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L. CArLITZ (%)

A Special Functional Equation. (**)

1. - Introduction.

GLAISCHER [5], [6] showed how the convergence of certain familiar series
can be improved by making use of simple algebraic identities. BraDSHAW [3]

indicated how results of this kind can obtained by means of the identity

(1.1) C2fe + 1) fr 1) —afl@ +1) gl —1) —afl@ —1) gle +1) =20,
where ‘

fl@) = a® + a, 2% + a, 2% + .+ a,,

gl@) = a*=1 - by 2 4 . L b, @

and ¢ = f*1). He found f(z) for n < 4 and also stated the value of f(0), f(1),
1)

In the present Note we find the general polynomial solution of (1.1) and
discuss various properties of the polynomials f(#) and g(x). Since the numerical
coefficients occurring in (1.2) are positive integers, it is of interest to seek
arithmetic properties of f(#) and g(x). We find in particular that they satisfy
congruences similar to those satisfied by the polynomials of HERMITE a,nd
LAGUERRE [4].

(1.2)

2. — Since it is no more difficult we shall assume in place of (1.2) that

(@) = fal®) = 2" + ay 22 + ay vt + ...,
{2.1) ‘
g(w) = gn(w) ==t + b1 -3 —+ b2 b + [

(*) Address: Department of Mathematies, Dulke University, Durham, North
Carolina, U.8.A..
(**) Received February 8, 1956.
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In (1.1) replace z by @ -+ 2 and subtract corresponding members. We get

2.2) fle +){2f(w—1) —2f(x +3) —wgle —1) + (@ -+ 2)g(@ +3) } +

+gw + D {(@+2)f@z+3) —efle-1)}=0.

We shall assume ¢ 5= 0; then clearly (1.1) implies that f(# + 1) and g(x + 1)
are relatively prime polynomials. Consequently (2.2) implies that
(@ +2) flo +3) —aflw —1) is divisible by f(# + 1); examining the coeffi-
cient of @ in the former we get

(@ + 2) fle +3) — @ flw —1) = (dn + 2) f(z + 1),

or what is the same thing

25 : (%' . 1‘) o + 2;) - (a} - N ﬂm,;é) - (452 +2)f(a,)

We also get

1

24) @+ +2)—@-1ge-2)-2f@+2) +2f@-2) =
= (4n + 2) g(2) -
Now (2.3) implies
1(3) = (2n + 1) f(1), 4 f(8) =2 (1) + (4n + 2) f(3),

and so on. Thus f(3), f(8), ... are evaluated in terms of f(1). Since f(x) is a
polynomial it is accordingly determined, say by the LAGRANGE interpolation
formula, as a multiple of f(1). Since the highest coefficient in f() is 1, the value
of f(1) is uniquely determined and hence f(z) is fixed. Returning to (1.1) it
is readily seen from the equation

f@ + 1) {ja—1) —wge—1)}+fe - 1){f@+1) —ag +1)} =20
that for given f(z), there exists at most one polynomial g(x) of the required

degree. Hence there is at most one pair of polynomials of the form (2.1) that
satisfy (1.1).
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3. — To find an explicit solution of (1.1) we consider first the polynomial
A, (z) defined by
1+ <
(—T"—m == z fln(’u) in.

n=0

(3.1) A(t) =

(BATEMAN [2] has discussed briefly the polynomial g.(z, ) defined by

=]

(L0 (L=t = S gule, 7

and in particular the case r = 0. See also the additional references in [2]).
It is clear from (3.1) that

(3.2) - Ay u) = 3 (lf,)(u SL 8),

T 8=n

which ean also be given the form

(3.3) A ) =3 <':> (“ j S>. :

It follows from (3.1) that

© 2u 4 1 4 ) (1 + )t
o S0+ 1) Ay 00 = (g =2 ELE D

[

b

which implies the recurrence

(3.5) (n +1) A‘,,ﬂ’(u) = (2% + 1) An(u) + n A, (u).
Since
u @ fu 2rqr
A(t) = T:1< ) ,§0<;>(1 a0

we have also

(3.6) | Au(w) = 121 ar (?) (l:) ;
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this implies the following relation useful later
(3.7) A, (m) = A,(n),

provided s is an integer > 0.
A formula similar to (3.6) is

m w\ (m + 1
2u) = .7
duze) = 3 ()" 1),

which is a consequence of the identity

hd 1 [ 4t «
£ 2 [ — !
%Am( 'l(/)t 1_5117'(1_“[)2}.

3.8) 2(1) = 3 (= 0 () s

=0

u + n Zo(n
(3.9) 2"( , ) =2 <) A (w).
¢ r=0
Since (3.1) implies
(3.10) Aa(—u —1) = (—1)" A,(u),
(3.8) and (3.9) are equivalent.

The recurrence (3.5) evidently determines A,(#) uniquely, given the initial
conditions d,(u) =1, A, (u) — 2u -+ 1. Note that it follows from (3.7) that
(3.11) A,(1) = 4,(n) = 2n + 1.

‘We now seek a second solution C,(u) of (3.5) such that Cy(u) = 0, Cy(u) = 1.

(For a discussion of the polynomials associafed with the classieal orthogonal
polynomials, see Toscano [11].) Put

(312) O =3 Ou(w) 17 = A() F(),
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80 that

o'(t) = z(n+1 Ca(t) 1 =

w0

=1 + 3 {@u + 1) Cultr) + 0 Cosytu) }17 = 1 + (2u + 1) C¥) + ¢ {towm}".

1

This yields
1 =) C'(@) =1+ (2w +1 +1)Ct).

But by (3.4) and (3.12)

AT S S S A

) = AW ') + =5

A(t) F(t)

and therefore

A=
12) A() (1 4

(3.13) F'(t) = a

Since F(0) =0, I"(0) = 1, comparison with (3.1) yields

(3.14) e = z (— 1) 1o ":“‘)z".
n==1
Consequently (3.12) gives
(— 1)’"
(3.15) Cn(u) = Z A () A (w) -

In (3.13) take u# = m, a positive integer. Then repeated integration by
parts leads to : ‘

m— 1( )r

mo1 (1) ]\ e
Py =¥ (——) +(=Drlog (140 + 3

vmo Mm—1 \1 41 =y m—r
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Chence by (3.12)

e N e G
0 =2 i pm T gl +0) = (= D" mn s
1 — 1yl
where 7, =1 —= 4 ... =0 .
. 2 m
Thus, using (3.1), we get

m-—1 (__‘ 1)7’+1 N1 (__ 1)11—-r+m

(3.16) Culm) = 3 ——— 4,(r) — 3 A (m) — (— L)m 1, Anlm).
e M— 1 3 N7

Hence in view of (3.7); 3.16) implies

(3'17) (_ 1)m On("n) - (“ 1)" Om(n) = (Tn_"Tm) A1z(7n)7 .

“where m and n ave arbitrary non-negative integers. Applying (3.10) to (3.15)
we get also '

(3.18) Cal—u —1) = (= 1)1 Cp(u) .
. In particular (3.10) and (3.18) imply
(3.19) Aoy (—1/2) = Cop(—1/2) =0.

‘We have also from (3.1)

1 @n)!
(3.20) » Ay, (- 5) = ow (e

As for C,,qy (— 1/2), it is evident from (3.5) that
(2% + 1) C‘.’.n+1 (" 1/2) = 4N 0211—1 (_ 1/2)7

and this yields

o o I B 2n 2n—2 2
(8-21) S §) T im 173
We note also that
1 — 1)1
(3.22) A, 0) =1, 0n(0) =1 —5 + ... +( ”) .
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4. - Now put
{4.1) wo=2u +1
.and define
(4.2) ful) = n! A, (w), gulz) = n! Cyhlu) .

Tt is clear from (3.11), (3.18), (4.1) and (4.2) that
(43) ;fn('— (E) = {— 1)" f’ll(m)7 gnl— .’B) = (— 1)""1 gn(w)!

s0 that f.(x) and g,{z) are of the form (2.1).
In the next place, since A,(u), C,(w) both satisfy (3.5), it follows thatb

(4.4) A1) Cpy(w) — Apy() Cplu) = (—1)"/m .
If we take v = » and make use of (3.7 ); (4.4) becomes

A, (m) Cpey(m) — A (m—1) Cp(n) = (—1)7/m.
Next applying (3.14) this becomes

fln('mf){ - O'n('m’ - 1) - (_ 1)m (7:71" Tm—l) An(/m’ - 1)} +

+ Ao(m — 1){ = Co(m) — (= 1)" (Ta— 72) An(m) } = (= 1)"/m,
which is the same as
Anm) { Ap(m—1)— 2m Culm — 1) } + Au(m—1){ A,(m)— 2m Cp(m) } = (—1)".
Tinally employing (4.2) we get

#.8)  fu2m + 1){f.(2m — 1) — 2m g,(2m — 1)} +

4+ fa(@m — 1) {fa(2m + 1) — 2m g,(2m + 1) } = (= 1) (n1)2.
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Since (4.5) holds for all integral m >0 it follows immediately on replacing
2m 4+ 1 by « that

(4.6) 2fue + 1) fale —1) — @ fule +1) gulz —1) —
=@ fol@ — 1) gu(@ + 1) = (= 1) (n)*.

In particular for » even, (4.6) is identical with (1.1).
It is clear from (3.5) and (4.2) that

(4.7) ‘fn-H(w) = fn(w) + n? fﬂ-l(m);

also g.(») satisfies a like recurrence. Thus the coefficients in f.(x) and g.(z)
are positive integers. If we put

- faliw) =it Fo(a),
then clearly the coeificients of F,(z) are real and F,(x) satisfies
Fog(@) =2 F () — n? F,(5).
It foliows (compare [10, p. 44]) that the roots of F,(z) are all real and conse-
quently the roots of f,(x) are pure imaginary.
By means of (4.7) we find easily that
hz) ==
fue) = a* +1
s (@) :mf + b
fi@w) =a* +-142* + 9
fs (@) =2° +-30a® + 892
fo (&) == % -~ B5 ¢ 4 439 a2 - 225
f: (@) =a7 4 91 2° 4- 1519 23 4- 3429 «

fo (@) = a8 + 140 25 + 4214 2 - 24940 2* + 11025,
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Similarly we find that

g (2) =1
9. (2) ==
05 () = o* + 4

gy (@) =2° + 13 »

g (8) =2t + 292 - 64

go () = @° -+ B4 2® - 389w

g7 (®) = % + 90 -3¢ 4 1433 2 + 2304

. (@) = &7 £ 139 25 1+ 4079 2° & 21365 2.

We have also, using (3.22),

1 — 1)1
fal) =mnl, gn(l):fn!<1—5+... +( ) ),
Z n
while (3.20) and (3.21) yield

(2n)!

2nq.1

funl0) :( )2= 123252 ... (2 — 1),

Pon2(0) = 22-42 ., (20)2 = 22" (p )2,

Explicit expressions for f.(2r + 1) are readily obtained for small integral »
by means of

fn27 1) =nl A,@#) = nl A.(n) = n! f-(2n 4 1).

1
!

Thus for example
n!
falB) =, h(@n + 1) =l 20 + 1),

ulB) = 2 fu2n 1) =2 (@n 4+ 1)241).
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These values can also obtained easily by means of (2.3). It is then easy to com-
pute ¢,(2r -4 1) by making use of (3.17), that is

(=107 guf2r +1) = (= 1,20 +1) = (0 — %) ful2r +1).

For example

1
g.(3) = (= 1)1 n! +(§ — . - >n! 2n +1).
1
The value of f,(2r) can also be obtained. Indeed if we take % —r -3

in (3.1), we get

ALy (L )R

A = T S

which yields

‘ ) N 27 r 45— (1/2)
'(48) An (7 - 5) _ 22,:(”‘ . 2s>< s ) ?

valid for arbitrary ». In particular for integral » > 0, we get

fa(20) = n!

27 ){7 + §— (1/2))

n-2r<2s<n (”"‘ - 28 \ §

For example

n—1

fan(2) = (20)! {(n + (1/2)) - (n —(1/2)

" >} = (4n +1){(2n —1) 2n — 3) 13
n+ (1/2)

n

Fonta(2) =220 + 1)! ( > =2{(@n+1)(2n—1)...1}%

In the next place if we put

fn("”) = z Ay r wn-—‘zr’ gn(w) = z bnr wn—]—-‘zr’ (a'no: bno = 1)7

arsn 2r<n
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then it follows from (4.”7 ) that
Cny,r = Gnr T NE Uy py
bn+1,r = bﬂ,r -+ nd bn—l,r—1 .
Thus @u4,; — Gm= 1% which yields
tyy = (1/6)n(n — 1) 2n —1).
Similarly we find that
tny = (1/360)0(n — 1) (n — 2) (n — 3) (200 — 48n -+ 7).
In general a,, is a polynomial in n of degree 3r. Since
Gant1,n = Gan,n + 4N® Uy 71,

we ﬁnd that

(£.9)  Gapyrn = 22+42 . (20)? {1 + 5 1 +;2 j: + ... —;—%ﬁ}
We have allsoy
by = @y —1 = (1/6)n(n —1)(2n —1) —1 (n > 2),
Dpp == Gy — hpy + D (n > 3) .
Indeed it follows from (5.8)' below that
bar =ty — 3 L

e—s8) (n—s 4+ 1) (n—2s)!

‘We remark also that

o 28 2% 42 . 22 42 ... (2n)* 1
. =32:52... (2n - 2[ — e
(4:'10) b‘.’,n-}-‘z,n 32:5 ( n - 1) 11 + 3z + 32 52 + + 82 52 . 2)1 T ZJ H

corresponding to (4.9).
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Lo
no
<

We note that f.(z) and g.(2) can be expressed as determinants of the

“following type:

z —1
1 x —2
2 r —3
(4.11) fula) =1 . . 3 . . . ,
z = (n—=1)
n—1 @
2.2
2 x —3
3 &
(4.12) al@) =
x —(n —1)
n—1 T

5. — We now derive some additional properties of A,() and On(u) or, what
is the same thing, of f.(x) and ¢.(z). By (3.1) we have

S . n (I 4+ 4 (1 + =)
(5.1) rgo An(u) t - z An(’b(;) &Y = (1 . f,)“+1 (1 _ z)u-}-l :
Now the right member

(1 . t -+ z)u
(l—{-tz'+1,+z)"~ 1 1 4tz o
Tl lz—t—2pt 1z ERPEVES I
. T - iz
<~ {t + =)

=3 Aalt) g =

=0

P (N VENTEEES e (e CR

k=g
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Since the coefficient of ¢” 2z in the left member of (5.1) is 4 ,(u) 4,(«), we accor-
dingly get :

G2 A =3 (- .
TFor the probf of (5.2) compare Karuvza [7, p. 691].

Using the first of (4.2), (5.2) becomes
Ga e =30 T 00 ),
and in particular, when » = n,
(5.4) | flw) = ; (= 1)* <;><2",— k) (k)2 fan_anl) .

If we apply (3.7) to (8.2) (with » = m), we may write

. B _ L+ a—k)! . ;
An(r) duln) =2 (= D)y Al e 2h) =

n

Since this is true for » =0, 1, 2, ..., it follows that

3.5 Anl@) An(n) = Z (— 1) (n) (m e k) An(w -+ n — 2k)

=0 k n
for arbitrary . In particular for » =1, (5.5) reduces to
@2m +1) A (z) = (@ +1) Au(e +1) — 2 A, (v — 1),

which is equivalent to (2.3).
It may be of interest to mention the formula

(b.6) (1 —t—2—t2)t =3 A,(m)trzm,

m,n=0

which is a direct consequence of (3.1).
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Turning now to (3.12) we apply (5.2) to get

Bo(— 1)t . (n—1-—s)!
(5.7) Oulw) = 2:1 a zs (=1) (r—1—s8)! (01 -—s5)ls! Ansao(w) =
(n—1—s)! S (o p)rbsmt 1
=2 Aemel) S e T Ty

Now the inner sum on the extreme right

1 S (— 1)l — 1 28
T n— 2801, 5, r r—1l—s/)
1 n—1-28  (_ ])k ()1, —1— 2&)

=0 ’

(n—1—28)1 y ks 13\ k

Using the familiar identity

m m 1 m!
— 1) — - -
z ( ) <7‘)1‘ 4z w4+ 1) . (2 m) !

r=0

this becomes

1 s!

F+1(+2) .. (n—s)  (n—2s)! )

Substituting in (5.7), we see that

Apgas(t) .

25<n W— 8

(5.8) Cu(u) = 3

Tt follows from (3.5) that

s A, 1)

(Qu + 1) On('u') = fln(u) -

0<2$<nV(’”'_ s) (n - s+ 1) ’
or what is the same thing

2 s ] n!
B B s F D) m—aay @) -




[
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If we differentiate (3.1) with respect to v we get

& o (Y 141
> A ()t = 0T 10g] —

1

so that
Al = L4
(’M ”*“"’0;" 25 + 1 n—-l—ﬁs(u)a
or
’ ) — Z 1 n!
5.9) fal® 25+ 1 (n— fn—l 2s(%) -

If we take v = — 1/2 in (5.8) and use (3.18) and (3.19), we get the following
curious-result : S ; : R e

(28)! 2n 20— 2

n
Z: s+ 128(shE o+ 1l2n—1""

Wil b

which is included in a formula of BAmLeY [1, p. 93].
Substituting from (3.6) in (5.8) we get

(5.10) | On(u>="§:2’ (> > — (—1_>

28 im—r N — 8

A formula like (5.2) for A4.,(u) C,(u) can be obtained. Indeed more generally,
it U, satisfies

(5.11) (2 +1) Uy = @Qu +1) U, + 2 Uy,
where 2z is not necessarily integral, we have

1
r!

(5.12) A (u) U, = i l)k( > z2—k + 1) Upr—sr

Le=0

where (2),=2(z+1) ... g +r—1). For r=0, (5.12) is obvious, while for r=1
we get

(2u + U, = (# + 1)Uz+1 — 2 Upy,
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in agreement with (5.11). Then assuming the truth of (5.12) we get
D AT, =1 (Qut DA, +74,,) U, =

¥

) (2’ L + 1)r Uz+r—2k ’{"‘

=(2u +1) X (— 1)""(,{

1
+ 2 (_' 1)k (7 A )(z -~k =+ 1)r—1 Uz+r-1—2k =
= z (— l)k <7> (z —k + ])r{ (N + 7 +1 _"27") Uz+r+1~2k - (Z +r "‘2]5) Uz+r——1—2k} '{"

|
-+ 72 Z (—' 1)h(7 k ) (z ~k + l)r—l Uz+r—1—2k =

+<k11)(z‘k+2>r((z—k+1>+r‘—7o+1) -

1
g (, ) E—E LA,

Since
—k@ @—% +1), +(r—k +1)<I:]>(z_k 1 2),—

r—1
‘_7‘2(70—]>(z"—k + 2)py =0,

the right member reduces to

r+1 P |
(" )k Do T

thus completing the induction.

In particular, (5.12) implies

r r+n—K!

(5.13) A(w) Cpf) = 3

2 I g Cree®)
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for » < n.. The condition # < n is necessary since C,{u) satisfies
(0 + 1) Coy(@) = (2 + 1) Coltr) + 1 Cpy()

for # >1 only and negative values of the subsecripts must be avoided.
For a formula like (5.12) in the case of the HERMITE polynomlals see NIELSEN
[9, pp. 31-33]. ‘

6. — It follows immediately from (3.5) that

(W’ + 1) { An+1(u) -A-n(v) - —An(u) An+1(7)) } =
— {20 4 1) 4,(0) + 1 Aos(@) } 4a(0) — A1)+ { (20 + 1) Ayf0) + 1 Ap(0) } =
(= ) () Aaf0) = e { Ap) Aus(0) = Apea() Ayf0) }

and threfore

(6.1) 2(u — v) Z (— 1) A (u) A,(v) =

r=0

= (= 1)" (0 4+ 1){ Adpna(u) 40(0) — A1) Apiy () }.

In a similar manner we may prove the companion formulas

(6.2) 2(u — ) Eﬂ: (= 1) Cu) Cxv) =

[

= (= 1)" (0 + 1){ Coga() Cu(v) — Cp(2) Cria(0) },
(6.3) 2 —v) = 3 (= 1)r A,(u) Cy(v) =

=1+ (=1)* (1 + 1){ Adpna(w) Co(v) — An(w) Cra(0) }.
In particular for # = these formulas become

n

(6.4) 23 (—1)r A¥w) = (= 1) (0 + 1) { 4], (0) Ap(u) — Arfu) Aus(w) },

r=0

16, — Rivista di Matematica.
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65) 23 (= 1) Gu) = (= 1" (0 + 1){ Cpy(t) Culw) — OLfw) Ca() },

(=1)7 4, (w) Ow)= (=1)" (n -+ 1) { A, _,(w) Op(u) = A (1) Coa(u)} =

= (=1 (n + 1){ O, (w) A, (0) — Cp(w) Apig(u) }-

The formulas (6.1), (6.2), (6.3) are special cases of the following more
general identity (6.7). Let U.(u), V.(«) denote any solutions of (5.11). Then

(Z -+ N + 1) { Uz+n+1(u’) I’z-}—n(”) - Uz+n(u') Vz+‘n+1(7)) } =

= 2(u — 0) Uppn(w) Von(®) — (2 + n){ Usinlt) Virna(®) — Uspneg(80) Vogn(®) },

which gives

(6.7) 20 —v) 3 (= 1) Usrr(®) Ussr(v) =

=l

= (=1 &+ 1+ D Vatuna(®) Varal®) = Usia®) ey () } —

~ & + 1{ Uen(w) Viv) = Ta(w) Von(v) }.

In connection with (6.1), we note that it follows from (3.1) that for |a| << 1,
S(=1)rar Y A,y tm-> A (r)en =
r=0 m==0 n=0

< (140" (14 2)
20w s = {0+ + A —a) ¢t +2)

Consequently

“ o] S 1 m
(6.8) m S (= 1)rar do() Au) = —2 5,0 s

. 6—>1—0 r=0

[

in other words the series

s

(6.9) (= 1)r A (r) Au(r)

.,
I
o
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is summable (4). Moreover, since by (3.6)

qm gm

‘/‘1771(7‘) ~ (T e OO)

m!

for fixed m, it is clear that (6.9) is not convergent. However we can assert
more than (6.8), namely that (6.9) is summable (G, m + n --1). Indeed
this is a consequence of the fact that 4,(r):4,() is a polynomial in r of
degree m + n [8, p. 496].

In view of (6.8) it may be of interest to compare 4, (u) with the KRAWTCHOUK
polynomials (see [10, pp. 34-36]). Thus (6.8) corresponds to the orthogonality
relation for the latter. However 4 ,(z) is not a special case of the KRAWTCHOUK
polynomials.

7. - Arithmetic properties.

It is proved in [4, Theorem 1] that if a(n), b(n) are polynomials in # with
integral coefficients and wu, is defined by means of

(7-1) . Upsy = a’(n) Uy + b(”) Un—1,
(7.2) Uy =1, u; = a(0), b(0) =0,

then we have
(7.3) Ay, = A1y, =0 (mod m7),

for all » >0, » > 1, where

7 7%

' y
(7‘-1) Ar 'un == z ("— 1)7‘—3 (S) un+sm /u(r—-s;m

s=g

and m is an arbitrary integer. In particular (7.3) contains

(7.5) : WUntm = Uy Uy (mod m) .

Note also that the polynomials a(n), b(n) are allowed to contain additional

indeterminates.
Now since the polynomial f,(z) satisfies

f1z+i(m) =T fﬂ(w) + n? fn—l(a;)?
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it is evident that the conditions of the quoted theorem are satisfled. Thus to
begin with, (7.5) implies

(7.6) Frtm(@) = fal@) fuul) (mod m) .

Since by (4.2) and (3.6)

puie) =m 3 ()(%) = 5 (%) 2wt =) T

where # = 2u + 1, we get |

(7.7) ful®) =@ —1) (g —3) ... (x —2m + 1) (mod m) .
Thps (7.6)‘ becqmes ;

(7.8) fotm(@) = (2 — 1) (@ — 3) ... (¥ — 2m + 1)f,.(») (mod m) .

If we replace w by an odd integer ¢, then (7.7) reduces to f.{(2¢ + 1) =0
(mod m). Note also that for m equal to an odd prime p, we have

{7.9) fol@) = ar— (mod ).
Indeed (7.9) is a special case of

(7.10) faio(@) = (@, — @) fol@) (mod p),
which is implied by (7.8); the following special case of (7.10) may be noted:
(7.11) fmsl®) = (@7 — @)™ | (mod p) .
We also remark that (7.7) implies

T—1

(7.12) forl@) == (@7 — )2~ (mod pT).
In the next place the general result (7.3) becomes

(7.11) ‘ A“_ falw) = A1 f(w) =0 (mod mT),
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where now
1.12) 27 1) = 3 (=17 () foton@) - am (@)

However a stronger result than (7.11) can be asserted. Indeed by (5.2) and
(4.2)

Arfn(m) =

_ i (= 1) (r (n + rm— k) (n + sm)! ((1'»—— s)m)! Frtrmarl@) =
=0

—1)*
s s> g( D (n 4 sm—Ek)! ((r — s)m — k' kY (0 4 rm — 2k)!

n - rm—=k

=0T i) 3 (- 1 () pls),
o S B ; o e
p(s) = (n +sm —k + 1), (¢ —s)m —k + 1),.
Clearly
P(s) = ay + ay sm + ... + @y, (SM)*F,

where the a; are integers. Then

r . 2
> (= 1) <;> p(s) = A7 p0) = 3 a;m> 470 =0 (mod r!-m7)
8=0 * i=T .

sinece A707 =0 (mod r!). It therefore follows that

(7.13) A7 f(x) =0 (mod #!-m7y

for allr > 1. For r > 2 this result is more precise than (7.11); for r =1 it re-
duces to (7.6). In connection with (7.13) it may be of interest to mention that.
(5.2) implies

(7.14) | Frnl®) Fan@) = Frutun(@) (mod m?) .
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The theorem stated at the beginning of this section does not apply to g.(x)
sinee (7.2) is not satisfied. However exactly as in the proof of (7.13) we may
prove that )

(7.15) A g (x) =0 - (mod 7! m),

where now
t r

(716) Ar Gn(w) - Z (— l)r—s (S) gn+s7)z(m) f(r_s)m(m) .
L] -

In particular, for » =1, (7.15) becomes
(T.17)  goiw(®) = ful@) gu{®) = (@ —1) (@ — 3) ... (g —2m + 1) g,(®) (mod m).
Also corresponding to (7.14) we have

(7]8) frm(w) gnm(m) = grm—a‘-nm(x) = grm(m) frm(w) (InOd 771’2)-
We remark that (5.8) implies

(7.19) Inl@) = fruma(@) (mod m) .
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