CARMELO LONGO (*)

Le calotte del secondo ordine di S_3 , con centro assegnato.

1. - Introduzione.

In recenti lavori E. Bompiani ha richiamato l'interesse, anche per altri indirizzi della geometria differenziale (teoria degli spazi a connessione, teoria delle equazioni differenziali, ecc.), dello studio di elementi differenziali con particolare riguardo alla rappresentazione di insiemi di tali elementi (¹).

Tale rappresentazione oltre a facilitare la ricerca di invarianti relativi agli elementi considerati, ha soprattutto lo scopo di assegnarne un modello indipendente dalle accidentalità che si possono presentare nella loro rappresentazione analitica.

Scopo di questa Nota è la determinazione di una varietà rappresentativa delle calotte superficiali dello S_3 del 2° ordine con dato centro.

Di questo problema già si è occupato il Bompiani in due lavori. Nel primo [3](2) egli determina la rappresentazione delle calotte con centro e piano tangente assegnati, nel secondo [5] tratta delle calotte con dato centro.

Nel primo lavoro del Bompiani le calotte si rappresentano sui punti di uno spazio proiettivo R_3 e la geometria proiettiva delle calotte si riflette nella geo-

^(*) Professore str. della Università di Parma. Indirizzo: Istituto di Matematica, Università, Parma, Italia.

⁽¹⁾ Per un'ampia informazione su questo problema si veda la conferenza tenuta da E. Bompiani: Rappresentazione di elementi differenziali nel piano proiettivo (in pubblicazione nel Vol. 16 dei Rend. del Sem. Mat. dell'Univ. e del Pol. di Torino). In questo lavoro si troverà anche una completa Bibliografia sull'argomento.

⁽²⁾ I numeri in parentisi [] si riferiscono alla Bibliografia posta alla fine del lavoro.

^{4. -} Rivista di Matematica.

metria proiettiva dello R_3 rispetto ad un ben determinato «assoluto». Nel n. 2 richiamo tale rappresentazione e approfondisco lo studio del gruppo che determina la geometria proiettiva delle calotte caratterizzando le omografie dello S_3 che mutano in sè ciascuna calotta dell'insieme.

Nell'altro lavoro il Bompiani rappresenta le calotte in esame per mezzo di spazi lineari: lo studio della totalità di calotte invarianti rispetto alle omografie permette di determinare una varietà rispetto alla quale vengono caratterizzati i detti spazi lineari. Il fatto che il sottoinsieme delle calotte non regolari (o coniche) ha la stessa dimensione di quello delle calotte regolari implica che la dimensione degli spazi lineari rappresentanti le calotte regolari è diversa da quella degli spazi lineari rappresentanti le calotte non regolari. Tale inconveniente può essere eliminato per mezzo di una nozione di equivalenza tra calotte non regolari già introdotta dal Bompiani nella prima delle due Note.

I sistemi lineari di quadriche determinati dalle singole calotte (regolari) permettono (n. 3) di determinare in modo più diretto la rappresentazione data dal Bompiani. Infine la grassmanniana degli spazi lineari rappresentanti le calotte permette (n. 5) di caratterizzare una varietà V_5 i cui punti rappresentano le calotte stesse. Tale V_5 risulta poi il modello minimo nel senso di Severi [9].

2. – Calotte superficiali del 2° ordine con centro e piano tangenti assegnati.

Indichiamo con x^i (i=1,2,3) un sistema di coordinate proiettive non omogenee avente origine nel centro O delle calotte σ_2 , e sia $x^3=0$ il piano tangente. Una calotta regolare è rappresentata dall'equazione

(2.1)
$$a_0 x^3 = a_{\alpha\beta} x^{\alpha} x^{\beta} + [3] \qquad (\alpha, \beta = 1, 2),$$

ove con [3] si sono rappresentati termini in x^1 , x^2 di grado maggiore od uguale al terzo.

Una omografia che lasci fissi il centro ed il piano tangente, trasforma linearmente i parametri a_0 , a_{11} , a_{12} , a_{22} . Questi si possono pertanto assumere come coordinate omogenee della calotta.

Se $a_0=0$, la calotta è non regolare (una superficie per essa ha un punto conico in O). In tal caso l'equazione (2.1), insieme ad $x^3=0$, rappresenta le due generatrici del cono tangente situate sul piano $x^3=0$; quindi solo parzialmente l'intorno del 2° ordine di O sulla superficie.

Riteniamo equivalenti, rispetto ad $x^3 = 0$, due superficie con punto doppio in O (o le calotte irregolari σ_2) quando esse diano luogo alle stesse generatrici.

La relazione di equivalenza è evidentemente riflessiva, simmetrica e transitiva, e le ∞^5 calotte irregolari si ripartiscono in ∞^2 classi di equivalenza le quali si rappresentano sui punti del piano $a_0=0$ nello spazio $R_3(a_0,\ a_{\gamma\beta})$.

Rispetto al gruppo G_{10} delle collineazioni che mutano in sè la calotta regolare (2.1), costituiscono una totalità invariante le calotte paraboliche. Queste si rappresentano sui punti del cono Γ $(a_{11}a_{22}-a_{12}^2=0)$ il cui vertice $(a_0, 0, 0, 0)$ rappresenta la calotta inflessionale.

Si ha:

Le calotte superficiali σ_2 dello S_3 con assegnato centro e piano tangente si rappresentano sui punti di uno spazio proiettivo R_3 . La geometria proiettiva delle σ_2 è equivalente alla geometria proiettiva dello R_3 un cui è fissato un « assoluto » costituito da un cono quadrico Γ (i cui punti rappresentano le σ_2 paraboliche) e da un piano (i cui punti rappresentano le ∞^2 classi di σ_2 non regolari) non passante per il vertice del cono.

Le omografie dello R_3 che mutano in sè il detto assoluto costituiscono un gruppo G_4 nel quale si deve riflettere il detto gruppo G_{10} . Ciò pone in evidenza l'esistenza di un sottogruppo G_6 di G_{10} , necessariamente invariante, in modo che il detto G_4 sia isomorfo al gruppo quoziente G_{10}/G_6 .

Tale G_6 deve trasformare in sè ciascuna σ_2 ; ed esso è dato da

(2.2)
$$\bar{x}^1 = \frac{\alpha x^1 + \omega^1 x^3}{1 - \pi}, \quad \bar{x}^2 = \frac{\alpha x^2 + \omega^2 x^3}{1 - \pi}, \quad \bar{x}^3 = \frac{\alpha^2 x^3}{1 - \pi}, \quad (\pi = p_i x^i),$$

ed è costituito dalle omografie assiali aventi il centro O delle calotte come punto unito, asse la retta $p_i x^i = 0$ del piano tangente e gli invarianti sono l'uno il quadrato dell'altro (α ed α^2).

Un'omografia (2.2) subordina in ciascun pennello di E_2 appartenente a σ_2 una proiettività di cui un E_2 unito è l' E_2 irregolare appartenente al piano tangente. Per $\alpha=1$ si ha l'identità fino all'intorno del 1º ordine e le dette proiettività nei pennelli di E_2 sono paraboliche; per $\alpha=1$, $\omega^1=\omega^2=0$ ciascun E_2 della σ_2 è unito, e su ciascuno di essi è subordinata una proiettività parabolica.

3. – Prima rappresentazione delle σ_2 con dato centro.

Consideriamo ora la totalità delle calotte superficiali σ_2 aventi lo stesso centro O. Una calotta σ_2 si può rappresentare con uno sviluppo del tipo

$$(3.1) a_i x^i = a_{ik} x^i x^k + [3] (a_{ik} = a_{ki}; i, k = 1, 2, 3),$$

ove con [3] si sono indicati termini di ordine $\geqslant 3$ nelle x, che non interessano la calotta del 2º ordine.

La mancanza di una variabile privilegiata [come si ha invece nel caso della rappresentazione (2.1)] fa si che, mentre una rappresentazione (3.1) individua una calotta σ_2 , a questa non corrisponde un'unica rappresentazione (3.1); si osservi, per esempio, che, mentre le rappresentazioni (3.1) sono ∞^s , le calotte σ_2 con centro assegnato sono ∞^5 . Ad una stessa σ_2 corrispondono ∞^3 rappresentazioni equivalenti, le quali, come subito si verifica, sono date da

$$(3.2) a_i(1+p_i x^i)x^i = a_{ik} x^i x^k + [3],$$

ossia

$$(3.2') a_i x^i = (a_{ik} + a_{ij} p_{kj}) x^i x^k + [3]$$

con le p_i arbitrarie ed ove si è posto

(3.3)
$$a_{ii} p_{ki} = \frac{1}{2} (a_i p_k + a_k p_i).$$

Ci si rende ancora conto dell'esistenza delle ∞^3 rappresentazioni (3.1) relative ad una calotta (regolare) σ_2 determinando le superficie (algebriche) di ordine minimo passanti per una σ_2 . Questa, come è subito visto, individua il sistema lineare ∞^3 di quadriche

$$(3.4) a_i x^i = (a_{ik} + a_{ii} p_i) x^i x^k,$$

e viceversa.

È chiaro che si ottiene subito una rappresentazione delle σ_2 usufruendo della rappresentazione delle quadriche di un S_3 mediante iperpiani (o punti) di un R_9 . Se ci riferiamo alla rappresentazione mediante iperpiani, ad un sistema lineare (3.4) corrisponde un R_5 di R_9 ed il problema è ricondotto alla caratterizzazione di tali R_5 .

Consideriamo la V_3^8 di Veronese di R_9 associata alla rappresentazione delle quadriche. Sulla V_3^8 alle due generatrici g_1 e g_2 (individuate dalle direzioni asintotiche della σ_2) comuni alle quadriche del sistema lineare (3.4), corrispondono due coniche Γ_1 e Γ_2 aventi in comune il punto Ω corrispondente del centro O della σ_2 .

Si considerino ora: 1) lo R_4 congiungente i piani di Γ_1 e di Γ_2 , rappresentante il sistema lineare di quadriche per g_1 e g_2 ; 2) lo R_6 congiunte lo R_3^* tangente in Ω alla V_3^8 e lo R_5 della V_2^4 determinata dal piano π delle due tangenti

in Ω a Γ_1 e Γ_2 , rappresentante le quadriche degeneri nel piano π ed in un altro piano passante per O.

È subito visto che alle ∞^1 calotte σ_2 (regolari) con le stesse tangenti asintotiche g_1 e g_2 corrispondono biunivocamente gli R_5 del fascio di asse lo R_4 ed appartenenti allo R_6 , aperto togliendone lo R_5^* passante per lo R_3^* . Lo R_5^* si può assumere come rappresentante la classe di calotte non regolari determinata da g_1 e g_2 .

Si proiettino ora i detti R_5 e la V_3^8 dal punto Ω su un generico R_8 (non passante per Ω). Si riottiene la caratterizzazione data dal Bompiani [5] degli R_4 rappresentanti le calotte regolari rispetto alla varietà V_3^7 proiezione della V_3^8 . Si verifica facilmente inoltre che gli ∞^3 spazi R_7 che nella rappresentazione del Bompiani corrispondono alle ∞^3 calotte non regolari passanti per g_1 e g_2 determinano lo R_4^* proiezione dello R_5^* ; e viceversa.

4. — Coordinate-grassmanniane-di-una σ_2 .

La rappresentazione data nel n, precedente delle σ_2 mediante R_5 di R_9 suggerisce il modo di determinare una varietà V_5 i cui punti rappresentino le σ_2 . Tale V_5 è la varietà appartenente alla grassmanniana degli R_5 di R_9 e rappresentante gli R_5 corrispondenti alle σ_2 .

Dalla (3.4) si ha che le coordinate grassmanniane di un tale R_5 (che diremo anche coordinate della σ_2) sono date dai minori di ordine massimo estratti dalla matrice

$$\begin{pmatrix}
a_1 & a_2 & a_3 & a_{11} & a_{22} & a_{33} & 2a_{12} & 2a_{13} & 2a_{23} \\
0 & 0 & 0 & a_1 & 0 & 0 & a_2 & a_3 & 0 \\
0 & 0 & 0 & 0 & a_2 & 0 & a_1 & 0 & a_3 \\
0 & 0 & 0 & 0 & 0 & a_3 & 0 & a_1 & a_2
\end{pmatrix}.$$

Allo scopo di esprimere in modo compatto i detti minori, introduciamo le seguenti espressioni:

(4.2)
$$A_{iki} = a_{ij} a_k a_j =$$

$$= a_{ii} a_k a_i - a_{ik} a_i a_i + a_{ki} a_i a_i - a_{ii} a_i a_k \qquad (i, j, k = 1, 2, 3),$$

le quali soddisfano le relazioni

$$(4.3) A_{ikk} = A_{kii}, A_{ikj} = A_{ijk}, A_{iik} = 0.$$

Le precedenti relazioni implicano che le espressioni non identicamente nulle e distinte tra loro sono solamente le seguenti

$$\begin{cases} A_{233} = p^{11}, & A_{133} = p^{22}, & A_{122} = p^{33}, \\ A_{312} = -p^{12}, & A_{213} = -p^{13}, & A_{123} = -p^{23}, \end{cases}$$
 $(p^{ik} = p^{ki}).$

Ciò posto, i minori massimi estratti dalla matrice (4.1) si esprimono con espressioni appartenenti ai due seguenti gruppi:

(4.5) 1º gruppo:
$$a_1^{h_1} a_2^{h_2} a_3^{h_3}$$
 $(h_1 + h_2 + h_3 = 4),$

(4.6)
$$2^{\circ}$$
 gruppo: $a_i p^{jk}$ $(i, k, j = 1, 2, 3),$

ed implicano le seguenti identità

$$a_i p^{ik} = 0 (k = 1, 2, 3).$$

Con calcolo relativamente facile si verifica che le p^{ik} soddisfano la relazione

$$\text{Det} \mid p^{ik} \mid = 0.$$

Ne segue che, nello S_5 di coordinate η^{ik} ,

$$\eta^{ik} = p^{ik}$$

è la varietà M_4^3 rappresentante le coppie non ordinate dei punti di un piano π ed associata, nel modo noto, alla V_2^4 di Veronese.

Si può perciò porre

$$(4.8) p^{ik} = u^{(i} v^{k)} = \frac{1}{2} (u^{i} v^{k} + u^{k} v^{i}) (i, k = 1, 2, 3),$$

essendo u^i e v^i coordinate di due punti di π .

5. – Varietà rappresentativa delle σ_2 e suo studio.

Dalle (4.5) e (4.6), tenuto conto delle (4.8) e della identità (4.7), segue che la varietà V_5 i cui punti rappresentano le calotte σ_2 di dato centro O ha le equazioni parametriche

(5.1)
$$\xi_{i_1 i_2 i_3 i_4} = a_{i_1} a_{i_2} a_{i_3} a_{i_4} = (a)^4,$$

(5.2)
$$\eta_i^{jk} = a_i u^{ij} v^{k}$$
 $(\eta_i^{jk} = \eta_i^{kj})$

con

$$\eta_i^{\cdot ik} = 0,$$

ove a_i sono le coordinate della giacitura tangente alla σ_2 , e u^i e v^i , come si verifica immediatamente, sono le coordinate delle direzioni asintotiche.

Le identità (5.3) esprimono l'appartenenza delle direzioni asintotiche alla giacitura tangente.

Le equazioni (5.1) rappresentano la V_2^{16} di Veronese di S_{14} . I punti della V_2^{16} sono in corrispondenza biunivoca con le giaciture tangenti; poichè una di queste individua una σ_2 inflessionale c'è da aspettarsi che i punti della V_2^{16} (subordinata sulla V_5 dalle equazioni $\eta=0$) rappresentino le σ_2 inflessioni. Ciò è confermato dal fatto che per una σ_2 inflessionale nella rappresentazione (3.1) si ha $a_{ik}=0$ e queste implicano $p^{ik}=0$.

Determiniamo ora il significato della varietà V_4 rappresentata dalle equazioni (5.2) e (5.3) e perciò intersezione della V_5 con lo spazio $\xi=0$.

Tale V_4 appartiene ad un S_{14} e rappresenta il prodotto delle rette a_i di un piano per le coppie non ordinate di punti u^i e v^i appartenenti ad esse. Essa è perciò birazionalmente equivalente alle coppie di direzioni uscenti dal centro O delle σ_2 , ed i suoi punti rappresentano pertanto le classi di calotte non regolari, determinate dal criterio di equivalenza dato al n. 2.

Determiniamo l'ordine ed alcune proprietà della $V_4\,.$

Questa ammette sezioni iperpiane (per esempio $\eta_1^{\cdot 22}=0$) spezzate nelle due varietà:

- a) P_{Ω} delle coppie appartenenti a rette per un dato punto;
- b) $P_{\mbox{\tiny (2)}}$ delle coppie con uno dei due punti appartenenti ad una data retta.

Considerate poi le superficie:

- α) $P_{0,0}$ delle coppie di punti appartenenti ad una retta;
- $\beta)$ $P_{\mbox{\scriptsize (1,2)}}$ delle coppie con un punto su una data retta e retta congiungente per un dato punto;
 - γ) $P'_{(2,2)}$ delle coppie con fisso uno dei due punti;
- $\delta)$ $P_{\scriptscriptstyle (2,2)}''$ delle coppie con punti appartenenti rispettivamente ad una data retta;

si riconosce facilmente che esistono sezioni iperpiane della $P_{(1)}$ spezzate in una $P_{(1,1)}$ ed in una $P_{(1,2)}$, e sezioni iperpiane della $P_{(2)}$ spezzate in una $P_{(1,2)}$, in una $P'_{(2,2)}$ ed in una $P'_{(2,2)}$.

Particolarizzando convenientemente i punti o le rette che intervengono, ovvero direttamente dal loro significato, si ha facilmente che:

- α') le varietà $P_{(1,1)}$ sono piani;
- β') le varietà $P_{(1,2)}$ sono rigate R_2^5 congiungenti punti corrispondenti in una data proiettività di una conica e di una cubica appartenenti a spazi sghembi tra loro;
- $\gamma')$ le varietà $P_{(2,2)}'$ sono V_2^3 proiezioni della V_2^4 di Veronese da un suo punto;
- $\gamma'')$ le varietà $P''_{(2,2)}$ sono V_2^7 pro
iezioni della $V_2^8,$ prodotto del quadrato di due rette, da un suo punto.

Se ne deduce immediatamente che le varietà $P_{(1)}$ e $P_{(2)}$ hanno rispettivamente gli ordini 6 e 15 e che la varietà V_4 ha ordine 21.

Si noti che ponendo per esempio $a_1=0$ si verifica senza alcuna difficoltà che una generica $P_{(1)}$ è la varietà luogo di piani congiungenti in una data proiettività punti di una retta, di una conica e di una cubica gobba appartenenti a spazi a due a due sghembi.

Osserviamo infine che le due varietà $P_{(1)}$ e $P_{(2)}$ costituiscono la base sulla V_4 come risulta dalla conoscenza della base sul piano rigato e sulla M_4^3 delle coppie di punti di un piano.

La conoscenza della base sulla V_4 permette di dimostrare che la nostra V_4 è il modello minimo tra le V_4 ad essa birazionalmente equivalenti e di riottenere l'ordine della V_4 stessa.

Passiamo ora a determinare l'ordine della $V_{\bar{a}}$.

La V_4^{21} contiene ∞^2 piani $P_{(1,1)}$ in corrispondenza proiettiva con i punti della V_2^{16} e la V_5 è il luogo degli ∞^2 spazi R_3 congiungenti un punto della V_2^{16} con il corrispondente piano $P_{(1,1)}$.

Si osservi che i punti di ciascuno dei detti R_3 rappresentano le σ_2 (di centro

O) con lo stesso piano tangente.

Ponendo per esempio $a_1=0$ è subito visto che gli ∞^1 spazi R_3 corrispondenti alle σ_2 le cui giaciture tangenti passano per una data direzione costituiscono la varietà V_4^{10} luogo degli R_3 congiungenti in una data proiettività i punti di una quartica razionale di V_2^{16} con i piani della $P_{(1)}$ appartenenti alla V_4^{21} corrispondenti ad $a_1=0$.

Si intersechi ora la V_5 con l'iperpiano $\xi_{1111}=0$. La varietà intersezione è costituita dalla V_4^{21} , contata semplicemente, e da una V_4^{10} contata quattro volte. Ne segue che la V_5 ha ordine 61.

È evidente che tale V_5^{61} appartiene allo S_{29} congiungente gli S_{14} ai quali appartengono rispettivamente la V_2^{16} e la V_2^{41} .

Si osservi che per il modo stesso con il quale si è pervenuti alla V_5^{61} questa rappresenta il modello minimo delle σ_2 in esame; ciò del resto viene confermato dal fatto di contenere il modello minimo delle σ_2 non regolari.

6. - Calotte paraboliche. Geometria dell'insieme delle σ_2 .

Come nel caso delle σ_2 con dato centro e dato piano tangente (n. 2) lo studio delle σ_2 paraboliche ci permetterà di caratterizzare il gruppo di trasformazioni indotto sulla V_5^{61} dal gruppo G_{12} delle collineazioni che mutano in sè l'insieme delle σ_2 con dato centro.

La varietà delle σ_2 paraboliche è rappresentata dalle equazioni (5.1), (5.2) e (5.3) ove si ponga $u^i = v^i$.

Una classe di σ_2 non regolari si dirà parabolica se le due generatrici che determinano la classe coincidono. Si ha: le classi di σ_2 non regolari paraboliche si rappresentano sui punti di una V_3^{18} (di S_{14}), modello di indici [1, 2] degli elementi punto-retta appartenentisi di un piano.

In particolare, le classi di σ_2 non regolari paraboliche con giacitura per una data direzione si rappresentano sui punti di una V_2^8 .

Considerate ora le σ_2 (regolari) paraboliche, quelle con giacitura per una data direzione si rappresentano sui punti di una V_3^{16} .

Si intersechi ora, analogamente a quanto si è fatto nel n. precedente, la varietà delle σ_2 paraboliche con l'iperpiano $\xi_{1111}=0$. L'intersezione è costituita dalla V_3^{18} , contata semplicemente, e da una V_3^{16} contata quattro volte. Se ne deduce che la varietà delle σ_2 paraboliche è una V_4^{82} (di S_{29}).

Una collineazione del gruppo G_{12} induce una collineazione tra le coordinate grassmanniane di una calotta e perciò una trasformazione della V_5^{61} in sè subordinata da una collineazione dello spazio ambiente.

Il gruppo G_{12} si riflette perciò in un gruppo G_{12}^* di collineazioni che trasformano in sè la V_5^{61} . Il gruppo G_{12}^* è caratterizzato dal mutare in sè ciascuna delle tre varietà V_2^{16} , V_4^{82} e V_4^{21} che rappresentano rispettivamente le calotte inflessionali, le calotte paraboliche e le classi di calotte non regolari.

In particolare, una collineazione del gruppo G_4 delle omologie di centro O induce una trasformazione che muta in sè ciascuno degli ∞^2 spazi R_3 appartenenti alla V_1^{61} .

Bibliografia.

- G. Ancochea, Sur la représentation des éléments différentielles, Vortragsauszüge d. Vierter Österreich Mathematikerkongress (Wien, 17-22 September 1956), Österreich. Math. Gesellschaft, Wien 1956; p. 327.
- E. Bompiani, Invarianti proiettivi di calotte, Atti R. Accad. Italia, Rend. Cl. Sci. Fis. Mat. Nat. (7) 2 (1941), 888-895.
- 3. E. Bompiani, Invarianti proiettivi e topologici di calotte di superficie e di ipersuperficie tangenti in un punto, Rend. Mat. e Appl. Roma (5) 2 (1941), 261-291.
- 4. E. Bompiani, Geometria degli elementi differenziali, Ist. Mat. Univ. Roma 1942, (ed. policopiata).
- E. Bompiani, Geometria proiettiva di elementi differenziali, Ann. Mat. Pura e Appl. (4) 22 (1943), 1-32.
- 6. E. Bompiani, Geometria degli elementi differenziali regolari del piano rispetto al gruppo proiettivo, Ist. Mat. Univ. Roma 1955.
- 7. C. Longo, Invarianti proiettivi di calotte del 3º ordine tangenti in un punto, Rend. Mat. e Appl. Roma (5) 7 (1948), 295-326.
- C. Longo, Gli elementi differenziali del 2º ordine di S_r, Rend. Mat. e Appl. Roma (5) 13 (1955), 335-372.
- 9. F. Severi, Serie, sistemi d'equivalenza e corrispondenze algebriche sulle varietà algebriche, Vol. I, Edizioni Cremonese, Roma 1942.

Summary.

The caps of the 2^{nd} order with the same center of the projective space S_3 are studied. A cap is determined with a system of coordinates and from these follows a rappresentation of the set of caps on the points of a variety.