

(6.2) p(w, B) =int Iy).

The number ¢(z, B) is closely related to the inner diameter of a surface

defined by SHIFFMAN [9], and to YouNe’s pinching constant [10 e, p. 44].
A proof of the following statement is contained in that for [4 a, Lemma 6] .

(6.3) Let A, be a sequence of normalized slit domains, all of the same type 7,
and z,(w) Dirichlet in A, for n=1, 2, .... Suppose that D(x,, A,) is
bounded and lim inf @(x,, 4,)>0. Then there is a subsequence for which
A, tends to a limit_ A, which is a slit domain of type .

In the next lemma we suppose that ¢ is a type with non-null boundary
(i.e., s > 1), but not the type of the 2-cell.

(6.4) Let L be an irreducible element of S(r, I'). Let L, be parametric
with Dirichlet representation x.(w) of type (z, ') on a normalized slit domain
A,, such that D(xz,, 4,) is bounded, L, tends to L, and I', tends to I.

Then there is a subsequence of n for which @(x,, A,) tends to a positive limit
and the restrictions of z.(w) to AF are equicontinuous (°).

Proof.
We argue by contradiction. Suppose ¢(x,, 4,) tends to 0. Then there exists
Va €82(2,, A,) such that diam x,(y,) tends to 0, since diameter does not exceed

(3) The finiteness of the simple Diricurer integral D,(y, =) allows us to use this
elementary procedure in place of the much deeper sewing theorem [10 e, (3.2)].

(%) Equicontinuity will be defined as in [4 a, § 6]. In effect, it means equicontinuity
" in every bounded part of A¥ with respect to distance in 4, and also at oo.
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length. We may suppose that the sets 2,(y,) tend to a pomt o, and may take
@y == 0. Suppose first that ¥a i8 either simple closed or a cross-cut joining dif-
ferent components of A . Given ¢ > 0 let 7) = exp (—e&~ 1) and choose N == N (&)
such that x,(y,) is contcuned in the #*-neighborhood of z,. We exclude the
countable set of values of e for which the set where |x,(w)| equals % or 7® has
positive measure for some n .

Let us apply the pinching p1oces5 to #(w), the corresponding quantities
in (5.5) being denoted by ¥, (w), LH L Clenly Yx(w) is constant on y,, and
is of type (7, ;,) where d(I',, Iy <es (s the number of components of A¥Fy.
Let ¢ describe a sequence tending to 0, N(g) being chosen to tend to infinity.
By (5.5) L -+ L tends to L. TFor a subsequence of N, L tends to a limit
L'< L. L’ is an improper element of £,(v, I'), contrary to the hypothesis that
L is irreducible .

Quppose next y, is a cross-cut with both endpoints on the same component
@y, of A . Let 2., 4., be the two arcs of w,, — %= . By choosing a subsequence
‘we may suppose that diam x, (1,,) tends to a limit 0. (t=1,2) . If both 035>0
and p,> 0 the reasoning is as before, using (3.1) (c¢)in place of (3.1) (a) or (b).
This is so even if y, ¢ Q(x,, 4,), a remark we shall need for the second part
of the proof. 1If, say, g, = 0 we choose N = N(e) so that diam Zp(yy U A,) <
<?/2. Now y, U 4, is simple closed and not null homotopic; therefore, by
continuity of z,(w) there exists a simple closed y,, eQ(x,, A,) such that
diam 2, (y\) <#*. By the previous reasoning we arrive again at a contradiction .
This proves the first assertion of (6.4).

Let us deny equicontinuity on A4¥, where n describes a subsequence for
which 4, tends to a limit 4 of type 7 [see (6.3 )]. Then there e\ists & >0, a
further subsequenee of n, and for » in this Subsequence Way W, e 4%, such
that | @.(w,) — ,(w,) | > & and either both w, and w, remain in a bounded
part of the plane while their distance in 4, tends to 0 or else both w, and w,
tend to co. Let us apply reasoning used in a similar situation in [4 a, § 6],
based on Youxa’s ¢— ¢ gratings (one could use instead of this a lemma of
SHIFFMAN [9]). There exist for all lavge » in our subsequence a cross-cut Vn
and an arc A,, of 41"‘ with the same endpoints as y,,, such that: (1 ) A, contains
both w, and u,,,, (2) IU(y.) tends to 0; (3) v, U A, is null homotopic. (If w, and
w, remain bounded, 4,, is a «small» arc; in the contrary case 1,, contains oo
and is in a « small » neighborhood of oo). Since A4, is not a 2-cell Ya U Ay, is
not null homotopic, where A, is the arc complementary to A,,. By reasoning
above, diam z,(4,,) is bounded away from 0. Since diam Tp(Agn) 2 &4 > 0,
the quantities g,, g, defined in the first part of the proof are both positive .
This is impossible; hence we must have equicontinuity on 4% .
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7. - Proof of part I of Theorem (3.3).

We can now establish part I of Theorem (3.3). In the proof we appeal
to the preceding paragraphs and to a special microrepresentation theorem
of You~Na [10 e, (5.1)] in which stringent boundary assumptions are made.
The proof is divided into steps.

(i) Suppose first that 7 is not the type of the 2-cell. Let L, be an irreducible
element of £,(z, I"). By definition and (6.1) L, is the limit of nondegenerate
polyhedra P, of type (z, I), where I, tends to I'. By (4.1) every P, has a
DiricHLEY representation x,(w) of type (r, I,) on a normalized slit domain
A, with D(=z,, 4,) =a(P,). Since lim P, = L, implies lim a(P,) = a(L,),
D{x,, A,) is bounded . By choosing a subsequence, we may suppose that all
A , have similar configurations and that corresponding curves in I, are repre-

__sented on corresponding components of 4¥ . By (6.3) and (6.4) there is a further

subsequence (denoted again by 1, 2, ...) such that 4, tends to a limit 4 of type
and the restrictions of w,(w) to A are equicontinuous .

(il) Let V denote the set of all vertical and horizontal lines ! such that:
(1) T passes through no vertex of 4; (2) for n =1, 2, ..., any elementary path
in A , lying on 1 belongs to O(z,, 4,); and (3) there is a subsequence of n (dep-
ending on 1) for which D,(w,, 1) is bounded . Since D(z,, 4,) is bounded, V7
comprises almost all vertical and horizontal lines.

(iii) Liet 4 be a rectangle in 4, containing no vertex (°), which consists either
of a planar interval with at most one side on 4% or else a pair of intervals
disjoint from A4 * joined along a common identified edge. For all large n there
corresponds to 4 in a natural way a rectangle 4,c 4,, such that 4 and 4,
are superimposed outside the J,-neighborhood of the slits of A and the real,
axis, where lim J,= 0. The definition of 4, is completed by following identif-
jcations in 4 , rather than in 4 . Details are given in {4 a, § 5 e]. We denote
by A the relative boundary of A (= closure of A4* — A*), and 1, the relative
boundary of 4, . If A and A’ are nonoverlapping, then 4, and A, are nonover-
lapping for all large = .

Let a, b denote the width and height of 4, and G the interval 0 <wu < a,
0<v<b. Let h be a linear homeomorphism of G onto A which involves, at
most, reflection of one part of 4 in a horizontal line (nonorientable case only),
translations, and fitting two parts of 4 together along the identified edge. Let

{5) More precisely, 4 shall contain no limit point of vertices of A, (see [4 a, §5]).
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k. be the linear homeomorphism of @ onto 4, uniquely determined by the
requirement that &(w) and h,(w) are supervimposed if w is any point of a
horizontal edge of ¢ such that h(w)¢ A*. The points k(w) and Bn(10) have the
same abscissa for all w, and h(w) € 4* if and only if h,(w) €4¥. The mapping
h, distorts the vertical scale by a factor &, tending to 1.

(iv) Suppose now that 1, and hence also 1, lies on lines of 7. Let y,(w) =
= @,[h,(w)] . Then there is a factor P» tending to 1 such that, if ¢ denotes
hul( )s.) . ’

(7.1 ) D(y. &)< pn Diaa, 4,),
(7.1 b) Dulyn, 0) < po Da(@ny o) -

The left side of (7.1 a) is then bounded, and also the left side of (7.1 b) for a
subsequence of . For this subsequence the restrictions of Y,(10) to 7 are equi-
continuous; and by (6.4) their restrictions to the remaining side of G (if any)
are equicontinuous. By Ascornr’s theorem and [10 4, (5.4)] there is a sub-
sequence and a function y(w) generalized DIRICHLET on G such that Ya{20)
tends to y(w) in the BL sense in ¢ and uniformly on G*. ’

(v) Let L, denote the parametric surface represented by ,(w) on G, also
by the restriction of a,(w) to 4,. Since a(L,) < a(P,) is bounded and all L,
are situated in a fixed sphere, L, tends to a limit L for a further subsequence
of % (still denoted by 1, 2, ...). Suppose 4 has no side on 4% . Then Dy, G%)
is bounded; and by an important lemma of YouNe [10 e, (6.1)] L is the sum of
a generalized sphere L" and a generalized surface L’ with a micro-representation
m, whose carrier is y(w). Clearly L' << L.

If A has a side w on 4* cover ¢ — h~Y(w) by a locally finite set of nonover-
lapping intervals 7, 7., ..., such that D(y,, =F) is bounded for each 5 = 1,
2, ... (possible according to the definition [10 d] of BL convergence of y,).
Define analogously L,,, and L, = lim L,, (further subsequence of #). Then

n
n 3 . .
L.=1,+ L, where L. is a generalized sphere and L. has a micro-
representation m,, with carrier the restriction of y(w) to s, . This defines m.,
almost everywhere in ¢. Now, for every N:

N N N
(7.2) SL<3L =1lm3 L,<lmL, =L.
. r=1 Fasl n r=1 n A
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. r , ’ .
Hence, letting L' = L -+ ... 4 L, 4-..., we have again L' < L; and L’ has

a micro-representation m,, .

(vi) Define
w(w) = y[h1(w)], Myp= Mu—rw .

Then (w) is BL in 4 and its restriction to A* is continuous. 3, is a micro-
representation of L' with carrier w(w):

(7.3) L'(f) = ” M o(f) dao, all fe F [or F,].

A

Finally, if 4 and 4’ are nonoverlapping but have a line ¢ in common, then
the definition of z{w) is consistent on e¢. Indeed, on any segment of ¢ disjoint
from the slits of 4 and the real axis, x,(w) tends uniformly to x(w) .

(vii) Now let 4 be covered except for vertices and oo by a locally finite set
of nonoverlapping rectangles 4!, 42, ... of the sort described in (iii). Then
x{w) and M, are defined in every 47, hence except for a finite set of points of 4.
It is easily shown using (7.1 a) that »(w) is BL in 4, since x(w) is already BL
in every 4/ and continuous on A°*. By (7.3) and addition, I, is a micro-repre-
sentation of I, = LV 4 L*' -+ .... By a calculation similar to (7.2), L, < L, .

For every j such that 47 n A% is not void, the restriction of @(w) to 4/ n A*
represents a part of I" which is the limit of the part of I', represented on
Ain A¥ . From equicontinuity of z,(w) on A it follows that the restriction
of z(w) to A* has a continuous extension to boundary vertices of 4 and oo
which represents I" (cf. reasoning in [4 a] and [9]). Thus, the carrier @(w)
of M, is generalized DmricrLET and of type (z, I).

(viii) By (4.3) L:, € &z, I'). Since L, is a least element of £,(r, I'), which
contains £(z, I"), we must have L(', = L, . This completes the proof of I, except
for the type of the 2-cell.

(ix) In the remaining case all A, and A are the upper half plane with no
slits. I', consists of a single curve ¢, tending to a single curve C (not a point)
comprising I”. The previous reasoning applies provided we establish equi-
continuity on A¥ . Let @,(w) be normalized by the well-known 3-point cond-
ition. For example, let the z,-images of the points 0, 1, co on the real axis
tend to three distinet limits. This guarantees that diam z, (4;.) is bounded
away from 0 in the final part of the proof of (6.4). From this equicontinuity
follows as before . .
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8. - Proof of part I1 of Theorem (3.3).

Part II of Theorem (3.3), in which the boundary is assumed to have no
multiple points, will be deduced from I by addition. Some partial results for
boundaries with multiple points are described in § 9. Statements (8.1) and
(8.2) apply for arbitrary /I also for the case of no boundary after fairly obvious
modifications.

(8.1) Let L have micro-representation M, whose carrier z(w) is of type (v, ).
Then L has another micro-representation m,, with carrier y(w) again of type (z, I'),
such that there is an open set G in the domain B of y(w) on which m, =0 and
y(w) is constant with arbitrarily preassigned value x, .

Proof. By conformal mapping (§ 4) we may assume z(w) is defined on

_a slit domain 4. Let w, = (u,, v,) be a point of A, where %, is chosen so small

and v, so large that the vertical and horizontal lines 1,, 1, through w, meet no
slit. In addition, w, is chosen so that the restriction of z(w) to any finite part
of 1, is absolutely continuous and Dy(z, 1;) is finite, ¢ = 1, 2. Let g(t) =1,
<70, and g(f) =max ({—1, 0), t>0. Let w = @(w) be the transformation
of A onto itself defined by

! !

w o= Uy — g(up — u}, V= + g(v — ) .

Let mw = Mm(w) except in the strips u,—1 <u <<w,, — oo <v < oo and
U<V < +1, —oo<y<<oo, and m, =0 in these strips. Let Y(w) =
= «[p(w)] except in the open interval G’ which is the intersection of the two
strips. Let y(w) = 4, on a smaller interval G concentric with G'; and let y(w)
be defined in the annulus ¢’ — ¢ by linear interpolation on each radial line.
One easily verifies the assertions of (8.1).

In (8.2) and (8.3) the following conventions concerning 7, 7', 7,, 7, apply.
These types are either all oriented or all nonoriented. If v is nonoriented but
orientable, the same is true for 7/, rl, Ty .

For any I'={ 01, vy Oo}, ={Cy, ..., C;} we write I"U I" for the
set {Chy ooy Coy Cpy ooy Cr}

(8.2) A generalized surface L has a micro-representation whose carrier is of
type (t, I') in either of the following situations:

(a) L has a micro-representation with carrier of type (v', I'), where q(z') < q(7).
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(b) L = Ly -+ Ly, where L; has a micro-representation whose carrier fis
of type (z;, I') (t=1,2), Nuly=1I, and q(zr,) + q(t.) +2<q(r). We
admil the possibility that I'y = I' and s(t,) = 0.

Proof.

Suppose (a) holds. We apply (8.1) and follow the notation there. Let
4 ¢ ¢ be a square disjoint from B*. Let B’ be an admissible domain of type
7 obtained by replacing 4 by a 2-manifold 4 with the appropriate number of
handles or cross-caps, whose boundary is identified with A*. Let z(w) = y(w),
m,, =My, we B — A'; and z(w) = y(4), m, =0, we A’. Then m, is a micro-
representation of L with carrier z(w) of type (z, I").

If (b) holds, L, and L, have micro-representations whose carriers are constant
with the same value x, on squares A and 4, interior to their respective domains
of definition. We discard 4° and 49, and identify A% and 4;° with each other,
taking care to preserve orientation or orientability if possessed by v. The
resulting domain has characteristic ¢(r;) + ¢(t.) +2. We have either the
.desired..conclusion. or. case. (a)..

(8.3) Suppose I' is without multiple points; i.e., I" consists of disjoint simple
elosed curves. A mecessary and sufficient condition that a generalized surface L
be an improper element of £,(z, I') is that one of the following occwr: (1) L e £,(x', 1),
where g(v') <q(t); 2)L = Ly + Ly, where L, € $(z,, ') (1 =1,2), INU .=
=TI, qlw)+qw) +2<q@x); o0 (38) L =1L, + Ly, where Lie (v, I),
Ly 81, qlty) + qlt) + 2 < q(t), and 7. s not the type of the 2-sphere.

Proof.

Necessity. Let L be the limit of L,, where L, has DIRICHLET parametric
representation z,(w) of type (r, I,), 4(I,, I') tends to 0, and z,(w) is constant
on some elementary path v, in its domain B, satisfying (3.1 a). Since I has
no multiple points, we may disregard (3.1 b and ¢). Cut B, along y,. This
introduces a pair of new boundary components w;, w:', or a single component
o, according as y, separates every open set containing it or not. In the first
instance, we identify w,., w. with the perimeters of 2-cells Z,, Z, respectively,
and set ,(w) = @,(y,) in Z,', and ZZ . In the second we use instead a single
2-cell Z,.

If y, does not separate B, we have (1) upon passing to the limit. Othervise
we have (2) or (3); the passage to the limit in this case may be through a sub-
sequence . : : :

Sufficiency. This follows from (8.2), or more precisely from the construc-
tions in its proof, applied to approximating parametric surfaces. Observe
that in each case the elementary simple closed curve along -which new identif-
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ications are made does not bound a 2-cell and hence (by a known theorem)
is not null homotopic. The proof of sufficiency does not use the special
nature of 1.

If L is least, then so are L, and L, in (8.3) \2). In (3) L, must be 0 if L
is least. From this it follows that every least element of $,(z, I') can be rep-
resented as a finite sum of irreducible generalized surfaces. We omit the
details, which are analogous to [10 e, (4.6)].

Proof of I1. Suppose ¢(z) =—1. Then 7 is the type of the 2-cell and I
consists of a single simple closed curve €. Every element of £,(z, I') is proper;
and every least element is irreducible, so that I applies. We proceed by
induction on ¢(r) . Let L, be a least element of (v, I'). If L, is proper, then
L, is irreducible and I applies. Otherwise, we use (8.2) and (8.3) together with
the induction hypothesis.

9.~ Boundaries with multiple points. -

There remains the question of extending the second part of Theorem (3.3),
which concerns least elements. Omne may try to proceed from the irreducible
case by addition, as in § 8. For boundaries /" with a finite number of multiple
points, each of finite multiplicity, this can be done using & finite number of
additions, subject to certain qualifications mentioned below. The proof involves
considerations from surface area theory which we do not want to inject at
this point, and is deferred to a later paper (*). The author does not know what
can be done in the general case. One might hope for a countable decomposition
analogous to CESARI’s fine-cyclic decomposition for FRECHET surfaces of finite
topological type [1 b]. See also [4 b] and [6]. For fine-cyclic elements one
is dealing effectively with the case of a finite number of multiple points on the
boundary. More precisely, in the middle space the boundary has finitely many
multiple points .

An ewample. Let 7, denote the type of the nonoriented 2-cell. ILiet ¢, C,
be simple closed curves in a plane with exactly one point p in common, and C
the union of ¢, and C,. Let G, denote the interior of C';, and L, the parametric
surface corresponding to @, (¢ =1, 2). Suppose C; and C, chosen so that
G, and @, are disjoint and no rectifiable curve in G, U G, U C joins G, and G, .
For i =1, 2, L; has a DIRICHLET parametric representation x,(w) of type

(") However, by formulating the problem differently we shall obtain an analogue
of 11. See (10.2) below.
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{1, €;) on a square @ . By (9.1) below, L, -+ L, e (1, €). It will be shown
elsewhere that actually L, + L, e L(t,, C), if C occupies 2-dimensional HAavUs-
DORFF measure 0. But I, 4,— L, can have no micro-representation whose car-
rier is generalized DirrcuLET of type (1,, C).

On the other hand, I, -~ L, has a parametric representation on @ with
the following properties: (1) x(w) is continuous on ¢ and represents C on Q%;
(2) there is a vertical line ! on which @(w) is constant with value p, such that
¢, and C, are represented on complementary arcs of Q* with endpoints on I;
and (3) @(w) is DIRICHLET in any subinterval of @ disjoint from I. D{(z, Q) must
be infinite. This example suggests how arepresentation for least elements can
be obtained in case of boundaries with a finite number of multiple points, by
widening the class of admissible carriers.

This paragraph will be concluded by extending the characterization (8.3)
of the improper elements of £,(7, I').

Definition. The closed curve C splits into closed curves ¢’ and €’

if..C . has. a. representation. z.= f(0) on_the unit circle g with f(0) = f(=) suech. . ...

that, upon identifying the points 0 and & on g, €' and (" are represented by
1(8) on the upper and lower halves of g, respectively .

We write I” ~ I if I'" is the set of curves obtained by splitting a single
curve (; of I', or vice versa. If I' has s curves, then I has s -1 curves in
the first instance and s —1 curves in the second.

(9.1) Statement (8.3) is valid for arbitrary I' if we add to the conditions
@), (2), (3) the following: (4) L e &(v, Iy, where IV ~ I'and g(t') < ¢{t); 01
(3) L = Ly, -~ Ly, where for i =1, 2, L;e $y(ts, T, TuTly~T, qn) -+
+ ¢ ( o) 1< q(r), and s(7;) + 8(z) =8(v) + 1.

Proof.

Necessity. We must supplement the proof of (8.3) by considering the
case when y, is a cross-cut. Let B, be the domain, of characteristic one less
than ¢(t), obtained by cutting B, along y,. B, is admissible if y, does not
separate B,, and splits into two disjoint admissible domains in the contrary
case. Upon passing to the limit (possibly through a subsequence of ) we
obtain (4) or (5) respectively .

Sufficiency. It has already been shown that (1), (2), or (3) is sufficient.
For (4) or (5) we in effect replace cutting along an arc by the reverse operation
of pasting two arcs together. To avoid tedious repetitions we give the details
only for (4), in the case when I is obtained by splitting a curve C; of I' into
parts C;, C;. Then L= lim L,, where L, has DIRICHLET parametric representa-
tion @,(w) of type (z', I") such that d(I,, I'") tends to 0 . We may assume that

18. — Rivista di Matematica.
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@a(w) is defined on a slit domain 4, of type v'. Now ,(w) represents on com-
ponents w,,, wy, of 4* curves 0}, C}, tending to ¢, C". Let (0) be a rep-
resentation of ¢/, on the unit circle, as described in the definition above (9.1).
For m» =1, 2, ... there is a homeomorphism %, of w, onto the upper half
circle ' (with endpoints identified), such that |z.(w)— f[h.(w)] | <n-1, all
w Ew:.,,. We may suppose that the inverse image w, of the endpoints of ¢
is not a vertex of A, and that the vertical line l,', through w; does not belong
- to the exceptional set described in § 2 (d). This is possible since such points
are dense in w,,. Let wh, 1, be defined correspondingly . By a variant of the
procedure used to prove (8.1), we may thicken I, and 1. to form vertical strips
and theleby obtain a new 1eplesenmt10n/fc\(u), again of type (7/, 1"'), on a sht
domain A4 » constant on the segments A,,, A of A7 A emrespondmg to w,, w,

Let I, be a squave with vertical sides 1dent1ﬁed w1th A,,, e respectively, and
horizontal sides unidentified. Then A and I{, define an admissible domain
B, of characteristic ¢(r’) -~ 1 whose bound‘try has s components. The identif-
ications may be alranged 80 as to preserve orientation or orientability, if pos-

sessed by 7. We extend aa,,(u) to-K;-by-linear-interpolation-on-each horizontal

line. Then r,,(w) again represents L, on B,, and on B} 1ep1esents a set of curves
I', tending to I Passing to the limit, L e ..,(7:, I') where _q(r) =q(r) +1<<
<g(r). By (8.2 a), Le &, I.

The remaining cases are similar .

10. - Applications.

Let us write £, £, for £(z, I'), $4(v, I'), respectively; i.e., £, £, consist of
those generalized surfaces of given type T and boundary, or limit boundary, I
We consider the problem I(f,) = minimum in either £ or £, for fixed foe F
(or fo, € Iy if 7 is nonoriented). Let W, uy denote the respective greatest lower
bounds, whether attained or not. From the elementary point of view we may
prefer the problem u, since inf L(f,) in £ is (almost by definition) the same as
in the subset of £ censisting of parametric surfaces with DIRICHLET represen-
tation of type (z, I'). However, the problem u, has certain advantages.

Let £, denote the set of improper elements of £, and p, = inf L(f,) among
all Le £,. We call the problem yu, properly posed if e = 1y (3) .

(®) A condition of this sort due to Douaras, played a decisive role in the solution
of the PLaTesu problem for higher topological types. See Coumant [2, Chap. 4].
‘Doueras [3], SHirrMax [9]. -
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(10. 1) Let f, positive semi-definite (i.e., f, > 0). Suppose ecither: (a) the
problem u, is properly posed (I' arbitrary); or (b) I" has no multiple points (er
not necessarily properly posed) .

Then w == py . Moreover, if there is a solution in £, there is as solution in £
which has a micro-representation whose carrier is of type (v, I').

Proof. Clearly u > u, since £ c £;. For every L e £, there exists a least
element L' € £, with L' < L. Since f, > 0, L'(f,) < L(f,) . Thus, 1y = inf L(fy)
among all least elements of £,; and in case (a), among all proper, least (i.e.,
irreducible) elements. The conclusion now follows from Theorem (3.3).

Theorem (10.1) does not assert the existence of a minimum. However,
conditions for this are already known . The minimum is attained in £, if and
only if a minimizing sequence with bounded supports and aveas exists [10 c,
(5.2) Principle of i\i’inimum] .. Af one assumes in advance bounded supports,
then such a minimizing sequence exists if f, is positive definite. If I" occupies
2-dimensional HAUSDORFF measure 0, positive definiteness can be replaced by
weaker conditions [5 a, §13]. If m|j|<fox, j) < M|j| forall (%, ), where
0 <m < M < oo, then a minimizing sequence with bounded supports exists.
This follows from a lemma [10 e, (9.4) and (9.5)] due to CEsArI and YoUNG.

The theory includes solutions.in the ordinary sense to problems of classical
interest. Suppose either (a) or (b) of (10.1); moreover, suppose that p is at-
tained, and that f, satisfies the weak normality condition J/(f,) > 0 for every
micro-sphere M 0. Let L, be a solution with micro-representation as in
(10.1) . 'We apply a result of Youxc [10 e, (9.9)] together with dissection of
the parameter domain and conformal transformations as in the proof of (4.3).
L, has another micro-representation M, whose carrier x(w) is continuous
(therefore DiricHLET) and of type (r, I'). If f, satisfies a weak regularity
condition [10 e, p. 54 top], in particular if f, is convex in the variable j, then
the parametric surface represented by the carrier x(w) furnishes a minimum .
In particular, the existence theorems of CEsARI, DANSKIN, and SIGALOV (see
[11], [12], [13 a]) appear as very special cases.

Finally, let us show that the condition f, > 0 in (10.1) is not so restrictive
as may seem. If 7 is a nonoriented type, then this condition is necessary in
order that x be finite. Indeed, suppose fo(@o, o) << 0 for some (z, j,). Since
is nonoriented, f, is symmetric in j; hence, fo(@o, — o) = f(@%, jo) . Then there
exists a polyhedral sphere P (pair of small discs, back to back) such that
P(f,) <0. Now NP is a polyhedral sphere for every positive integer ¥ . If
L is DiricaLeT of type (z, I'), so is L + NP for every N, by (3.2). Ther-
efore == — oco. ‘
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Suppose next 7 is oriented. Let us call f, essentially positive semi-definite
if foo -+ @ > 0 for some exact [5 a] ¢ in . If I" occupies 2-dimensional Havs-
DORFF measure 0, then the problem u for f, is equivalent to the problem p
for f, -~ ¢ in the sense that L(f,) differs from L(f, -~ ) by the constant factor
L{g) for all L € £. This is proved in [5 ¢, Lemma 1]. Results of [5 a, § 5] show
that essential positive definiteness comes reasonably near to being necessary
that z be finite. More precisely, it would be necessary if we allowed discon-
tinuous ¢ and comparison surfaces of arbitrary oriented topological type with
boundary I.

Boundaries with finitely many multiple points. For this class of boundaries
we can get an existence theorem of the same degree of generality as for no
multiple points, provided the minimum problem is posed somewhat differently .
Our result (10.3 below) is analogous to Theorem IT of Sicarov [ 13b].

The discussion is limited to the oriented case; the nonoriented case is quite
similar.

Let K _be the earrier of a boundary I with finitely many multiple.points,

oriented by the orientations of the curves of /. The set K is a finite linear
graph in m-space F™; and only finitely many points of K are covered more
than once by curves of I'. Let us regard any two such boundaries I' and I
with the same carrier as equivalent. Thus, instead of I" and 7 we shall prescribe
an oriented finite linear graph K and a number % of handles. Let £*(h, K)
£ (hy, K)] be the union of all sets £(z, I') [&y(z, )], where k{r) =h and I
has carrier K. In view of (8.2 a) we might equally well say A(r) < % in this
definition. £%#(h, K) and $£f(h, K), each being the union of finitely many
closed sets, are closed .

{10.2) Ewvery least element L, of $F(h, K) belongs to £%(h, K); and L, has
a micro-representation whose carrier is of type (r, I'), where I" has carrier K and t
is a type with h handles [i.e., I{z) = h].

Let w*, uf denote the respective g.lb.’s of L(f,) in $%(h, K), $¥(h, K).
The following is obtained from (10.2) by repeating the discussion following
(10.1):

(10.3) Let f, be positive semi-definite. Then p* = ui . If there exists a min-
imizing sequence in £ (h, K) with bounded supports and areas, then there is a
solution in $%(h, K) which possesses a micro-representation of the sort described
in (10.2) .

Proof of (10.2).
Let us make the following preliminary observations. Let L, be any least
element of £F(h, K). Then L, € £(to, I) where h(z) = h and I, has carrier
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K, and L, is a least element of £,(z,, [y). If L, is irreducible the conclusion
of (10.2) follows from Theorem (3.3). Otherwise, L, is an improper element
of (te, 1), and we shall apply (9.1). :

We proceed by induction on the pair (q(z), K), ordered lexicographically,
where order on graphs K is set inclusion. If g(z,) ==-—1 and X is a simple
closed curve, then I, cannot be improper. In the general case, suppose first
(9.1) (1) or (4) holds. Then L, e (7', I"") where ¢(v') < ¢(7,) and either I == "
or I ~ I'. Since «if and only if » holds in (9.1) and L, is least in £,(1,, %),
L, must be a least element of £,(1', I'"). Since the operation ~ increases the
number of boundary curves by at most one, s(z') >s(1,) —1. Then from the
formula ¢ = s -+ 2h — 2 and the relation ¢(z') < g(z,) we have i{z') < h(zy) =h .
By the induction hypothesis, L, has a micro-representation whose carrier is
of type (z", I), where h(z") = R(z') < h and I" has carrier K. Let v be the
oriented type with h(z) = h and s(r) = s(z"). By (8.2 a), applied with " in
place of 7' there, L, has a micro-representation whose carrier is of type (z, I').
By (4.3) Lye v, I c £, K). - P

* Since L, is least, in (9.1) (3) we must have L, = 0; this case reduces to (1).
Suppose (9.1) (2) or (5) holds. Then L, == L, -+ L,, as indicated there. Ior
i==1, 2, L,is a least element of £,(r,, I';). Since ¢ >—1 for any type with
boundary, we must have ¢(r.) < ¢g(r) for ¢ == 1, 2 in view of the relations on ¢
in (2) and (). Taking account also of the corresponding relations on s, h(r,)+
W) < k() = h . By the induction hypothesis L, has a micro-representation
whose carrier is of type (r'i, I’:), where h(r:) = h{t;) and I’; has the same carrier
as I'; (i =1, 2). Let I'=1T,u I, and 7 the type with i(t) = h and s(z) =
= s(7}) +s(z;) . We have

q(t) =s8(t) +2h—22>
> s(v) F8(ry) + 2[ry) + h(r)]—2 = q(z;) + qlz) +2.

Our conclusion now follows from (8.2 b) and (4.3) as before.

11. — Closed gehei'alized surfaces.

A definition of irreducible closed generalized surface could be given, anal-
ogous to Definition 5 (§ 3) for surfaces with boundary. We shall not do this,
since with little extra effort a more general representation theorem will be
obtained. Let us recall Definition 1 (§ 3) of the sets £(r). To avoid trivialities,
we assume in the following that L = 0. The same conventions as in § 8 apply
regarding 7, v, Ty, Ta. ' .
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Definition. L is an improper element of £(7) if either L e £(7') where
9(r') <q(v), or L =L, + L, where L;€ $(z;) (i = 1, 2), qlry) +qln) +2<
< q(v) and neither I, nor L, is a generalized sphere. A proper element I is
termed connected if L is not of the form L, 4 L, where L; == 0 is a generalized
sphere and L, + 0 is in £(7) [10 e, p. 31] () . V :

Let @(x, B) be as in (6.2) . For every &> 0 let (2, B; ¢) = inf [(Z¥%) among
all 2-cells Zc B whose boundary Z* belongs to @(z, B) for which aoxw, Z) > ¢.
We shall take for granted the following statement, which is an easy con-
sequence of the definitions and a process of harmonic interpolation used often
by Younc. Note especially [10 e, (6.4) (i)].

(11.1) Let L be a connected element of $(t) . Then, for any sequence L,
tending to L such that L, has Dirichlet parametric representation x,(w) on
an admissible domain B, of type T for n = 1,2, ..., we have lim inf ¢(z,, B,) > 0

and_lim inf y(@,, B.; €)> 0 for every ¢> 0.
The main result of this paragraph is:

(11.2) Let Ly be @ connected element of (). Then L, has a micro-represen-
tation whose carrier is a BL function on a parallel slit domain of type t.

This is a strengthened version of [10 e, (6.1)] . When combined with (8.2)
above and [10 e, (4.4) and (4.6)], it leads by addition to a complete solution
of the representation problem for closed generalized surfaces of finite topol-
ogical type. '

Proof of (11.2). Suppose first 7 is not type of the 2-sphere. The reas-
oning will follow § 7. Let P, be a sequence of nondegenerate polyhedra of
type © tending to L,, and z,(w) a DIRICHLET representation of P, on & nor-
malized slit domain 4, of type v with D(x,, 4,) bounded . By (6.3) and (11.1)
we may assume that A, tends to a limit A of type v. Cover 4 except for ver-
tices and oo by rectangles A%, A2, ... as in § 7 (vii). The corresponding rec-
tangle A; is defined in A4, for n > n;, where we may assume 7, < n, <.... On
4], »,(w) represents a parametric surface L}, which we may assume tends
to a limit I’ for every j =1, 2, ....

Let us show that:

(11.3) La=1I'-+1I* +...

(") For g(r) = 2, £(z) is the set of generalized spheres; every element of $(z) is
proper in this case. Thus, a generalized sphere L is connected if L is not expressable
as a non-trivial sum of generalized spheres. :
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By the same calculation used in § 7, L,>IL' +I* +... For every N,
Ly— (I* + ... + L") is the limit of the parametric surface represented by
x,(w) on the set B = 4,— (4 u...u 4}).

Therefore,
(11.4) a[Ly— (L' + ... + I")] = lim a(=z,, EY) (N =1, 2, ..).

To obtain (11.3) it suffices to show that the right side of (11.4) tends to 0
with . Tor this we appeal to the following facts, contained in slightly dif-
ferent form in the proof of [4 a, Lemma 6], which are basically an application
of e — § gratings and the notion of convergence of slit domains. Let r—1
be the number of vertices of the limit domain 4 . Then given & > 0 there exist
o(6) > 0, an integer n(d), and for every n > n (0) disjoint 2-cells Zi., .oy Dpn
with the following properties: (1) Z} e O(x,, 4,) and UZF) < (I =1, ..., 1);

“(2)every vertex of A4, iy interior to some Z ,,, 1< < ¥ T 1, and distant from

Z7} by at least o(d); and (3) oo €Z,, and no point of Z? lies outside the circle
with center the origin and radius [0(d)]~2. In view of (2) and (3) there exists
N = N(6) such that Z)cZ;,U... UZ,, for all large n. TFor & = max a(Z,,),
2(@qy A, €) < 8. Then, by (11.1), !

8 =limint 3 a(Z )

n i=1

tends to 0 with 6. However,

lim a(z,, B¥) <8, for N = N(&),

n

from which (11.3) follows.

By the reasoning of § 7 (v), I’ = L -+ L7, where L7 has a micro-repres-
entation on A’ and L is a generalized sphere (the case where 4’ has a side
on A* doesn’t exist here!). Then L, — sz' has a micro-representation on
A and LZ = ZL"" is a generalized sphere by [10 ¢, § 6]. By (4.3), L(', e L(t) .
If L, = 0, then L, — I, is a generalized sphere, contrary to hypothesis. Since
L, is connected we must have L, = 0 and L, = L,, which completes the proof .

Proof for type of the 2-sphere. All A4, and 4 are the compactified plane
with no slits. By a magnification in 4, we may assume that a(w,, Q) >
> (1/2)-a(z,, 4,), where @ is the unit circle. The proof then proceeds as
before . )
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Remark. In [10e, (6.1)] for 2-spheres the carrier is defined on a square

@ and is constant on Q* To obtain such a representation from (11.2), we
first arrange by (8.1) that the carrier is constant in a neighborhood of some
finite point w, of 4 and then invert the plane about w, .

10.

Ww.

w.
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