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C. M. PETTY (%)

On the Geometrie of the Minkowski plane. (*¥)

1. - Introduction.

MINKOWSKI spaces are the local spaces of the more general FINSLER spaces
but are interesting geometrical objects in themselves. This paper deals entirely
with the plane case and emphasis is given to the problems which are unsolved
in higher dimensions. i
 Section 2 introduces notation and recalls previous results. Sections 3and
4 are mainly concerned with extremal problems whose solutions (polygons)
require the lack of differentiability assumptions on the MINKOWSKI metric.
Most of these are unsolved in higher dimensions. In section 5 the geometri-
cal construction of a curve of constant MINKOWSKI curvature is given and
in section 6 it is shown how the MINKowsKI-FRENET formulas lead naturally
to the MINKOWSKI curvature and two others. In section 7 the fundamental
MINKOWSKI trigonometric identities are developed with the aid of a calculus
of these functions. The main results are contained in section 8, where the fun-
damental theorem for curves is given in various but non-equivalent forms.
In particular (8.6) gives the fundamental theorem in a form involving a MIN-
KOWSKI motion where two curvatures are required instead of one as in eucli-
dean geometry.

(*) Address: Department of Mathematics, Purdue University, Lafayette, Indiana,
U.S.A..

(**) Part of this paper was included in a chapter on the MINKOWSKI planein a dis-
gertation written under the guidance of Professor H. Busemany, University of
Southern California, 1952. — Received October 27, 1954.
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2. — Basic results.

In the euclidean plane with metric ¢(@, y), let U be a closed, convex curve
with center z at the origin. The MINKOWSKI metric xy with U as unit circle
is defined by

2e(x, y)
2. aY = ——
(2.1) W= e

where ', y' is the diameter of U parallel to the euclidean line g(z, ).
The MINKOWSKI area | I | of a set M with LEBESGUE area |31 |" is de-

fined by ([4], p. 158) (1)

(2.2) | M| =0| M|, oc=a/|T|"

Busemaxxy [6] solves the isoperimetric problem. A solution (isoperimetrix) .

is constructed by rotating U through 90° and taking its polar reciprocal with
respect to the euclidean unit circle. The normalized isoperimetrix 7' is uni-
quely determined by the requirement that its center is at # and twice its area
is its perimeter. Its supporting function T'(u) = T(cos u, sin %) is given by

(2.3) T(n) = o/o(u + (%/2)),
where o(u) is the euclidean polar equation of U.

If & is a closed convex curve with supporting function H(u), then its Mix- -
KOWSKI perimeter L(K) may be expressed by

- _ - H(w)
(2.4) LK) = o'/ T(u) ds = o‘fH(‘lL) ds :/T(u) ds .
& 7

K

where ds, ds are euclidean and MINKOWSKI arclength elements respectively.

Let 4 be the area of a triangle with sides of length @, b lying on lines 4, B
through a point p respectively, then the MINKOWSKI sine is defined by ([4],
p. 161)

(2.5) ' sm (A4, B) = 24/(ab) .

(*) The numbers in bold face and in brackets refer to References at the énd of th
paper. - . '
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Line 4 is called normal to B and B transversal to A if
(2.6) sm (4% BY< sm (4, B)

for any line 4% through p ([4], p. 163). In this case we set a(B) = sm (4, B).
The function o« '(B) is the MINKOWSKI polar equation of T ([4], p. 171).
Furthermore the supporting lines of U at a point g are the lines transversal to
the radius zq and the supporting lines of T at a point p are the lines normal
to the radius zp ([4], p. 169).

A MINKOWSKT metric is euclidean if and only if U is an ellipse. A euclidean
metrization of a MINKOWSKI space R arising in this manner is called associa-
ted to R.

3. ~ The a-function.

The o-function plays an important role in investigation of MINKOWSKT
spaces. If B is parallel to the direction o we write a(w) = a(w + ) = a(B).
Although «(w) is, in general, not constant it is bounded above and below by
(see [5], p. 283)

(3.1) w4 < afw) < 7f2 .

It is easily seen that if either of these extreme values is attained then U must
be a parallelogram. The range for max « and min « may also be calculated.
First, we prove a theorem concerning the bounds for |7].

(3.2) Theorem. For the Minkowski area |T| of the mnormalized
isoperimetriz T we have

8jn < |T|< =,

where the left-hand equality is obtained only if U is a parallelogram and the right-
hand equality is attained only in euclidean geometry.

Proof. If U* is the polar reciprocal of U, then the manner in which
T is constructed shows that | T |*+| T* == | T|. Bw8=<|T|* | T*|'<a*
where the left-hand equality is obtained only if U is a parallelogram: [8] and
the right-hand equality is obtained only if U is an ellipse [10].

Since «(w) is the MINKOWSKT polar equation of T and |T|< |T| ==,
we obtain:
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(3.3) Corollary. For the maximum value of a(w) we have max o= 1,
where the equality holds only in cuclidean geometry.

In particular we note that when T and U coincide (i.e. a(w) = 1) then the
geometry must be euclidean. Tt is not true, in general, that min « < 1. However,
we have in this connection the following result which yields to a standard
argument.

(3.4) If U possesses a 90° rotation in some associated euclidean geometry,
then min « < 1 and the equality holds only in euclidean geometry.

The wunit circles U for which «(w) is constant are precisely the « Rapox
curves », see [6]. They are characterized by the property that the line through
z, parallel to a supporting line of I at a point p, intersects U in a point at which
there exists a supporting line parallel to zp. They may be constructed in the
following manner. In the euclidean plane with a rectangular coordinate
system draw any convex curve s, (turning its concave side towar- the origin,
from (0,1) to (1,0) and remaining within or on the unit square in the first qua-
drant. The polar reciprocal s, of ¢, shares these same properties and the polar

reciprocal-of sy is-again-sy - Rotate sy through-90%and -complete-T by reflecs— -

tion through the origin. If F(w) is the supporting function of U, then o{w) =
=0 g(w) E{w -+ 7/2) will be constant and consequently U is a RADON curve.
Every RADON curve is one of these or an affine transform of one.

‘We will now calculate the best upper bound for min «. To do this we first
find the lower bound for the perimeter L(U) of U. Starting with any point p
on U we lay off a chord of unit MINKOWSKI length. At the end-point of this
chord we lay off that unit chord of U parallel to zp. Continuing in this manner
we obtain a hexagon inscribed in U of perimeter 6 (consecutive unit chord may
not be well defined, consider for instance a parallelogram as unit indicatrix).
We have then

(3.5) L{U) =z 6.

Now the maximum inscribed and the minimum circumsecribed isoperimetrices
to U are (min «)7 and (max )T vespectively. Integrating the inequality

(max «) T(u) = B(u) = (min &) T(u)

with respect to euclidean arclength of U and multiplying by ¢ we obtain from
(2.2) and (2.4)

L(U) max a = 27 = L(U) min .
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Consequently (3.5) with the above inequality yields
(3.6) ; min o < 7/3.

An affine transform of an ordinary regular polygon is called an affine regu-
lar polygon. The inscribed hexagons constructed above are regular affine
hexagons. A simple computation shows that equality is obtained in (3-5) and
(3-6) for a regular affine hexagon. In the next section we show that this is the
only case where equality is obtained in these results.

We may obtain a sharpening of the MINKOWSKI isoperimetric inequality
analogous to that of BonNESEN ([2], p. 63). Let R, » be the expansion factors
of translates of 7' to obtain the minimum circumsecribed and maximum inseri-
bed isoperimetrices to a given closed convex curve XK. We have then

(3.7) - ([HBP—4|T|[E|z|T

HR—r)2. .

A proof of (3-7) follows from the geometric interpretation (2-4) of BLASCHKE'S
inequality on mixed areas ([1], p. 36). Unlike the BOoNNESEN result, equality
may occur in (3-7) without K being homothetic to 7. An example is obtained
when 7' is a parallelogram and K is a non-homothetic parallelogram whose
sides are parallel to the sides of 7. Generalization of BoxNESEN’s method
[2] also establishes (3+7) and by this approach sufficient conditions for equality
become apparent. Applying (3-7) to U we obtain

(3.8) [L(U))—4x |T|= | T|* (max «— min «)?.

A difficulty which forces the proofs in the next section to be rather compli-
cated is that one convex body K, may be properly contained in another K,
and yet both have boundaries of the same length. This is possible when U is
not strictly convex. For example, if U contains the segment pq and we construct
the parallelogram zpdq with zp and zq as adjacent sides, then zd = zp + pd = 2.
Any convex arc from z to d and lying within the triangle zpd will also have
length 2. ) . ‘

In this paper convexity has meant ordinary convexity in an associated eu-
clidean space. One may also define MINKOWSKI convexity of a set M by de-
manding it contain all shortest (MINKOWSKI) connections between any two
points of /. MiNKOWSKI convexity implies ordinary convexity but not con-

_versley. The isoperimetrix must necessarily be convex in this more restricted
sense. One may show that a closed convex curve H is Minkowski convex

18. ~ Rivista di Matematica.
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if and only if the diameters of U, parallel to the tangent lines of H, cut U in extre-
me points. Formulated in terms of the isoperimetrix T, H is Minkowski
convew if and only if its tangent lines are parallel to tangent lines of T. In the
preceding paragraph if K, is MINKOWSKI convex then LK) < L(K,).

4. — Some extremal problems.

In the preceding section, it was shown that L(U)= 6. We now prove
(4.1) Theorem: L(U) =6 if and only if U is a regular affine hewagon.

Proof. Let p be a point of U which has the property that e(z, p) is a ma-
ximal euclidean radius of U in some associated euclidean geometry. Draw
a chord ab of U parallel to g(z, p) of unit MINKOWSKI length. A regular affine
hexagon of perimeter 6 may be inscribed in I/ using ab as one of its sides. Since

L(U) == 6, the arc ab of U has unit length. Consequently, if ¢ is a point of
arc db, then e(a, b)je(z, p) = ab = ag + ¢b. Using the fact that e(z, p) is maxi-
mal together with the euclidean triangular inequality, we obtain e(a, b) =
=e(a, q) -+ e(g, b) and, therefore, ¢ lies on the chord ab.

Since the LoEWXNER ellipse [unique ellipse wich contains U with center z
and minimum area [4], p. 160)] touches U in at least 4 points, there are at least
two pair of such directions. Suppose U has exactly two pair of such points.
- By a central affine transformation we may assume the four ponts have coor-
dinates (-+1, 4=1). Every eliipse in standard form which passes through one
of these points is necessarily a circumscribing ellipse to this transform U*
of U. It follows that U* is a square which gives a contradiction since L(U) = 8.
Therefore, there are at least three pair of such directions and consequently
U must be a central hexagon with the property that its diagonals are parallel
to sides. It is easily shown that this property characterizes a regular affine
hexagon. ' ‘

This result gives another characterization of a regular affine hexagon,
namely: if a central convex hexagon has the-property that each gide is half
the length of the parallel diameter, then it is a regular affine hexagon.

If min « = 7/3, then since 27 = L(U) min «, it follows that L(U) = 6 and
we obtain the Corollary:

- (4.2) The min o = 7/3 if and only if L(U) = 6. In this case U is a rcgular
affine hexagon and c(w) is constant. '

Our next goal is to obtain a geometric interpretation for min « in terms of

a circumscribing quadralateral to U of minimum area. First the reader may
prove: ' :
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(4.3) Lemma. Let h*, g+ be two rays issuing from a point q and let a, se-
parate q and a, on It. Similarly let b, separate g and b, on gt. If p is the inter-
section point of ab, and ab,, then

Cpa; - phs = qu; = gb; (i = _1,' 2).

(4.4') Lemma. The perimeter of « quadralateral conmiﬂiw U is equal
to or greater than 8.

Proof. We may assume that the quadralateral is convex and that each
side touches U.

If two sides of the quadralateral @ are parallel and a parallel is drawn |
through 2, then twice the length of the segment subtended by @ is equal to the
sum of the lengths of the parallel sides and the proof follows in this case.

We now assume that no two sides of ¢ are parallel. If & and ¢ are two lines
then we will denote by %-¢ their point of intersection.

Let the lines containing opposite sides denoted by hl, hy and ¢,, ¢, respecti-

vely where by, ¢, Separate ¢, ¢, Ry~ h, from U 1espectlve1y If a vertex hig;
of @ lies on U, we may assume that &, and g, arve vight- and left-hand suppor-
ting lines of U at h,;-g;.

If - g. lies on U, the parallelogram formed by dld,wmo lines parallel to.
hy and ¢, through the reflection of h,-g, in z will contain U and will lie within Q.
We assume then that h,-g. does not lie on U.

Let g:.,mh; be the opposite parallel supporting lines of U to g,, h; respecti-
vely. The line g; intersects g, on the segment from h,-¢;, to h, g, but not in
hy-g, for otherwise g, would not be a limiting supporting line to U. Consequen-
tly hy-g, separates hy-g, and h,-g, and we have

(1) by ey Ryt g1} + mllyc gy hl'.(/zl) == m(hy* s, hl'!/;)-

! ! ! 7
Furthermore g¢,-g, separates #,-g, and h;-g,.
In a similar manner we find

2) mlby gy Ry-gy) 4+ My gr, by-g) = mlhy-gr, hyegy)
and h,-h, separates h; -¢, and h;'gi.
Now a reflection through z preserves both the separation property cmd

distance. Also smcc hy- g, does not lie on U it follows that %, -¢, separates g,-¢,
and hy-g, and hy-g, separates h,-h, and kg, By (4-3) we have o

(3) Ml ghy Tuvgy) 4 mlly-gy, Pprg) < M- goy T @) + mlkyr gy Borgl) .

Using relations (1) ~(3), we find that L(Q) g 8.
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(4.5) Theorvem. The Minkowski area of any quadralateral @ circum-
seribing U is equal to or greater than 4 min o, :

Proof. We may assume ¢ is convex and that each side a, of Q touches U.
Let a; with length a; lie on the line h;. By joining the vertices of Q to z and
adding the areas of the 4 triangles we obtain

mina L(Q) = 4 mine

DO

a‘i olh;) =

BO | =
M-

|j

1@l =

=1

which proves the Theorem.

There always exists a parallelogram P circumseribing U such that | P
=4 minee. To see this, let w be a direction such that «(w) is minimal and
construet a parallelogram P by drawing supporting lines to U parallel to o
and also parallel supporting lines at the points of intersection of the rays iw

~and-— Aw with-U.- It follows from the -definition - of -o(w) that | P| =4 mine-
We have then ‘

(4.6) If P is the quadralateral (or parallelogram) of minimum area circumscri-
bing U, then ‘ '

=i

I
|

© - 1P|

| 4

mineg ==

W]
b

il

The results (3.6), (4.2), and (4.6) solve the following extremal problem.

(4.7) Theorem. If U is any closed, convex curve with center z and P is
a quadrilateral (or parallelogram) of minimum area which circumseribes U, then

i

‘I/

|
]

I
el

]

|L

and the equality holds only for a regular affine hexagon.

A similar relation to (4.6) may be obtained for maxa. Let € be an inscribed
quadralateral to U of maximum area. ¢ is convex and has the property that
through each vertex there exists a supporting line of U parallel to a diagonal
of . Consequently by parallel displacement of opposite vertices of ¢ we may
obtain an inscribed parallelogram P’ to U with the same area as ¢ and whose
center is z. The vertices of P’ must be points for which maxe is attained and
| P'| = 2 maxa. We have then ‘ ‘
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(4.8) If P’ is a quadralateral (or parallelogram). of maximum area inscribed in
U, then

] x| PP
IHH‘XOC:'—ZE“_Z_IIL'“—‘: 3

(4.9) Corollary. If Uis a closed convew curve with center z, then twice the
area of a mawimal inscribed quadralateral is equal to the area of a minimum cir-
cumscribed quadralateral if and only if U is a Radon curve.

5. — Curves of constant curvature,.
Following BuUsEMANN ([4], p. 173), we define the MINKOWSKI curvature

% of a curve S of class C2. Let p,, py, p; be 3 distinct points of S determining a
triangle with area 4 and sides with lengths a, b, . When p, ~>p, we define ..

(5.1) % = lim — .

In an associated euclidean geometry, » may be expressed by

6:2) o = A IO =m0t 0+ 7).
where 0 is the angle, with respect to the reference axis, of the perpendicular
to the tangent line of S at p, with euclidean curvature x .
The relation (5.2) shows that a simple closed curve V of unit constant cur-
ature is necessarily convex, has a center, and is uniquely determined up to
a translation. We determine ¥V exactly by insisting its center is at z. If H(6)
is the supporting function of V, then H(#) must satisfy the differential equa-
tion

(5.3) H'(0) + H(0) = ag¥(0 + /2).

Solving (5.3) by variation of parameters and using the periodicity conditions
we obtain ’

g+

(5.4) H(o) = ¢ ] (@ + (@2) } sin (p— 0) dg.
]
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We seek now the georetrical construction of V. A line through z cuts the
unit MiNkowskl disc U into pieces of equal area. The centroids of all such
pieces constitute a closed convex curve with center z ([3], p. 10), which we will
call the centroid curve of U. A calculation shows that the suppérting function
H*(0) of the centroid curve is given by

H#(0) = gg} 0*{ ¢ + (7/2) } sin (p—0) d

Comparison with (5.4) yields

(5.8) Theorem. The cwve V of unit constant curvature 4s identical to
the centroid curve of the unit Minkowski disc U ecxpanded by the factor
37f4 . ‘

Concerning the perimeter L(V) and area |V |of V we have

“(5.6) Theor eni. TIf TV is the curve b‘f it constant curvature, then L{V) =
=2, |V | = = where equality occurs in the latter only in euclidean geometry.

Proof. From (5.3) and (2.4) it follows that L(V) = 2xn. By BLASCHKE'S
affine isoperimetric inequality ([10], p. 158), we have

1) (LN = @rp2 | T,

where L,(V) is the affine perimeter of V. But from the definition of affine
perimeter (3) we find that L(V) = 03L(V) = 2x. Equality occurs in (1)
only if V is an ellipse, but the uniqueness of the solution to the integral equa-
tion (5.4) shows that if V is an ellipse, U is an ellipse and the theorem follows.
One may also introduce the analogue to the osculating cirele of curvature
to a curve S of class €% This rests on the following result which is extendable
to n-dimensions. ‘

(5.7) If H is « closed, strictly convex, differentiable curve with center z, then
there exists one and only one cwrve homothetic to H passing through any 3 non-
collinear points.

Differentiability ensures existence and strict convexity ensures uniqueness.
Briefly, in definition (5. 1) when p; — P the curve constant curvature through

(®) In general, there is no close relation between affine perimeter and MINKOWSKI
perimeter, except for curves of constant curvature.
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Dos P1, P2 converges to a translate of RV, where R = 1/x is the MINKOWSKI
adius of curvature of S at p,: ’ ’ ;

In general neither a MINKOWSKI circle nor an isoperimetrix has constant
curvature. Indeed we have ‘

(5.8) Theorem. If an isoperimetric has constant curvatwre then the geo-
metry is euclidean.

Proof. The supporting function E(0) of an ellipse in standard form is
given by

(1) B0) = a*(1 — e? sin 20),

where « is the semi-major axis and ¢ the eccentricity.
It is sufficient to show that T is an ellipse since 7 determines U. By (5.2)
we have

@) | TO[T(0) + T(6)] = C,

where C is a positive constant. If we choose the reference axis in the direction
of a maximal euclidean radius of T, then 7"(0) = 0 and T"(0) £ 0. Under this
condition, if we solve (2) we obtain

1 T”(O)l

TE(0) = T(0) |1 — st

sin? 0

and 7 must be an ellipse with semi-major axis 7'(0) and eccentricity ¢ ==
= [| 7"(0) |/7(0) ] .

It is also true that if & MINKOWSKI circle has constant curvature then the
geometry is euclidean. However, this will be shown elsewhere.

6. — Differential geometry of plane curves.

Due to the narrow group of motions, it is natural to expect the need for
more than one curvature in order to extend various theorems to MINKOWSKI
spaces. Two addition curvatures, which are natural ones to consider, are ob-
tained when U and T are taken as «carriers of the circular image ». We as-
sume that U is of class ¢® with positive euclidean curvature; 7' must necessa-
rily share these same properties. In order to attach a sign to our curvatures
we assign a sense of increasing arclength to U. As a point p on U moves in the
positive sense the ray z}? by definition will assign to 7 and T’ a sense of increas-
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ing arclength. A neighborhood with signed MINKOWSKI length As of a point
p of an oriented curve S of class (* may be mapped by oriented parallel tan-
gents (°) onto ares with signed lenghts 4s,, ds,, ds, of V, T, U respectively.
We then define ‘

B i .
(6.1) w =Hm =2 (=1, 2, 3),

where the MINKOWSKI curvature x — and x,, #; are called the iso-
perimetric and circular curvatures respectively. The three curvatures are ne-
cessarily all zero (then euclidean curvature in any associated geometry is also
zero), all positive or all negative. In general the three curvatures are different.
If 5, and s, {or »,) differ only by a constant factor for an arbitrar y curve then
the geometry is euclidean and if x, and x, differ only by a constant factor U
is a RADON curve.

\Ve may attach a sign to sm (4, B), but first we introduce a notation which

#y

~will prove useful in the next section.

(6.2) Definition. Let the oriented line A+ through z intersect U, T
in p,, p, respectively where p; follows z on A+. The oriented lines A7, A will
denote the transversal and normal respectively to 4+ where 47 has the same
sense as the tangent vector at p,. It follows that Af, = 4], = A~ .

(6.3) Let B* through z intersect U in b (follows z on B+) and let the paral-
lel to A} through b intersect A+ in a, then we define:

sm (4, B) if abhas same sense as A7,

m (A+, B¥) = {-—sm (4, B) ifab has opposite sense to A,
L0 if @, b coincide. »
It follows that sm(d+, BY) = —sm (B+, 4+).

Let A+, B* through z intersect U in a, b respectively, where a, b follow z
on 4%, B*. TFollowing BUSEMANN ([5], p. 285), we introduce measure O(4+, BY)
of the angle between two directed lines A+, B+ (# 47) as numerically equal

(®) Although these curvatures exist and may be continuous as a function of ar-
clength under weaker assumptions on S, we insist [except in (7.14), b.] on the conti-
nuously turning oriented tangent [or continuity of the circular image and (6.1) finite]
since. othermse the unigqueness part of the existence theorems (section 8) collapses.
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to twice the area of the sector of U bounded by A+, B+ and the directed arc
~ - i .
ab of U [|ab|< L(U)/2]. That is

(6.4) O+, BY) =0 j oXp) dy,

ab

where 0 is positive or negative in agreement with the sign of ab. Clearly
0(4+, BY) =— 0(B*, A%) and —mx << O(At, B¥)<<x for Bt A~ By (2.5),
(6.3), and (6.4) we have

(6.5) S BT
) s O(AF, BY

Furthermore if A+, Bt are the directions of the oriented tangents to S at s,,
$o -+ s respectively, then by (6.4), (5.3) we have

A+, Bt
B8y = LI “(*l”—~—) .

ds—»p A8

For a closed convex curve K we will always assume the orientation is such
that the x, are non-negative. If R is the MiNKowsKI radius of curvature of
K at point, where tangent has direction A+, then by (6.6) we have

(6.7) LK) = /.R areas].

T

We now obtain the FrRENET formulas for the MiNnkxowski plane. lLet X(s)
be a MINKOWSKI vector representation of 8 where initial point of X (s) is at
2. Addition and subtraction of Minxowskr vectors follows the parallelogram
law and differentiation is defined in the natural way by

aX X (s -+ 4s) — X(s)

6.8 —— == lim
( ? ) ds As =0 s

(6.9) Theorem. Let 8 be a cuwrve of class C* with vector representation ()
X(s) and let A+ be oriented tangent at s, then

aX

ds

== t(8), lt(a)] == 1.

(*) Even if § is analytic, its MINKOWSKI vector representation X(s) may not have
derivatives higher than the first since it involves the MINKOWSKI metric.
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If U is of class C1, then

dt

b. = x,(8) n(s), | n(s)| == a~2(4,) .

If U is of class C* with positive curvalure, then.

where t(s) is unit langent vector to S at s and vector n(s) is parallel to and has the
same sense as AT

Prootf. To prove b., let #(s + As), t(s) with initial point z terminate in
p and p, on U respectively. By the MINKOWSKI law of sines ([4], p. 162) we
have

sm(ALEpy

PPo =

and consequently by (6.5), (6.6) we obtain

f=9

i

== oY A,) % (s) .

o
b

Statement c. follows from definition (6.1) for ¢ = 2. We keep in mind that
t(s) is normal t> n(s) and n(s) transversal to t(s). If S is a closed convex curve
the vectors £(s), n(s) fill out U and T respectively. ’

To illustrate the use of (6.9) we consider MINKOWSKI involutes and evolutes.
We define an involute 8, to a given curve S by the property that the tangents
to N are normal to S;. If Y(s*) is the vector representation of S,, we have

(1) Y(s*) = X(s) + As) 1(s) .
a4y, .
Since = is parallel to n(s) we conclude from (1) that A(s) == ¢—s and we have

(6.10) Y = X{(s) -~ (¢ —$)E(s)

which shows the «unwinding thread property ». On the other hand the evo-
lute 8., with representation W(s*), of S is expressed by ‘

) W(s*) = X(s) + uls) n¥(s),  |n*| =1,
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where n*(s) is unit vector normal to tangent A+ [or £(s)] of 8§ and having the
same sense as A7 [notation (6.2)]. By a proof similar to (6.9), ¢. we have

dn¥(s)
ds

(6.11) = — 25(8) L(8) .

. aw . .
Since 7 is parallel to n* we have pu(s) = »,7}(s) and hence
s

(6.12) , W == X(s) -+ 2,7Y(s) n*(s), In*| =1.

Therefore, to construct the Minkowski evolute of a given curve S we lay
off on the concave side Minkowski distance equal to the reciprocal of the
cireular curvature of S along the line normal to the tangent.

The curvature theorem on curves of constant width also use the circular
curvature. If H(u) is the supporting function of curve K of constant width

D and I(u) is the supporting funection of U, tlien
(6.13) H(w) -+ H(w -+ 7t) = D Ii(u) .

(6.14) Theorem. If K has constant width D, then:
a. The perimeter of K is D L(U)/2.
b. The line joining two corresponding points is normal to the tangents.

¢. The sum of the reciprocals of the circular curvature at corresponding
points is constant (equal to D).

d. The evolute is a curve of zero width (i. e. one and only one tangent in
given dirvection).

Proof. Statement a. follows from (6.13) and (2.4) and b. yelds to a stan-
dard synthetic argument. Neither a. nor b. require the concept of curvature for
their proof and are true without differentiability assumptions. For instance
U (and hence K) may be a polygon. Statement c¢. follows from (6.1) and (6.13)
by difterentiation and d. is proved by b., c., and (6.12).

Construetion of MINKowsKI curves of constant width may proceed by
BuLeR’s method using d. or by the related method of construction of the REU-
LBAUX-polygons [11]. Since the « Vektorkorper » of a curve of constant width
is a MINKOWSKI circle, among all curves of constant width D the eircle has ma-

- ximal area ([3], p. 105). Also a REULEAUX triangle has least area [9]. However,
one must choose a particular REULEAUX triangle since those of a given width
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do not necessarily have the same area. If a, ..., a; are the vertices of a maximal
regular affine hexagon inscribed in U, then the REULEAUX triangle of width
D homothetic to the convex domain bounded by ares aya,, aa,, asa; will solve -
the problem.

7. — Calculus of Minkowski trigonometric functions.
In addition to our sine function (6.3) we choose FINSLER’S cosine function
7]

(7.1) Definition. Assume U is differentiable. Let A+, B+ be two orien-
ted lines through z and let ¢ on U follow 2 on A*. If the tangent 4, at a inter- .
sects B* in b, then we define ’

1/(=b) if b follows = on B+,

em- (At BF) (o L/(2B) Af-bprecedes-z-on B
0 if 4, is parvallel to B+,

In general cm (4+, B¥) == cm (Bt, 4+), in fact we have:

(7.2) If em (4%, B*) = cm (B*, A%) for all A+, B*, then the geometry is
euclidean.

Proof. Let a, b on U follow ¢z on A+, B+ respectively. Also let A,, B;
intersect B, A+ in ¢, d respectively. By hypothesis z¢ = zd and the lines ¢ g(a, b),
g(e, d) are parallel. Consequentlv 2, midpoint of ab and intersection ¢ of 4,
B, are collinear. Let ray z_c intersect U in ¢ and let the tangent at q mtelsect
A+, Btin o, V' respectively. As before za'= ze = 2b’ and g(a’, b') is parallel
to g(a, b). Therefore, the midpoints of almost every family of parallel chords
(corresponding to a regular tangent) are collinear and U must be an ellipse.

We now establish the fundamental trigonometric identities for the Min-
KOWSKI plane.

(7.3) Theorem. If U is of class C, then for any three oriented lines A+,
B+, C+ we have:

a.  sm (4%, BY) = sm (C+, Bt) em (C*, A+)—sm (C*+, A+) em (C*, B*),
b. cm (4%, B*) =cem (4%, C+) em (C+, BY) -
+ a0y aX(4,) sm (C+, BY) sm (CF, AF),

where  other. forms may- be obtained by wuse of sm (Qt, R*) = —sm (R*, Q+).
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Proof. Let ¢ on U follow 2z on C+. There exists a unique ellipse with cen-
ter 2, passing through ¢ with tangent C{ (same orientation as U) and area equal
to that of T. The metric determined by this ellipse will be called the associa-
ted euclidean metric with respect to C+. Using this euclidean metric (o =1) we
have:

sm (CF, A*) = p(4) sin (C+, A+)
(1) em (CF, 4%) == o(4) cos (C+, A*)

sm (4+, BY) = p(4) o(B) sin (4*, B¥)
which hold in sign as well as magnitude. Statement a. follows from (1). We
will prove b. presently.

If we use the associated euclidean metric with respect to A* and apply
L’HosprraLl rule and the cotangent representation of o'/o we obfain

(7.4) Lemma. If U is of class Ckl,‘ﬂzm" -

em{d+, Bty — 1 :
jjm 2R EO -1 g

prqt ST, Bt)

(7.5) Definition. Let F(4],..., 4;) be a function of the oriented lines
AT, ..., AF, then we define

dF(A7, .., 4,) lim F(AY, oy BY, oy A7) — B, oy 4%, 0y A7)
AOAT) gyt 6(4%, B*) '

(7.6) Theorem. If U is of class O, then

d sm(At, Bt)
a. T =

6B m (B¥, A7),

d sm(dt, Bt)

e —— + B
ey~ om A B

Proof. By (7.3), a. we have

sm(d+, ) — sm(A+, Bt)
sm(B+, Ct)

em(B+, Ct)— 1
sm(B*, CF)

= sm (4d+, Bt) { ] -+ cm (B, A1),

Use of (7.4) and (6.5) proves a. . Statament b. follows froma. by sm (4%, B¥) =
=-—sm (B, 4%). ‘
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When U is of class ' we may introduce a Minkows ki vector coordinate
system respect to A+ with the origin at z. Let a,, a, be parallel to and have the
same sense as A+, A" respectively where |a,| =1, la, | = a~3(4,) .

It X(s) is a vector representation of a curve § of class (' with tangent B+
at s, then we have

(17 X(s) = a(s)a, + y(s)a, (%),

(7.8) t(s) = cm (4*, B*) a, +.sm (4+, BHa,, ft] =1,
dx . dy .
7 S A+ -+, -2 —sm (4+, B+
(7.9) o em (A+, B*), = sm {4+, By,
(7.10) n(s) = o~ YB,) [em (4%, B )a, + sm (4+, BF)a,].
~Forthe curve 7 of unit constant MINKOWSKT ¢ifvatiie we have 0B == ]

and from (6.9), b., {7.8), (7.10), and (7.6), a. we obtain the formulas

d em(A+, BY)

(71]) 'Wr‘ == OC—I(BI) cm (I’l.-‘L, B;r),
1 sm(dt, Bt
(7.12) dem{dl, BY em (B, A%) = o~YB;) sm (4+, B).

Differentiating (7.3), a. keeping 4+, O+ fixed and wusing (7.11) and (7.12) we
prove (7.3), b.. Also we have the following Corollary to (7.3), b..

(7.13) If U isof class O, then for any A+, BY we have:

a.  ofd;) em (4*, B*) =sm (B, A]),
b.  cm (4%, BY) em (B¥, 4+) -+
-+ o} Ay) Y By) sm (A%, BY)sm (4], Bf) = 1.

We next prove

(%) X(s) is MiNrOWsKI distance to a,-axis, but y(s) is only proportional to distance
to @,-axis unless @, is normal to @, and o~ 3(d,) = 1. :
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(7.14) Theorvem. If U is of class CY, then

dem(dt, BY) 0 g (+ gt
(1(0(B+)) == 0 (“ 1) & ( 1) sm (‘* 1 1)'

If U s of class C?, then

d em(d+, Bt) )
b. — L =R(T, A) sm (4+, Bt),
e (T, 4) sm (4%, B*),
where R(T, A) in the Minkowski radius of curvature of 1 at point with
tangeni parallel to A [since we allow U to have zero curvature, R(T, A) ewists
but may be zero].

Proof. Statement a. follows from (7.11) and (7.13), a.. If we apply
(7.3), b. to (7.5). we obtain

d em(A*, BY)

(719) "’(‘1('0(—:(_;‘)—)“ == (’Zua(l‘il) ‘/{(L’, A.) 168 (,Af"“, B’.'), T

where »(U, A) is Minxowsxl curvature of U at point where 4 through z cutbs
U. To obtain the more useful form b., let B+ he oriented supporting line (°)
to T at ¢, then y(s) in (7.7) is given by ¥(s) = o« }(B,) sm (4+, B) =
= —cm (B, 4%). By (6.6) and (7.9) and adjusting notation we obtain b. .

One may now compute the higher derivatives; for instance we find that
sm (4+, BF) satisfies the differential equation

d2sm(dt, Bt)

A(6(BH))® + R{(T,B) sm (4+,B*) = 0.

(7.16)

8. — Fundamental theorems for curves.

For a discussion of the relative strength of the fundamental theorem in
various forms for MINKOWSKI spaces see ([4], pp. 174-176). We first prove

(81) Theorem. If Uis of class O and x7 (s) is an arbitrary single-valued
continuos function, 0 < s <s,, then there ewists one and only one curve S with
initial point p and oriented tangent A* at p with x3(s) as its Minkowski
curvature as o function of Minkowski arclength s of 8. -

(%) If U is differentiable, T' is strictly convex and therefore ¢ is unique. The case
where B* is not a tangent line may be handled separately. ‘
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Proof. We choose the MINKOWSKI vector coordinate system with respect
to A+ with p at the origin 2z and let initial point of 7 have oriented tangent 4+,
Set

(1) 5,(8) = /'zi"‘(s) ds,  5(0) =0

and let B+ be oriented tanget to ¥ at s, . We may then write

s

(8) == / cm (4+, B+) ds, 2(0) =0, 29(0) =1,

0

y(s) = ] sm (4%, B4 ds,  y(0) =0, y'(0)=0

0

and let X(s*) be vector representation of the curve S determined by X(s*) =
= w(s)a, + y(s)a;, $*0) =0 and arclength s* is increasing function of s. The-
refore :

ds ds
Bs™) = em (A% BY) 35 a0 +sm (4, BY) o e

Since |t| =1, s*(s) = s and B+ is the oriented tangent to § at s. Also

1s d
o~Y(By) |em (4+, Bf) e a,+ sm (4+, B]) —83a1 .

dt - d
ds ds

P

d "
Consequently, by (6.9), b., (7.10), and (1) we have d_zl == 3,(8) == 27 (8).

The curve § is of class C? since its oriented tangent vector turns continously.
The uniqueness follows from initial conditions, (6.9), a. and the fact that the
tangent vectors must be identical by (1).

(8.2) Theorem. Let At be an oriented line for which Af is defined (is
unique) and let R(s;) be a positive, single-valued continuous function defined on
V for which

2o 27

] em (4+, BY) R(s,) ds, = f sm (4%, BY) R(s,) dsy= 0,
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where B+ is oriented tangent to V at s;, then there exists a closed conver curve uni-
quely determined up to a translation for wich R(s,) isits Minkowski radius of
curvature at the point with oriented tangent B+.

‘Proof. Consider the curve S given by
X(8) = [em (A+, BY) R(s,) ds; a, —{—fsm (4+, B*) R(s;) ds, a,,
0

0

where $(0) = 0 and s is increasing function of s, for 0 < s, < 2x. Consequently,

: ds ; ds
t(s) = cm(A+, B*) R(s,) ;—} ay + sm (A*, Bt) R(s;) d—:— a, .
Sinee both R(s,), ;-:3 are positive, B+ is oriented tangent to S at s and therefore
ds

8
by (6.1) R(s,) = ab—‘ is its MinxowskI radius of curvature at s. By hypothe-

sis X(s(0)) = X(s(2x)) and S is a closed curve whose tangent vector simply
and continuously sweeps out the unit MINKOwsKI disc. S is therefore convex
and of class C*. If 8* is any other closed convex curve with these properties,
then we may translate it such that the point with directed tangent A+ is at

5
the origin.. Since s = JR(sl) ds,, the uniqueness follows from (6.9), a.
(]
The MINKOWSKI curvature also permits the four vertex theorem without

differentiability assumptions on the MINKOWSKI metric.

(8.3) Theorem. If K is a closed convex curve with positive Minkow-
skt curvature x, then x has at least four exirema. :

Proof. Consider » as a function of arclength s, of V obtained by parallel
mappings of oriented tangents. Suppose » has exactly two extrema and let
a, b on V correspond to the maximal and minimal values of x respectively.
Aldhg the two arcs of V from a to b,  is strictly monotone decreasing and con-
sequently there is at most one pair of opposite points on V¥ at which the va-
lues of »x are equal. But by (5.2) this implies there is at most one pair of cor-
responding points on K at which the euclidean curvatures are equal. However,
. this is impossible by the SzEG0-SUss result [12] and since the number of ext-
rema (if finite) must be even there are at least four.

We now define isometry of two plane curves.

19, - Rivista di Matematica.
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(8.4) Definition. Let 8, §* be two curves with arclength s [a<s < b].

= P¥(s;) p¥(s,) for any s;, 5, on [a, b], then 8, §% are said to be isometric.

(8.5) Theorem. If U is of class C* with positive curvature and if S, 8%
are two curves of class O* with identical curvature functions ,(8), w(s), then they
are isometric.

Proof. We assume the initial points of S, §% which may be any two
corresponding points, are at the origin z and let 4+, 4%+ be the oriented tan-
gents to 8, 8% respectively at z. Choosing the MINKOWSKI vector coordinate
system with vespect to A+, the vectors (s), n(s) of § may be expressed by

(1) 6s) = 0a(s) @ot ouls) @y, n(s) = Buls) @+ fuls) a,

where o,(0) = 5(0) =1, o,(0) == ,(0) == 0. Applying our FrENET formulas
(6-9) we obtain the differential system

e doy
al - fol
— == % Py, — == 3¢ P,
@) ds 1P ds L
@ _ ., 8.
ds et ds 2

Similarly, with the MINKOWSKI vector coordinate system with respect to 4%+

we obtain for §% the same differential system with the same initial conditions.

Consequently, by the existence theorem for system (2) and (7.8) we have
em (A+, BF) = cm (A¥+, B¥+),

(3)

sm (4+, BY) = sm (4%, B*t),
where B*, B*+ are oriented tangents to S and S* respectively at points with
arclength s.
Now let F,, E, be the associated euclidean metrics with respect to A+,
A*t respectively. From (3) we have
0u(B)-cos (A%, B) = gy B¥)-cos (4*+, B*+),
ou(B)-sin (A%, BY) = gy(B¥)-sin (4*+, B+

and consequently g(B) = p,(B*). With respect to the euclidean metric Z,
the relation (5.2) holds in sign as well as magnitude. Therefore, x(s) p3(B) =
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= %®(s) oY(B*) and »V(s) = »P(s). Also if s, 5% arve euclidean arvclenths of

8

3
S, 8% in B,, E, respectively, then s = §% == f 0(B) ds = J 0:(B¥) ds and it
; (

0
follows that e,(z, p) = ey(z, p*), where p, p* are points of S, 8% corresponding
to arclength s. Since S is of class (2, there exists a tangent to S parallel to
g(z, p) at a point ¢ between z and p on § for which |s| is minimal. The same
may be said for S* with the metric F, and it follows that both tangents corre-
spond to the same value of MINKOWSKI arclength s. Therefore zp = zp* by
(2.1} and the theorem is proved.

The above theorem is, in general, incorrect with only one of the two
curvature s, #, . For example, if (8.5) were true with x; alone then any two
semi-perimeters of ¥ would be isometric, but this implies ¥ is a circle. Simi-
larly, by considering 7' we see that x, will not suffice alone. BUSEMANN in ([4],
p- 176) gives an example of two curves which are isometric but the curvatu-
res x(s) are not the same.

(8:6) "Theorew. If U'is of class O with positive curvature and §, S%
are two curves of class O* such that: (a) the eurvature functions »,(s), ».(s) are iden-
tical for 8, S*; (b) the tangent of 8 varies through at least s, then there exists a
motion of the Minkowski plane carrying S into coincidence with S*.

Proof. Our proof is indireet in order to give a method of computing the
motion. By (8.1) it is sufficient to show that the initial oriented tangent A+
of S can be carried by a motion into the initial oriented tangent A*+ of §%.
Let the initial point of T have oriented tangent A+ and let 4™ be oriented
tangent of 7' at ¢*. By (6.1), if B*, B* are oriented tangents to S, §*
respectively at s, then their images on 7' are at s, and $, -~ ¢* respe-
ctively. For #(s) 50, w(s)[iy(s) = R(sy) = R(s,+ ¢*), where R is the
MINKOWSKI radius of curvature of 7. Since B+ varies through at least =, the
relation holds for almost all s,, and by continuity all s,. Also since L(T)/2 is
a period of R(s,), if ¢*[L(T) is irrational then, by _continuity of B, T has con-
stant MINKOWSKI curvature and the geometry is euclidean (5.8). Otherwise,
there exists a smallest ¢ >0 sueh that ne = L(T) and R(s,) = R(s,-+ c¢) for
all s,. The proof of (8.7) implies there exists a central affine transformation
carrying s, into s,-+ ¢ on 7. This is necessarily a MINKOWSKI motion @ and
the group generated by @ contains a motion carrying 4+ into 4%+,

To compute @, let the parallels 4+, C+ through 2 to the oriented tangents
of I at 0, ¢ cut U in p,, p, respectively. If F,is the FINSLER ellipse (see (4],
p- 179) to U at p,, then since R(0) = R(c) it follows that |F,| =|F,
Therefore @ is given by the central, avea and orientation preserving affine
transformation sending p, into p, and the FINSLER ellipse at p, into the FIxs-
LER ellipse at p,.
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Theorem (8.1) shows that (8.6) is true with »x,(s) alone only in Euclidean
geometry and by considering T the same may be said for x,(s) alone. A condi-
tion of type (b) is also essential no matter how many curvatures we use. For
a simple example, consider a straight line for which any reasonable curvature

is zero,

but only in euclidean geometry does there exist a motion sending an

arbitrary line into another.
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