R. S. MISHRA (*)

Congruences of Curves in a Subspace of a non-Riemannian Space. (**)

In this paper I have considered a set of m-n congruences of curves in a non-Riemannian space, which are such that through each point of a subspace, a curve of each congruence passes. With the help of these congruences the generalisations of the generalised equations of Gauss and Codazzi have been established in a non-Riemannian space.

1. - Notation (1).

Let us consider a space V_m referred to the coordinates y^a ($\alpha=1, ..., m$) and coefficients of symmetric connection $L^a_{\beta\gamma}$ and a subspace or a sub-variety V_n defined by

(1.1)
$$\varphi^{\sigma}(y^1, ..., y^m) = 0$$
 $(\sigma = n + 1, ..., m)$.

Let us further put

$$(1.2) xi = \varphii(y1, ..., ym), x\sigma = \varphi\sigma,$$

^(*) Address: Department of Mathematics, University of Delhi, Delhi-8, India.

^(**) Received April 16, 1955.

⁽¹⁾ In what follows Latin indices take the values 1, ..., n; the letters at the beginning of the Greek alphabet the values 1, ..., m and those at the end the values n + 1, ..., m. The indices on the left of the solidus (/) indicate the particular tensor and on the right the contravariance or the covariance of the tensor.

where the functions φ^i are arbitrary functions, except that the Jacobian of the φ 's is not equal to zero. The equations (1.2) define, then, a coordinate system of which V_n is defined by $x^{\sigma} = 0$. The covariant vectors $v^{\sigma}/_a$ in V_m defined by

$$(1.3) v^{\sigma}/_{\alpha} = \partial \varphi^{\sigma}/\partial y^{\alpha} = \partial x^{\sigma}/\partial y^{\alpha},$$

are the covariant pseudo-normals to V_n . The components of a contravariant vector tangential to the curve of parameter x^{σ} at a point are given by

$$(1.4) v_{\sigma}/^{\alpha} = \partial y^{\alpha}/\partial x^{\sigma},$$

for a given value of σ . In consequence of (1.3) and (1.4) we have

$$(1.5) v^{\sigma}/_{\alpha} v_{\tau}/^{a} = \delta^{\sigma}_{\tau},$$

and

$$(1.6) v_{\sigma}/^{\alpha} \frac{\partial x^{i}}{\partial y^{\alpha}} = 0.$$

If a semi-colon (;) followed by Latin indices indicates repeated tensor derivatives with regard to the induced symmetric connection L_{jk}^i in V_n , and comma (,) followed by Greek indices denotes tensor derivatives with regard to the induced connection $L_{\beta\gamma}^{\alpha}$ in V_m , the following relations obtain (EISEN HART [2], p. 173)

$$(1.7) y_{ij}^{\alpha} = w^{\sigma}/_{ij} v_{\sigma}/^{\alpha},$$

(1.8)
$$w^{\sigma}/_{ij} = v^{\sigma}/_{\alpha,\beta} \frac{\partial y^{\alpha}}{\partial x^{i}} \frac{\partial y^{\beta}}{\partial x^{j}} .$$

2. - Congruences of curves.

Let us consider a set of m-n congruences of curves in V_m , which are such that one curve of each congruence passes through each point of the subspace V_n . Let $\lambda_i/^a$ be the components of a contravariant vector in the direction of a curve of a congruence through the point y^a of the subspace. The vector with components $\lambda_r/^a$ is not, in general, in the direction of $v_r/^a$ and, therefore, it may be specified by

(2.1)
$$\lambda_{\mathbf{r}}/^{a} = t_{\mathbf{r}}/^{l} \frac{\partial y^{a}}{\partial x^{l}} + c_{\mathbf{r}}^{\mathbf{r}}/v_{\mathbf{r}}/^{a},$$

where

$$(2.2) c_{\tau}^{\nu} / = \lambda_{\tau} / {}^{\alpha} v^{\nu} / {}_{\alpha}$$

and

$$(2.3) t_{\rm r}/^{\rm l} = \lambda_{\rm r}/^{\rm a} \frac{\partial x^{\rm l}}{\partial y^{\rm a}}.$$

Tensor derivative of (2.1) with regard to the induced connection in V_n , is given by

(2.4)
$$\lambda_{r}/_{i}^{\alpha} = t_{r}/_{i}^{l} \frac{\partial y^{\alpha}}{\partial x^{l}} + t_{r}/_{i}^{l} y_{; li}^{\alpha} + c_{r}^{r}/_{; i} v_{r}/_{i}^{\alpha} + c_{r}^{r}/_{r} v_{r}/_{i}^{\alpha}.$$

Now (EISENHART [2], pp. 173, 175)

$$(2.5) v_{\nu}/_{;i}^{\alpha} = l_{\nu}/_{i}^{j} \frac{\partial y^{\alpha}}{\partial x^{j}} + l_{\nu}^{\tau}/_{i} v_{\tau}/_{\alpha}^{\alpha},$$

where

$$(2.6) l_{r}/_{i}^{j} = v_{r}/_{i}^{a} \frac{\partial x^{i}}{\partial y^{\alpha}}$$

and

$$(2.7) l_{\nu}^{\mathbf{r}}/_{i} = v_{\nu}/_{i}^{a} v^{\mathbf{r}}/_{\alpha}.$$

By virtue of (1.7) and (2.5), the equation (2.4) assumes the form

(2.8)
$$\lambda_{\tau}/_{;i}^{\alpha} = p_{\tau}/_{i}^{t} \frac{\partial y^{\alpha}}{\partial x^{t}} + p_{\tau}^{\nu}/_{i} v_{\tau}/_{\alpha}^{\alpha},$$

where

(2.9)
$$p_{\tau}/_{i}^{l} = t_{\tau}/_{i}^{l} + c_{\tau}^{\nu}/l_{\nu}/_{i}^{l}$$

and

$$(2.10) p_{\tau}^{\nu}/_{i} = t_{\tau}/^{i} w^{\nu}/_{i} + c_{\tau}^{\nu}/_{;i} + c_{\tau}^{\mu}/_{i} l_{\mu}^{\nu}/_{i}.$$

Tensor derivative of (2.8) again yields

$$(2.11) \lambda_{\tau}/_{i;ij}^{a} = p_{\tau}/_{i;i}^{l} \frac{\partial y^{a}}{\partial x^{l}} + p_{\tau}/_{i}^{l} y_{;ij}^{a} + p_{\tau}^{r}/_{i;j} v_{r}/^{a} + p_{\tau}^{r}/_{i} v_{r}/_{ij}^{a} =$$

$$= (p_{\tau}/_{i;j}^{l} + p_{\tau}^{r}/_{i} l_{r}/_{i}^{l}) \frac{\partial y^{a}}{\partial x^{l}} + (p_{\tau}^{r}/_{i;j} + p_{\tau}/_{i}^{l} w^{r}/_{ij} + p_{\tau}^{\mu}/_{i} l_{\mu}^{r}/_{j}) v_{r}/^{a}.$$

Applying the conditions of integrability to (2.8), we get, by virtue of (2.8) and (2.11),

$$(2.12) B_{\beta\gamma\delta}^{a} \lambda_{\tau}/^{\beta} \frac{\partial y^{\tau}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} + (p_{\tau}/^{l}_{i}; {}_{j} + p_{\tau}^{\nu}/^{l}_{i} l_{\nu}/^{l}_{j} - p_{\tau}/^{l}_{i}; {}_{i} - p_{\tau}^{\nu}/^{l}_{i} l_{\nu}/^{l}_{i}) \frac{\partial y^{a}}{\partial x^{l}} + \\ + (p_{\tau}^{\nu}/^{l}_{i}; {}_{j} + p_{\tau}/^{l}_{i} w^{\nu}/^{l}_{i} + p_{\tau}^{\mu}/^{l}_{i} l_{\mu}^{\nu}/^{l}_{j} - p_{\tau}^{\nu}/^{l}_{j}; {}_{i} - p_{\tau}/^{l}_{j} w^{\nu}/^{l}_{i} - p_{\tau}^{\mu}/^{l}_{j} l_{\mu}^{\nu}/^{l}_{i}) v_{\nu}/^{\alpha} = 0,$$

where $B^{\alpha}_{\beta\gamma\delta}$ are the components of curvature tensor of V_m .

If these equations be multiplied by $\partial x^h/\partial y^a$ and $v^r/_{\alpha}$ and be summed, we have the respective equations

$$(2.13) B_{\beta\gamma\delta}^{a} \lambda_{\tau}/^{\beta} \frac{\partial y^{\tau}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} \frac{\partial x^{b}}{\partial y^{a}} + p_{\tau}/^{h}_{i; j} - p_{\tau}/^{h}_{j; i} + p_{\tau}^{\nu}/_{i} l_{\nu}/^{h}_{j} - p_{\tau}^{\nu}/_{j} l_{\nu}/^{h}_{i} = 0,$$

$$(2.14) B_{\beta\gamma\delta}^{\alpha} \lambda_{\tau}/^{\beta} \frac{\partial y^{\tau}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} v^{\nu}/_{\alpha} + p_{\tau}^{\nu}/_{i; j} + p_{\tau}/_{i} w^{\nu}/_{ij} + p_{\tau}^{\mu}/_{i} l_{\mu}^{\nu}/_{j} - (p_{\tau}^{\nu}/_{j; i} + p_{\tau}/_{i} w^{\nu}/_{ii} + p_{\tau}^{\mu}/_{i} l_{\mu}^{\nu}/_{i}) = 0^{\bullet}$$

The equations (2.13) and (2.14) are the generalisations of the generalised equations of Gauss and Codazzi in a non-Riemannian space (EISENHART [2], p. 176).

From (2.8), we have

$$\lambda_{\tau/i}^{\alpha} v^{\nu}/_{\alpha} = p_{\tau}^{\nu}/_{i},$$

and

(2.16)
$$\lambda_{t}/_{;i}^{\alpha} \frac{\partial x^{t}}{\partial y^{a}} = p_{\tau}/_{i}^{t}.$$

Therefore:

The equations (2.13) and (2.14) are the equations giving the expressions for $p_{\tau}^{\nu}/_{i}$, defined by (2.15).

In case the vectors with components $\lambda_{\tau}/^{a}$ are in the direction of $v_{\tau}/^{a}$, we have from (2.15) and (2.16)

$$p_{\tau/i}^{\nu} = l_{\tau}^{\nu}/_{i}, \qquad p_{\tau}/_{i}^{i} = l_{\tau}/_{i}^{i};$$

and the equations (2.13) and (2.14) assume the forms:

$$B^{\alpha}_{\beta\gamma\delta}\,v_{\tau}|^{\beta}\,\frac{\partial y^{\gamma}}{\partial x^{i}}\,\frac{\partial y^{\delta}}{\partial x^{j}}\,\frac{\partial x^{h}}{\partial y^{\alpha}}\,+\,l_{\tau}|^{h}_{i;\,i}\,-\,l_{\tau}|^{h}_{j;\,i}\,+\,l^{r}_{\tau}|_{i}\,l_{r}|^{h}_{j}\,-\,l^{r}_{\tau}|_{j}\,l_{r}|^{h}_{i}\,=\,0$$

and

$$\begin{split} B^{a}_{\beta\gamma\delta}\,v_{\tau}/^{\beta}\,\frac{\partial y^{r}}{\partial x^{i}}\,\frac{\partial y^{\delta}}{\partial x^{j}}\,v^{r}/_{a}\,+\,l^{r}_{\tau}/_{i;\,i}\,-\,l_{\tau}/^{r}_{j;\,i}\,+\,l_{\tau}/^{l}_{i}\,w^{r}/_{lj}\,-\,l^{r}_{\tau}/^{l}_{j}\,w^{r}/_{li}\,+\\ &+\,l^{\mu}_{\tau}/_{i}\,l^{r}_{\;\;\mu}/_{j}\,-\,l^{\mu}_{\tau}/_{j}\,l^{r}_{\mu}/_{i}\,=\,0 \end{split}$$

which are the generalised equations of Gauss and Codazzi (Eisenhart [2], p. 176).

Let us now consider the case when m = n + 1. V_n will then reduce to a hypersurface and the equations (2.13) and (2.14) will assume the forms

$$B^{\alpha}_{\beta\gamma\delta}\; \lambda^{\beta}\; \frac{\partial y^{\gamma}}{\partial x^{i}}\; \frac{\partial y^{\delta}}{\partial x^{j}}\; \frac{\partial x^{h}}{\partial y^{\alpha}} + p^{h}_{i;\;i} - p^{h}_{i;\;i} + p_{i}\; l^{h}_{i} - p_{j}\; l^{h}_{i} = 0$$

and

$$B^{lpha}_{eta\gamma\delta}~\lambda^{eta} rac{\partial y^{\gamma}}{\partial x^{i}} rac{\partial y^{\delta}}{\partial x^{j}} v_{lpha} + p_{i;\,i} - p_{j;\,i} + p_{i}^{i} w_{ij} - p_{i}^{i} w_{ii} + p_{i} l_{i} - p_{j} l_{i} = 0$$

where λ^{α} are the components of a contravariant vector in the direction of a curve of a congruence of curves, which are such that one curve of each congruence passes through each point of the hypersurface and

$$p_{\,i} = \lambda^a_{;\,i} \, v_a, \qquad p^{^h}_{i} = \lambda^a_{;\,i} \, \frac{\partial x^{^h}}{\partial y^a}, \qquad w_{\,i\,i} = v_{a,\,\beta} \, \frac{\partial y^a}{\partial x^i} \, \frac{\partial y^\beta}{\partial x^j},$$

 v_a being the components of the covariant pseudonormal to V_n .

3. - Fundamental equations.

Substituting the values of $\lambda_{\tau}/^{\alpha}$, $p_{\tau}/^{l}$ and $p_{\tau}^{r}/^{l}$ from (2.1), (2.9) and (2.10) in (2.13) and (2.14), and using the relation

$$t_{\tau}/^{h}_{:ii} - t_{\tau}/^{h}_{:ii} = -t_{\tau}/^{l} B^{h}_{lii},$$

we get after simplification and re-arranging the terms

$$(3.1) \qquad t_{\tau}/^{l} \left[B_{\beta\gamma\delta}^{\alpha} \frac{\partial y^{\beta}}{\partial x^{l}} \frac{\partial y^{\gamma}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} \frac{\partial x^{\delta}}{\partial y^{a}} + l_{r}/^{h}_{j} w^{\nu}/_{li} - l_{r}/^{h}_{i} w^{\nu}/_{lj} - B_{lij}^{h} \right] +$$

$$+ c_{\tau}^{\nu}/ \left[B_{\beta\gamma\delta}^{\alpha} v_{\nu}/^{\beta} \frac{\partial y^{\gamma}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} \frac{\partial x^{h}}{\partial y^{a}} + l_{\nu}/^{h}_{i;j} - l_{r}/^{h}_{j;i} + l_{\nu}^{\mu}/_{i} l_{\mu}/^{h}_{j} - l_{\nu}^{\mu}/_{j} l_{\mu}/^{h}_{i} \right] = 0$$

and

$$\begin{aligned} (3.2) \qquad & t_{\mathbf{r}}/^{\mathbf{l}} \bigg[B^{\alpha}_{\beta\gamma\delta} \, v^{\nu}/_{\alpha} \, \frac{\partial y^{\beta}}{\partial x^{i}} \, \frac{\partial y^{\nu}}{\partial x^{i}} \, \frac{\partial y^{\delta}}{\partial x^{j}} + w^{\nu}/_{l\,i;\,j} - w^{\nu}/_{l\,j;\,i} + l^{\nu}_{\mu}/_{i} \, w^{\mu}/_{l\,i} - l^{\nu}_{\mu}/_{i} \, w^{\mu}/_{l\,j} \bigg] \, + \\ & + c^{\mu}_{\mathbf{r}}/ \left[B^{\alpha}_{\beta\gamma\delta} \, v_{\mu}/^{\beta} \, v^{\nu}/_{\alpha} \, \frac{\partial y^{\nu}}{\partial x^{i}} \, \frac{\partial y^{\delta}}{\partial x^{j}} + l^{\nu}_{\mu}/_{i;\,j} - l^{\nu}_{\mu}/_{j;\,i} + \\ & + w^{\nu}/_{l\,j} \, l_{\mu}/^{i}_{i} - w^{\nu}/_{l\,i} \, l_{\mu}/^{j}_{j} + l^{\varrho}_{\mu}/_{i} \, l^{\varrho}_{\nu}/_{j} - l^{\varrho}_{\mu}/_{j} \, l^{\nu}_{\varrho}/_{j} \bigg] = 0 \, . \end{aligned}$$

Since the equations (3.1) and (3.2) hold for arbitrary $\lambda_{\tau}/^{\alpha}$, they hold for arbitrary values of $c_{\tau}^{\nu}/$ and $t_{\tau}/^{i}$. Hence the expressions within parentheses of

the equations (3.1) and (3.2) are identically zero. We, therefore, have the fundamental equations for V_n :

$$(3.3) B_{lij}^{h} = B_{\beta\gamma\delta}^{\alpha} \frac{\partial y^{\beta}}{\partial x^{l}} \frac{\partial y^{\gamma}}{\partial x^{l}} \frac{\partial y^{\delta}}{\partial x^{j}} \frac{\partial x^{h}}{\partial y^{a}} + l_{r}/_{j}^{h} w^{r}/_{li} - l_{r}/_{i}^{h} w^{r}/_{lj},$$

$$(3.4) B_{\beta\gamma\delta}^{a} v_{\nu}/^{\beta} \frac{\partial y^{\nu}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} \frac{\partial x^{h}}{\partial y^{a}} + l_{\nu}/^{h}_{i; j} - l_{\nu}/^{h}_{j; i} + l_{\nu}^{\mu}/_{i} l_{\mu}/^{h}_{j} - l_{\nu}^{\mu}/_{j} l_{\mu}/^{h}_{i} = 0,$$

$$(3.5) B_{\beta\gamma\delta}^{a} v^{\nu}/_{a} \frac{\partial y^{\beta}}{\partial x^{l}} \frac{\partial y^{\gamma}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} + w^{\nu}/_{li;j} - w^{\nu}/_{li;j} + l_{\mu}^{\nu}/_{i} w^{\mu}/_{li} - l_{\mu}^{\nu}/_{i} w^{\mu}/_{li} = 0,$$

$$(3.6) B_{\beta\gamma\delta}^{a} v_{\mu} |^{\beta} v^{\nu} /_{a} \frac{\partial y^{r}}{\partial x^{i}} \frac{\partial y^{\delta}}{\partial x^{j}} + l_{\mu}^{r} /_{i; j} - l_{\mu}^{r} /_{j; i} +$$

$$+ w^{\nu} /_{lj} l_{\nu} /_{i}^{l} - w^{\nu} /_{li} l_{\mu} /_{i}^{l} + l_{\mu}^{\varrho} /_{i} l_{\rho}^{\nu} /_{j} - l_{\mu}^{\varrho} /_{i} l_{\rho}^{\nu} /_{i} = 0.$$

The four equations (3.3), (3.4), (3.5) and (3.6) are the generalised equations of Gauss and Mainardi-Codazzi for a subspace V_n embedded in a non-Riemannian space V_m first obtained by Voss and Ricci (EISENHART [1], p. 168).

It may be mentioned that these equations have been obtained here in a different but simpler way.

References.

- 1. L. P. EISENHART, Riemannian Geometry, University Press, Princeton 1926.
- 2. L. P. EISENHART, Non-Riemannian Geometry, University Press, Princeton 1927.

