CHRISTOPH J. NEUGEBAUER (*)

A strong cyclic additivity theorem of a surface integral. (**)

Introduction.

Let Q be the unit square in the (u, v)-plane, $Q \equiv [0 \leqslant u, v \leqslant 1]$, and let E_3 be the Euclidean (x, y, z)-space.

Let S be a Fréchet surface of the type the 2-cell represented by the continuous transformation $T:Q\to E_3$,

(1)
$$T: x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in Q.$$

Denote by L(T) the Lebesgue area of S. For $L(T) < + \infty$ L. Cesari [4] introduced a surface integral $J(T) = \int_S F \, \mathrm{d}\sigma$ as a Weierstrass integral. Recently, J. Cecconi [1] has shown that the integral J(T) is weakly cyclicly additive in the following sense.

Τf

$$T=lm, \quad m:Q\Longrightarrow \mathfrak{IG}, \quad l:\mathfrak{IG} \to E_3$$

is a monotone-light factorization of T, then

$$J(T) = \sum J(lr_{\mathfrak{o}} m), \quad C \in \mathfrak{I}_{\mathfrak{o}},$$

where C is a proper cyclic element of \mathfrak{IG} , and $r_{\mathfrak{c}}$ is the monotone retraction from \mathfrak{IG} onto C.

^(*) Address: Department of Mathematics, Purdue University, Lafayette, Indiana, U.S.A..

^(**) Received April 12, 1955.

The formula (2) extends a cyclic addivity theorem due to T. Radó; namely, if L(T) is the Lebesgue area of the surface represented by (1), then we have the following weak cyclic additivity formula (see Radó [9]),

(3)
$$L(T) = \sum L(lr_c m), \quad C \subset \mathfrak{I}\mathfrak{G}.$$

In a paper by E. J. Mickle and T. Radó [8], the writers established a strong cyclic additivity theorem for the Lebesgue area in the following sense. If

$$T=sf, \quad f:Q o \mathfrak{IG}, \quad s:\mathfrak{IG} o E_3$$

is an unrestricted factorization of T (see $\mathbf{H} \cdot \mathbf{1}$), then

(4)
$$L(T) = \sum L(sr_c f), \quad C \in \mathfrak{N}\mathfrak{S},$$

where r_c is again the monotone retraction from $\mathfrak{I}_{\mathfrak{G}}$ onto a proper cyclic element C of $\mathfrak{I}_{\mathfrak{G}}$. The question arises whether such a strong cyclic additivity theorem does also hold for the surface integral J(T). It is the purpose of this paper to answer this question affirmatively, i.e., we will prove that

$$J(T) = \sum J(sr_{\mathfrak{o}}f), \quad C \in \mathfrak{I}\mathfrak{G}.$$

It is clear that the formula (2) of J. CECCONI is a special case of the formula (5) to be established in $\mathbf{H} \cdot \mathbf{17}$.

The approach followed to prove (5) is different from the one followed by J. CECCONI [1], and does not make use of his formula (2). By application of a theorem of L. CESARI concerning convergence of J(T) it was possible to reduce (5) to essentially a topological consequence of (4). This remark accounts for the fact that the first part of this paper deals with some of the topological issues that are needed later on.

I. -A-sets and proper cyclic elements.

I·1. – In this paragraph we will recall to the reader some results of the theory of A-sets and proper cyclic elements of a Peano space P. As a general reference the reader is referred to T. Radó [9] or G. T. Whyburn [10]. Let A be the generic notation of an A-set and let C be the generic notation of a proper cyclic lement of P. We remark that an A-set is always a non-degenerate subset of P, i.e., A contains at least two distinct points.

- (1) C is a cyclic A-set of P, and every A-set of P is a Peano subspace of P.
- (2) There is a unique continuous and monotone retraction r_A from P onto A.
- (3) If G is a component of P-A, then the frontier of G, denoted by $\operatorname{Fr}(G)$, reduces to a single point, which is, of course, in A. Moreover, the closure of G, denoted by $\operatorname{c}(G)$, is an A-set of P. If G is a component of P-A, and r_A is the continuous and monotone retraction from P onto A, then $r_A(x) = \operatorname{Fr}(G)$ for every $x \in G$.
- (4) The proper cyclic elements of A coincide with the proper cyclic elements of P which are subsets of A.
- (5) If P A decomposes into an infinite number of components $\{G_i\}$, then $\varrho(G_i) \to 0$ as $i \to \infty$, where $\varrho(G_i)$ denotes the diameter of G_i .
- (6) Let $\left\{ \left. G_{i} \right. \right\}$ be the sequence of components of P-A, and let them be divided into two disjoint classes $\left\{ \left. G_{i_{n}} \right\}, \left\{ \left. G_{j_{n}} \right\} \right.$ Then $A^{*} = A \cup \bigcup_{n \in \mathbb{N}} G_{i_{n}}$ is an A-set of P, and the components of $P-A^{*}$ are $\left\{ \left. G_{j_{n}} \right\} \right.$
- (7) If $\mathfrak A$ is a collection of A-sets of P such that $H = \cap A$, $A \in \mathfrak A$, contains at least two points, then H is an A-set of P.
- (8) Let K be a connected subset of P. Then $K \cap A$ is connected (possibly empty).
- (9) Let P^* be a Peano subspace of a Peano space P, and let A be an A-set of P. If $P^* \cap A$ is non-degenerate, then $A^* = P^* \cap A$ is an A-set of P^* . If P^* is an A-set of P and A^* is an A-set of P^* , then A^* is also an A-set of P.
- (10) There is only a denumerable number of proper cyclic elements of P, and two distinct proper cyclic elements of P are either disjoint or else have a single point in common.
- (11) If the sequence $\{C_n\}$ of proper cyclic elements of P is infinite, then $\varrho(C_n) \to 0$ as $n \to \infty$.
- (12) If E is a cyclic subset of P, i.e., E-x is connected for every $x \in P$, and if E contains more than one point, then E is a subset of a unique proper cyclic element C of P.
- (13) A point x will be termed a cut-point of P provided P-x is not connected. If C is a proper cyclic element of P, then a point $x \in C$ is a cut-point of P if and only if there is a component G of P-C such that Fr(G)=x.
- (14) If C is a proper cyclic element of P and A is an A-set of P such that $A \cap C$ contains more than one point, then $C \subset A$.

In what follows we shall make free use of the properties listed above. The main result of this part of the paper is the Theorem in $I \cdot 12$.

I·2. — Lemma. Let P be a Peano space, and let C_0 be a proper cyclic element of P such that $P-C_0$ has at least three components G_1 , G_2 , G_3 with $\operatorname{Fr}(G_i) \neq \operatorname{Fr}(G_i)$ ($i \neq j; i, j = 1, 2, 3$). Let $C \neq C_0$ be a proper cyclic element of P. Then at least two of the sets G_1 , G_2 , G_3 lie in a component of P-C.

^{16. -} Rivista di Matematica.

Proof. Since $C \neq C_0$, there is a component G of $P - C_0$ such that $C \subset c(G)$. Then at least two of the components G_1 , G_2 , G_3 , say G_1 , G_2 are distinct from G and $Fr(G_i) \neq Fr(G)$ (i = 1, 2). Then $[C_0 - Fr(G)] \cup G_1 \cup G_2$ is a connected set in $P - c(G) \subset P - C$. Hence G_1 , G_2 lie in a component of P - C.

- I·3. Definition. Let P be a Peano space and let $x_1, ..., x_n$ be n > 1 distinct points of P. We define $H(x_1, ..., x_n)$ to be the smallest A-set containing $x_1, ..., x_n$, i.e., $H(x_1, ..., x_n)$ is the intersection of all A-sets of P containing $x_1, ..., x_n$.
- I·4. Lemma. Let $x_1, ..., x_n$ be n > 1 points of a Peano space P. For any A-set A of P in $H(x_1, ..., x_n)$, the set $H(x_1, ..., x_n) A$ decomposes into at most n components and each component contains at least one of the points $x_1, ..., x_n$.
- Proof. It follows from the properties listed in $\mathbf{I} \cdot \mathbf{I}$, that A is also an A-set of $H(x_1, ..., x_n)$. Excluding the trivial case $x_1 \in A$ (i = 1, ..., n), we may assume that $x_{i_1}, ..., x_{i_j}, j \leq n$, are not in A. Let $G_1, ..., G_k, k \leq n$, be the components of $H(x_1, ..., x_n) A$ containing $x_{i_1}, ..., x_{i_j}$. Now $A^* = A \cup G_1 \cup ... \cup G_k$ is an A-set of $H(x_1, ..., x_n)$ containing $x_1, ..., x_n$. Hence, by Definition $\mathbf{I} \cdot \mathbf{3}, A^* = H(x_1, ..., x_n)$. Thus the components of $H(x_1, ..., x_n) A$ are $G_1, ..., G_k, k \leq n$, and $G_i \cap (x_1 \cup ... \cup x_n) \neq 0$ (i = 1, ..., k).
- **I**·5. Lemma. There is at most a finite number of proper cyclic elements of $H(x_1, ..., x_n)$ having more than two cut-points with respect to $H(x_1, ..., x_n)$.

Proof. Denying the assertion, we assume that there is an infinite number of proper cyclic elements C_1, \ldots, C_m, \ldots of $H(x_1, \ldots, x_n)$ having more than two cut-points with respect to $H(x_1, \ldots, x_n)$. Then for each m there are at least three components G_1^m , G_2^m , G_3^m of $H(x_1, \ldots, x_n) - C_m$ such that

(1)
$$\operatorname{Fr}(G_i^m) \neq \operatorname{Fr}(G_i^m) \quad (i \neq j; i, j = 1, 2,3);$$

(2) there is an $x_i^m \in (x_1 \cup ... \cup x_n)$ which is in G_i^m (i = 1, 2, 3) (see I·4).

Since there is only a finite number of points $x_1, ..., x_n$, there are integers m_1 , m_2 such that $x_i^{m_1} = x_i^{m_2}$ (i = 1, 2, 3). Then, by renumbering if necessary, we have by $\mathbf{I} \cdot \mathbf{2}$ that $G_1^{m_1} \cup G_2^{m_1}$ lies in a component of $H(x_1, ..., x_n) - C_{m_2}$. This contradicts that $x_1^{m_2}$, $x_2^{m_2}$ lie in different components of $H(x_1, ..., x_n) - C_{m_2}$.

I.6. — Lemma. Let P be a Peano space and let $\varepsilon > 0$ be given. Then there exists a finite number of distinct points $x_1, ..., x_n$ in P such that if G is a component of $P - H(x_1, ..., x_n)$, $\varrho(G) < \varepsilon$.

Proof. Since P is uniformly locally connected, we have a $\delta > 0$ such that all pairs of points x', x'' of P with $\varrho(x', x'') < \delta$ lie in a connected subset of P whose diameter is less than $\varepsilon/3$. In the PEANO space P there is now a finite number of distinct points x_1, \ldots, x_n (n > 1), such that for each $x \in P$, $\varrho(x, x_i) < \delta$ for some i $(1 \le i \le n)$. If $P - H(x_1, \ldots, x_n) \ne 0$, let G be a component of $P - H(x_1, \ldots, x_n)$. For $x \in G$ we have a $x_i \in H(x_1, \ldots, x_n)$ such that $\varrho(x, x_i) < \delta$. By the choice of $\delta > 0$, there is a connected set E of P with $\varrho(E) < \varepsilon/3$ containing x, x_i . But then $\operatorname{Fr}(G) \in E$ [note that $\operatorname{Fr}(G)$ reduces to a single point], and hence $\varrho[x, \operatorname{Fr}(G)] < \varepsilon/3$. From the triangle inequality there follows now that $\varrho(G) < \varepsilon$.

- I.7. Lemma. Let P be a Peano space, and let $\{C_n\}$ be the sequence of proper cyclic elements of P. Assume that there is only a finite number of proper cyclic elements of P having more than two cut-points of P. For $\varepsilon > 0$ given there exists a Peano space $P^* \subset P$ with the following properties.
- (1) P^* contains only a finite number of proper cyclic elements each of which is a proper cyclic element of P.
- (2) There is a continuous retraction t^* from P onto P^* satisfying $\varrho[x,\ t^*(x)] < \varepsilon$ for $x \in P$.
- (3) If C is a proper cyclic element of P^* , and r_c^* , r_c denote the monotone retractions from P^* onto C and from P onto C, respectively, then $r_c = r_c^* t^*$.

Proof. If $\{C_n\}$ is finite, then set $P^*=P$, and let t^* be the identity on P. We may then assume that $\{C_n\}$ is infinite. Then $\varrho(C_n) \to 0$ as $n \to \infty$. Therefore there is an integer $N_1(\varepsilon) > 0$ such that $\varrho(C_n) < \varepsilon$ for $n > N_1$. By hypothesis, there is an integer $N_2 > 0$ such that for $n > N_2$, C_n contains at most two cut-points of P. Let n_0 be a fixed integer greater than max (N_1, N_2) .

Let now n be any integer greater than n_0 . Then C_n contains either one cut-point x_n or two cut-points x_n , y_n of P. In the first case let $E_n = x_n$, and in the second case let E_n be a simple arc in C_n with endpoints x_n , y_n . Since C_n is a Peano space we have that E_n is a continuous retract of C_n (Whyburn [10]). Hence there is a continuous transformation $t_n: C_n \Longrightarrow E_n$ such that $t_n(x) = x$ for $x \in E_n$.

I.8. – (Continuation.) Let $P^*=(P-\bigcup_{n>n_0}U\cup E_n)$, and define a mapping $t^*:P\Longrightarrow P^*$ by

$$t^*(x) = \begin{cases} x, & \text{if } x \in P - \bigcup_{n > n_0} C_n, \\ t_n(x), & \text{if } x \in C_n & (n > n_0). \end{cases}$$

We assert that t^* is a continuous retraction from P onto P^* . Thus P^* is a Peano subspace of P.

Proof. Let $P_i = (P_i - \bigcup_{n=n_0+1}^i C_n) \cup \bigcup_{n=n_0+1}^i E_n$ $(i = n_0+1, n_0+2, ...)$. Define a mapping $t_i^*: P \Longrightarrow P_i$ by

$$t_i^*(x) = \begin{cases} x, & \text{if } x \in P - \bigcup_{n=n_0+1}^i C_n = K_i, \\ t_n(x), & \text{if } x \in C_n \quad (n_0 < n \leqslant i). \end{cases}$$

We observe that t_i^* is continuous on K_i , and on C_n $(n_0 < n \le i)$. Since

- (i) $c(K_i) \cap C_n$ is either empty or else in E_n $(n_0 < n \le i)$,
- (ii) $C_j \cap C_k \ (j \neq k)$ is either empty or else in $E_j \cap E_k \ (n_0 < j, \ k \leq i)$,
- (iii) $t_i^*(x) = x$, $x \in E_n$ $(n_0 < n \le i)$,

we have that t_i^* is continuous on a finite number of closed sets and agrees on the intersection of any two. Hence t_i^* is continuous on P.

In order to show that t^* is continuous on P it suffices to demonstrate that $t_i^* \to t^*$ uniformly on P. But this is a ready consequence of the definition of t_i^* , t^* and the fact that $\varrho(C_n) \to 0$ as $n \to \infty$. Since $t^*(x) = x$ for $x \in P^*$, t^* is a continuous retraction from P onto P^* . We note that t^* need not be monotone.

- **I.9.** (Continuation.) Let $t^*: P \Longrightarrow P^*$ be defined as in **I.8**. Then
 - (1) $\varrho[x, t^*(x)] < \varepsilon \text{ for } x \in P$,
- (2) if C is a proper cyclic element of P and G is a component of P-C, then $t^*(G) \subset c(G)$.

Proof. To prove (1), we note that, if $x \in P - \bigcup_{n>n_0} C_n$, then $t^*(x) = x$. If $x \in C_n$ for some $n > n_0$, then $t^*(x) \in C_n$. Hence $\varrho[x, t^*(x)] \leq \varrho(C_n) < \varepsilon$. In order to verify (2), let us take $x \in G$. If x is in no $C_n (n > n_0)$, then $t^*(x) = x$. If $x \in C_n$ for some $n > n_0$, then $C_n \subset c(G)$ (see **I**·**1**), and $t^*(x) \in C_n \subset c(G)$. Thus $t^*(G) \subset c(G)$.

I·10. – (Continuation.) Let P^* be defined as in **I·8.** Then P^* is a Peano subspace of P, and C_1, \ldots, C_n are the proper cyclic elements of P^* .

Proof. Since $C_i \subset P^*$ $(i = 1, ..., n_0)$, we have that C_i is a proper cyclic element of P^* . To show that P^* does not contain any other proper cyclic elements, assume that there is a proper cyclic element C^* of P^* not equal to C_i $(i = 1, ..., n_0)$. Since C^* is a cyclic subset of P, we have an integer $n > n_0$ such that $C^* \subset C_n$. But then $C^* \subset E_n$, which is impossible since E_n is either a single point or a simple arc.

I·11. – (Continuation.) Let C be a proper cyclic element of P^* . Denote by r_c^* , r_c the monotone retractions from P^* onto C, and from P onto C, respectively. Then

$$r_c^* t^* = r_c.$$

Proof. If $x \in C$, then (1) is obvious. For $x \notin C$, let G be the component of P - C that contains x. Then $\operatorname{Fr}(G) = y$, $y \in C$ and $r_c(x) = y$. From $\mathbf{I} \cdot \mathbf{9}$ we have that $t^*(x) \in c(G)$. If $t^*(x) = Fr(G)$, there is nothing to prove. If then $t^*(x) \in G$, let G^* be the component of $P^* - C$ containing $t^*(x)$. Then $G^* \subset G$ and $\operatorname{Fr}^*(G^*) = y$, where Fr^* denotes the frontier operation with respect to P^* . Hence r_c^* $t^*(x) = y$ and (1) follows.

This completes the proof of $I \cdot 7$.

I·12. — The following theorem is the main result of this section. It will be used in H·18 to approximate a given continuous mapping which makes it possibile to apply a result of L. Cesari to complete the proof of the assertion made in the Introduction.

Theorem. Let P be a Peano space, and let $\varepsilon > 0$ be given. Then there exists a Peano space $P^* \subset P$ with the following properties.

- (1) P^* contains only a finite number of proper cyclic elements each of which is a proper cyclic element of P, and if C is a proper cyclic element of P^* , then P^* C decomposes into a finite number of components.
- (2) There is a continuous retraction t^* from P onto P^* satisfying $\varrho[x, t^*(x)] < \varepsilon$ for $x \in P$.
- (3) If for C a proper cyclic element of P^* , r_c^* and r_c denote the monotone retractions from P^* onto C and from P onto C, then $r_c = r_o^* t^*$.

Proof. From the paragraphs $I \cdot 4$, $I \cdot 5$ and $I \cdot 6$ we have an A-set $P' \in P$ satisfying the following conditions.

- (i) If G is a component of P-P', then $\varrho(G) < \varepsilon/2$.
- (ii) If C is a proper cyclic element of P', then P'—C decomposes into a finite number of components. Moreover, there is at most a finite number of proper cyclic elements of P' containing more than two cut-points of P'.

Since P' is an A-set of P, the proper cyclic elements of P' are those of P which are subsets of P'. Let r' denote the monotone retraction from P onto P'. In view of (i) we have (see $I \cdot I$)

(iii)
$$\varrho[x, r'(x)] < \varepsilon/2 \quad \text{for } x \in P.$$

The Peano space P' satisfies the conditions of I·7. Therefore there is a Peano space $P^*\subset P'$ with the following properties.

- (iv) P^* contains only a finite number of proper cyclic elements each of which is a proper cyclic element of P' and hence of P.
- (v) There is a continuous retraction t'' from P' onto P^* (defined as in **I·8**) satisfying $\varrho[x, t''(x)] < \varepsilon/2$ for $x \in P'$.
- (vi) If for C a proper cyclic element of P^* , r_c^* , r_c' denote the monotone retractions from P^* onto C, and from P' onto C, respectively, then $r_c' = r_c^* t''$. Define $t^* = t''r'$. Then t^* is a continuous retraction from P onto P^* , and from (iii) and (v),

$$\varrho[x,\ t^*(x)] \leqslant \varrho[x,\ r'(x)] + \varrho[r'(x),\ t''r'(x)] < \varepsilon \quad \text{for } x \in P.$$

We also have $r_c^*t^* = r_c^*t''r' = r_c'$, $r' = r_c$, from (vi) and the uniqueness of monotone retractions onto A- sets (see $I \cdot I$).

I·13. – (Continuation.) It remains to show that for C a proper cyclic element of P^* , P^* — C decomposes into only a finite number of components. From (ii) in I·12 we know that P'— C possesses only a finite number of components. In order to prove our assertion it suffices to show that for G' a component P'— C, $G' \cap P^*$ is connected (possibly empty). Let us deny this and assume that $G' \cap P^*$ is not connected. There are then at least two distinct components G_1^* , G_2^* of P^* — C such that $G_1^* \subset G'$, $G_2^* \subset G'$. If Fr', Fr^* denote the frontier operations with respect to P', P^* , respectively, we have $Fr^*(G_1^*) = Fr^*(G_2^*) = Fr'$ (G') = x^* , $x^* \in C$.

Since x^* is an accessible boundary point of G_1^* , G_2^* there are two simple arcs γ_1^* , γ_2^* such that $\gamma_1^* \subset G_1^* \cup x^*$ joins x^* to a point $x_1^* \in G_1^*$, and $\gamma_2^* \subset G_2^* \cup x^*$ joins x^* to a point $x_2^* \in G_2^*$. Since G' is acrowise connected (Whyburn [10]), we have a simple arc $\gamma' \subset G'$ joining x_1^* to x_2^* .

Since $\gamma_1^* \cup \gamma_2^* \cup \gamma'$ contains a simple closed curve s with the property that $x^* \in s$, we may for the sake of notational simplification assume that $s = \gamma_1^* \cup \gamma_2^* \cup \gamma'$. In view of the fact that s is cyclic, there is a unique proper cyclic element C' of P' containing s. Now C' cannot be a proper cyclic element of P^* , since $C' \cap G_1^* \neq 0$, $C' \cap G_2^* \neq 0$. We also have that $C \cap C' = x^*$, and $\gamma_1^* \cup \gamma_2^* = \alpha$ is a simple arc in $C' \cap P^*$ which contains x^* in its interior. Since $t'' : P' \Longrightarrow P^*$ is defined as in $I \cdot I$, and since $\alpha = t''(\alpha) \subset t''(C')$, we infer that C' has exactly two cut-points relative to P'. Clearly, x^* is one of the cut-points. Let $y' \in C'$ be the other cut-point. But then by the definition of t'' (see $I \cdot I$), t''(C') is a simple arc β of C' with endpoints x^* , y'. Since $\alpha \subset t''(C') = \beta$, x^* cannot be an

interior point of α . This is a contradiction. The proof of $\mathbf{I} \cdot \mathbf{12}$ is therefore complete.

The writer is indebted to Professor E. J. MICKLE for many kelpful suggestions concerning this part of the paper. For other recent independent research on A-sets and proper cyclic elements see E. J. MICKLE and C. J. NEUGEBAUER [7].

II. - A cyclic additivity Theorem.

 $\mathbf{H} \cdot \mathbf{l}$. – Let P be a Peano space and let P^* be a metric space. Let T be a continuous mapping from P into P^* .

Definition. An unrestricted factorization of T consists of two mappings t, s and a Peano space \mathfrak{I} such that

- (a) f is a continuous mapping from P onto \mathfrak{I} ,
- (b) s is a continuous mapping from \mathfrak{I} into P^* ,
- (e) $T = s\dot{t}$.

We shall write T = sf, $f: P \Longrightarrow \mathfrak{IG}$, $s: \mathfrak{IG} \to P^*$, and we shall term \mathfrak{IG} the *middle space* of the unrestricted factorization.

Definition. We shall term T a partial mapping of a continuous mapping T_0 from P into P^* if and only if the following holds. There exists an unrestricted factorization $T_0 = sf, f: P \Longrightarrow \mathfrak{Id}, s: \mathfrak{Id} \to P^*$ such that $T = sr_A f$, where r_A is the monotone retraction from \mathfrak{Id} onto an A-set A of \mathfrak{Id} \mathfrak{Id} .

 $\mathbf{H} \cdot \mathbf{2}$. — Let \mathfrak{T} be a class of continuous mappings from P into P^* such that if $T \in \mathfrak{T}$, then also all the partial mappings of T are in \mathfrak{T} . We remark that we do not require that \mathfrak{T} is the class of all continuous mappings from P into P^* . (For the applications see $\mathbf{H} \cdot \mathbf{7}$, $\mathbf{H} \cdot \mathbf{8}$).

Let $\Phi(T)$ be a functional defined for each $T{\in} \mathfrak{T}$ satisfying the following contions.

⁽¹⁾ In [8] an unrestricted factorization is defined as above except for the condition (a) which is replaced by

⁽a') f is a continuous mapping from P into Dis.

The restriction that f is a continuous mapping from P onto \mathfrak{N} has been made to assure that $T(P) \subset T_0(P)$, where T is a partial mapping of T_0 .

- (1) $\Phi(T)$ is real-valued and finite for each $T \in \mathfrak{T}$. In particular $\Phi(T)$ could be negative, but for no $T \in \mathfrak{T}$ we have either $\Phi(T) = +\infty$ or $\Phi(T) = -\infty$.
- (2) If $T \in \mathbb{F}$ admits of an unrestricted factorization whose middle space is a dentrite, i.e., a Peano space containing no proper cyclic elements, then $\Phi(T) = 0$.
- (3) Assume $T \in \mathfrak{T}$ admits of an unrestricted factorization T = sf, $f: P \Longrightarrow \mathfrak{IG}$, $s: \mathfrak{DIG} \to P^*$, where $\mathfrak{DIG} = A_1 \cup A_2$, $A_1 \cap A_2 = x$, $x \in \mathfrak{DIG}$, A_1 , A_2 being A-sets of \mathfrak{DIG} . Let r_1 , r_2 be the monotone retractions from \mathfrak{DIG} onto A_1 and from \mathfrak{DIG} onto A_2 , respectively. Then $\Phi(T) = \Phi(sr_1 f) + \Phi(sr_2 f)$. Note that $sr_1 f$, $sr_2 f$ are in \mathfrak{T} .

Remark. If $T \in \mathcal{F}$ is constant, then $\Phi(T) = 0$. For then T admits of an unrestricted factorization whose middle space is a simple arc.

- **II**·3. Lemma. Let T = sf, $f: P \Longrightarrow \mathfrak{IG}$, $s: \mathfrak{IG} \to P^*$ be an unrestricted factorization of a mapping $T \in \mathfrak{I}$. Assume there is a finite number of A-sets A_1, \ldots, A_n of \mathfrak{IG} such that
 - (i) $\mathfrak{IG} = A_1 \cup \ldots \cup A_n$
 - (ii) $(A_1 \cup ... \cup A_i) \cap A_{i+1}$ is a single point of $\mathfrak{I} \otimes (i = 1, ..., n-1)$.

Let r_i be the monotone retraction from $\mathfrak{N}_{\mathfrak{S}}$ onto A_i (i = 1, ..., n). If \mathfrak{F} is a functional satisfying the conditions of $\mathbf{H} \cdot \mathbf{2}$, then

$$\Phi(T) = \sum_{i=1}^{n} \Phi(sr_i f).$$

Proof. The proof is by induction on n. If n=2, then $\Phi(T)=\Phi(sr_1f)+\Phi(sr_2f)$ by condition (3) of $\mathbf{H}\cdot\mathbf{2}$. Suppose now the formula (1) is valid in case the number of A-sets satisfying (i), (ii) is not greater that n-1. In order to establish (1), write $\mathfrak{N}=(A_1\cup\ldots\cup A_{n-1})\cup A_n$. Let $A=A_1\cup\ldots\cup A_{n-1}$. Then A is an A-set of \mathfrak{N} , and by (ii), $A\cap A_n$ is a single point. If r denotes the monotone retraction from \mathfrak{N} onto A, we have by the case treating n=2, $\Phi(T)=\Phi(srf)+\Phi(sr_nf)$.

The transformation $srf: P \to P^*$ admits of an unrestricted factorization $rf: P \Longrightarrow A_1 \cup ... \cup A_{n-1} = A, \quad s: A \to P^*$. Since A_i is an A-set of A (i = 1, ..., n-1), let \bar{r}_i be the monotone retraction from A onto A_i . By the induction hypothesis, $\Phi(srf) = \sum_{i=1}^{n-1} \Phi(s\bar{r}_i rf)$. The mapping $\bar{r}_i r: \mathfrak{D} \bowtie A_i$ is monotone and hence by the uniqueness of monotone retractions onto A-sets, $r_i = \bar{r}_i r$. Thus we obtain finally $\Phi(T) = \Phi(srf) + \Phi(sr_n f) = \sum_{i=1}^{n-1} \Phi(s\bar{r}_i rf) + \Phi(sr_n f) = \sum_{i=1}^{n} \Phi(sr_i f)$.

II.4. — Lemma. Let T=sf, $f:P\Longrightarrow \mathfrak{N}\mathfrak{G}$, $s:\mathfrak{N}\mathfrak{G} \to P^*$ be an unrestricted factorization of $T\in\mathfrak{T}$. For C a proper cyclic element of $\mathfrak{N}\mathfrak{G}$, let r_c denote the monotone retraction from $\mathfrak{N}\mathfrak{G}$ onto C. If $\mathfrak{N}\mathfrak{G}$ contains only a finite number of proper cyclic elements, C_1, \ldots, C_n , with the property that for each i, $\mathfrak{N}\mathfrak{G} = C_i$ decomposes into only a finite number of components, then

(1)
$$\Phi(T) = \sum_{i=1}^{n} (sr_{c_i} t),$$

where Φ is a functional satisfying the conditions of $\mathbf{H} \cdot \mathbf{2}$.

Proof. The proof is by induction on n. If n=1, $\mathfrak{N}_{\mathbb{G}}$ contains only one proper cyclic element C_1 . By assumption, there is only a finite number of components $G_2, ..., G_k$ of $\mathfrak{N}_{\mathbb{G}} - C_1$. Let $A_1 = C_1$ and $A_i = c(G_i)$ (i=2, ..., k). Then for each $i, 1 \leq i \leq k$, A_i is an A-set of $\mathfrak{N}_{\mathbb{G}}$, and $A_1, ..., A_k$ satisfy the conditions of $\mathbf{H} \cdot \mathbf{3}$. Hence

(2)
$$\Phi(T) = \Phi(sr_{c_1}f) + \sum_{i=2}^{k} \Phi(sr_if),$$

where r_i is the monotone retraction from $\mathfrak{N}\mathfrak{S}$ onto A_i (i=2,...,k). But sr_i f admits of an unrestricted factorization whose middle space is A_i . By $\mathbf{I} \cdot \mathbf{I}$, A_i is a dendrite (i=2,...,k), and hence by condition (2) of $\mathbf{II} \cdot \mathbf{2}$, $\Phi(sr_i f) = 0$ (i=2,...,k).

Suppose now that (1) is valid in case the number of proper cyclic elements of \mathfrak{I} is not greater than n-1. In order to prove (1), assume \mathfrak{I} contains exactly n proper cyclic elements C_1, \ldots, C_n . If G_2, \ldots, G_k are the components of \mathfrak{I} \mathfrak{I}

(3)
$$\Phi(T) = \Phi(sr_{c_1} f) + \sum_{i=2}^{k} \Phi(sr_i f).$$

Let K_i be the class of proper cyclic elements of $A_i = c$ (G_i) (i = 2, 3, ..., k). K_i may be empty for some i. Then $K_i \cap K_j = 0$ for $i \neq j$, and if $C \in K_i$, C is one of the sets $C_1, ..., C_n$ (see $I \cdot I$). Thus the number of proper cyclic elements in each A_i , $2 \leq i \leq k$, is not greater than n-1, and if $C \subset A_i$, $A_i - C$ decomposes into a finite number of components. If \bar{r}_c denotes the monotone retraction from A_i onto $C \subset A_i$, then in view of the observation that $sr_i f$ admits of an unrestricted factorization with middle space A_i , we obtain by the induction hypothesis,

(4)
$$\Phi(sr_i f) = \sum_{c \in A_i} \Phi(s\overline{r_c} r_i f) = \sum_{c \in A_i} \Phi(sr_c f) \quad (i = 2, ..., k).$$

The formula (1) follows now from (3) and (4).

II.5. — In what follows we will restrict the Peano space P to be the unit square $Q \equiv [0 \leqslant u, v \leqslant 1)$, and the metric space P^* to be the Euclidean (x, y, z)-space E_3 . Let T be a continuous mapping from Q into E_3 ,

(1)
$$T$$
: $x = x(u, v), y = y(u, v), z = z(u, v), (u, v) \in Q$.

We introduce now three plane transformations by the formulas:

$$\begin{array}{llll} T_1: & y = y(u, \ v), & z = z(u, \ v), & (u, \ v) \in Q, \\ \\ T_2: & z = z(u, \ v), & x = x(u, \ v), & (u, \ v) \in Q, \\ \\ T_3: & x = x(u, \ v), & y = y(u, \ v), & (u, \ v) \in Q. \end{array}$$

Let K_i be a square with sides parallel to the coordinate axes such that $T_i(Q) \subset K_i$ (i=1, 2, 3). For π a simple polygonal region in Q we denote by π^* the counterclockwise oriented boundary curve of π . Let $\mathcal{O}(p_i; T_i, \pi)$ be the topological index of a point $p_i \in K_i$ with respect to $T_i(\pi^*)$ if $p_i \notin T_i(\pi^*)$. We set $\mathcal{O}(p_i; T_i, \pi) = 0$ if $p_i \in T_i(\pi^*)$.

Let α be an open subset of Q and denote by σ a finite system of non-overlapping simple polygonal regions $[\pi_k; k=1, ..., n]$ belonging to α . We define according to L. Cesari [3] the following quantities:

$$\begin{split} g_i(T,\ \pi) &= \iint\limits_{R_i} |\ \mathcal{O}(p_i;\ T_i,\ \pi)\ |\ , \quad \tau_i(T,\ \pi) = \iint\limits_{R_i} \mathcal{O}\ (p_i;\ T_i,\ \pi), \quad (i=1,\ 2,\ 3), \\ t(T,\ \pi) &= (\tau_1^2 + \tau_2^2 + \tau_3^2)^{1/2}, \\ \Psi_i(p_i;\ T,\ \alpha) &= \text{l.u.b.} \sum_{k=1}^n |\ \mathcal{O}\ (p_i;\ T_i,\ \pi_k)\ | \quad (i=1,\ 2,\ 3), \\ G_i(T,\ \alpha) &= \text{l.u.b.} \sum_{k=1}^n g_i\ (T,\ \pi_k) \quad (i=1,\ 2,\ 3), \\ G(T,\ \alpha) &= \text{l.u.b.} \sum_{k=1}^n g(T,\ \pi_k), \end{split}$$

where $g(T, \pi_k) = (g_1^2 + g_2^2 + g_3^2)^{1/2}$. The least upper bound in the above expressions is taken with respect to all systems σ .

For the proof of the following two theorems the reader is referred to L. CESARI [2].

(i) For α an open subset of Q we have

$$\iint_{K_i} \Psi_i(p_i; T, \alpha) = G_i(T, \alpha) \qquad [\mathbf{2}; 12 \cdot 8, (ii)].$$

(ii) Let E be a closed subset of Q and for α an open subset of Q let $\{\delta\}$ be the collection of components of $\alpha - E$. Under the assumption that $|T_i(E)| = 0$ (measure of $T_i(E)$) for i = 1, 2, 3, we have

(1)
$$\Psi_i(p_i; T, \alpha) = \sum \Psi_i(p_i; T, \delta)$$
, a.e. in K_i ,

(2)
$$G(T, \alpha) = \sum G(T, \delta),$$

where the summation in (1) and (2) is extended over all $\delta \in \{\delta\}$ [2; 21·4, (i)].

- $\mathbf{H} \cdot \mathbf{6}$. For later application we shall state in this paragraph two immediate corollaries of $\mathbf{H} \cdot \mathbf{5}$, (ii).
- (i) Lemma. Given T, T_i (i=1,2,3) as in $\mathbf{H} \cdot \mathbf{5}$. Let E be a closed subset of Q such that $Q E = \alpha \mid \beta$, i.e., α , β , are non-empty disjoint open subsets of Q E whose union is Q E. Assume that $\mid T_i(E) \mid = 0$ (i=1,2,3). Then $G_i(T,Q) = G_i(T,\alpha) + G_i(T,\beta)$ (i=1,2,3).

Proof. If we denote by $\{\delta'\}$, $\{\delta''\}$ the components of α , β , respectively, we have as a consequence of $\mathbf{H} \cdot \mathbf{5}$, (ii),

$$\Psi_i(p_i; T, \alpha) = \sum_i \Psi_i(p_i; T, \delta'), \qquad \Psi_i(p_i; T, \beta) = \sum_i \Psi_i(p_i; T, \delta''),$$

$$\Psi_i(p_i;\ T,\ Q) = \sum_i \Psi_i(p_i;\ T,\ \delta') + \sum_i \Psi_i(p_i;\ T,\ \delta'')$$
 a.e. in K_i ,

where \sum' , \sum'' are extended over all $\delta' \in \{\delta'\}$, $\delta'' \in \{\delta''\}$, respectively. Thus $\Psi_i(p_i; T, Q) = \Psi_i(p_i; T, \alpha) + \Psi_i(p_i; T, \beta)$, a.e. in K_i . From $\mathbf{H} \cdot \mathbf{5}$, (i) we deduce the desired equality.

(ii) Lemma. Assuming the conditions of (i), we have the following formula:

$$G(T, Q) = G(T, \alpha) + G(T, \beta).$$

Proof. The proof follows immediately from **II.5**, (ii).

Remark. If the conditions of (i) apply,

$$G(T, Q) = G(T, Q - E), \quad G_i(T, Q) = G_i(T, Q - E) \ (i = 1, 2, 3).$$

 $\mathbf{H} \cdot \mathbf{7}$. — In this paragraph we shall summarize some results of a surface integral introduced by L. Cesari [4].

Let X be a compact subset of E_3 , and let F(x, y, z, u, v, w) be a function defined for each $(x, y, z) \in X$ and for each triple $(u, v, w) \neq (0, 0, 0)$ satisfying, moreover, the following conditions.

- (1) F(x, y, z, u, v, w) is continuous for each $(x, y, z) \in X$ and for each triple $(u, v, w) \neq (0, 0, 0)$.
- (2) F(x, y, z, u, v, w) is positively homogeneous of degree one with respect to u, v, w, i.e.,

$$F(x, y, z, ku, kv, kw) = kF(x, y, z, u, v, w)$$
 for each $k > 0$.

If we put F(x, y, z, 0,0,0) = 0 for each $(x, y, z) \in X$, we have as a consequence of (2) that F is also continuous at each point (x, y, z, 0, 0, 0) where $(x, y, z) \in X$.

Let T, T_i (i=1, 2, 3) be given as is $\mathbf{H} \cdot \mathbf{5}$. Assume that $T(Q) \subset X$ and that the Lebesgue area L(T) is finite. Let α be an open subset of Q. For $[\pi_k; k=1, ..., n]$ a finite system of non-overlapping polygonal regions in α , let us consider the following quantities:

$$\begin{split} m &= \max_{i=1,2,3} \left| \sum_{k=1}^{n} T_{i}(\pi_{k}^{*}) \right|, \qquad \delta = \max_{k=1,\dots,n} \varrho[T(\pi_{k})], \\ \mu &= \max \left[G(T, \alpha) - \sum_{k=1}^{n} t(T, \pi_{k}), \quad G_{i}(T, \alpha) - \sum_{k=1}^{n} \left| \tau_{i}(T, \pi_{k}) \right| \quad (i = 1, 2, 3) \right], \end{split}$$

where $\varrho[T(\pi_k)$ denotes the diameter of $T(\pi_k)_i$.

The numbers m, δ , μ are termed the indices of the system of polygons $[\pi_k; k=1,...,n]$ with respect to (T,α) , and are $\geqslant 0$. In view of the hypothesis $L(T) < \infty$, it is possible to determine for $\gamma > 0$ given, a system of non-overlapping polygonal regions $[\pi_k; k=1,...,n]$ in α with indices less than γ with respect to (T,α) (see L. CESARI [3]).

Select a point (u_k, v_k) from each π_k and consider the sum

$$\sum_{k=1}^{n} F[x(u_k, v_k), y(u_k, v_k), z(u_k, v_k), \tau_1(T, \pi_k), \tau_2(T, \pi_k), \tau_3(T, \pi_k)].$$

L. CESARI [4] has shown that

$$\lim_{m,\delta,u\to 0} \sum_{k=1}^{n} F[\ldots]$$

exixts and is finite, and we shall denote this limit by $J(T, \alpha) = \int_{(T,\alpha)} F \, d\sigma$. In case $\alpha = Q$, we write J(T) = J(T, Q).

The following three theorems are due to L. Cesari [4].

Theorem 1. J(T) is independent of the representation of the surface S. Let now $\mathbb F$ denote the class of all continuous mappings $T:Q\to E_3$ such that (i) $T(Q)\subset X$, (ii) $L(T)<+\infty$.

Theorem 2. There exists a positive number M such that |J(T)| < ML(T), and M does not depend upon $T \in \mathfrak{T}$.

Theorem 3. Let T, T_n (n=1, 2, ...) be in \mathfrak{T} . If $T_n \to T$ uniformly and $L(T_n) \to L(T)$, then $J(T_n) \to J(T)$.

II·8. – Let \mathfrak{T} be the class of all continuous mappings $T: Q \to E_3$ as defined in **II**·7, i.e., $T(Q) \subset X$ and $L(T) < +\infty$.

Lemma. If $T_0 \in \mathfrak{T}$, then all the partial mappings of T_0 are also in \mathfrak{T} (see $\mathbf{H} \cdot \mathbf{1}$).

Proof. Let T be a partial mapping of T_0 . Then there exists an unrestricted factorization $T_0 = sf$, $f: Q \Longrightarrow \mathfrak{IG}$, $s: \mathfrak{IG} \hookrightarrow E_3$ such that $T = sr_A f$, where r_A is the monotone retraction from \mathfrak{IG} onto an A-set A of \mathfrak{IG} . We only need to verify that $L(T) < \infty$. If r_c denotes the monotone retraction from \mathfrak{IG} onto C, and if $\overline{r_c}$ denotes the monotone retraction from A onto a proper cyclic element C of A, we have in view of the strong cyclic additivity theorem of L(T) (see [8]):

$$L(T_0) = \sum L(sr_o f), \qquad C \subset \mathfrak{I}_{\mathfrak{S}}$$

(2)
$$L(T) = \sum L(s\bar{r}_c r_A f), \quad C \subset A.$$

Since A is an A-set of \mathfrak{I} , a proper cyclic element C of A is also a proper cyclic element of \mathfrak{I} , and $\bar{r}_c r_A = r_c$ (see $\mathbf{I} \cdot \mathbf{I}$). Hence

$$L(T) = \sum_{C \subset A} L(sr_c f) \leqslant \sum_{C \subset \mathfrak{Olo}} L(sr_c f) = L(T_0) < + \infty.$$

The class \mathfrak{T} satisfies therefore the conditions of $\mathbf{H} \cdot \mathbf{2}$. We proceed to verify that J(T) also satisfies the three conditions of $\mathbf{H} \cdot \mathbf{2}$.

 $\mathbf{H} \cdot \mathbf{9}$. - Lemma. J(T) satisfies the condition (1) of $\mathbf{H} \cdot \mathbf{2}$.

Proof. This is an immediate consequence of II.7.

Lemma. J(T) satisfies the condition (2) of $\mathbf{H} \cdot \mathbf{2}$, i.e., if $T \in \mathfrak{T}$ admits of an unrestricted factorization whose middle space is a dendrite, then J(T) = 0.

Proof. In view of the strong cyclic additivity theorem of L(T) mentioned in $\mathbf{H} \cdot \mathbf{3}$, we have L(T) = 0. From Theorem 2 in $\mathbf{H} \cdot \mathbf{7}$, J(T) = 0.

 $\mathbf{H} \cdot \mathbf{10}$. - (Continuation.) In order to establish that J(T) satisfies the condition (3) of $\mathbf{H} \cdot \mathbf{2}$, let us first discuss two lemmas.

Lemma 1. Given T, T_i (i = 1, 2, 3) as in $\mathbb{H} \cdot \mathbf{5}$. Assume that $T \in \mathfrak{F}$. If E is a closed subset of Q such that $Q - E = \alpha \mid \beta$ and $T_i(E)$ is of measure zero (i = 1, 2, 3), then

$$J(T) = J(T, Q) = J(T, \alpha) + J(T, \beta).$$

Proof. This Lemma is an immediate consequence of the definition of $J(T, \alpha)$ and of the section $\mathbf{H} \cdot \mathbf{6}$.

Lemma 2. Let α be an open subset of Q. If for $T \in \mathfrak{T}$, $G(T, \alpha) = 0$, then $J(T, \alpha) = 0$.

Proof. It follows from the definitions in $\mathbf{H} \cdot \mathbf{5}$, that then for every polygonal region $\pi \subset \alpha$, $\tau_i(T, \pi) = 0$ (i = 1, 2, 3). From the definition of F(x, y, z, u, v, w) there follows then that F = 0. Hence $J(T, \alpha) = 0$.

II·11. – (Continuation.) We are now ready to verify that J(T) satisfies the condition (3) of **II**·2. Assume that $T \in \mathfrak{F}$ admits of an unrestricted factorization T = sf, $f: Q \Longrightarrow \mathfrak{IG}$, $s: \mathfrak{IG} \to E_3$, where \mathfrak{IG} is the union of two A-sets A_1 , A_2 and $A_1 \cap A_2$ reduces to a single point x of \mathfrak{IG} .

Lemma. $J(T) = J(sr_1 f) + J(sr_2 f)$, where r_1, r_2 denote the monote retractions from No onto A_1 and from No onto A_2 , respectively.

Proof. Let $E = f^{-1}(x)$. Then E is a closed subset of Q such that $T_i(E)$ is of measure zero $(i=1,\ 2,\ 3)$, where T_i are the mappings introduced in $\mathbf{H} \cdot \mathbf{5}$. In view of $f(Q) \cap (A_i - x) \neq 0$ $(i=1,\ 2)$ we have, setting $\alpha = f^{-1}(A_1 - x)$, $\beta = f^{-1}(A_2 - x)$ that $Q - E = \alpha \mid \beta$. Now from the Lemmas 1 and 2 in $\mathbf{H} \cdot \mathbf{10}$ we have that

(1)
$$J(sr_1 f) = J(sr_1 f, \alpha) + J(sr_1 f, \beta) = J(sr_1 f, \alpha),$$

since $G(sr_1 f, \beta) = 0$. Similarly,

(2)
$$J(sr_2 f) = J(sr_2 f, \alpha) + J(sr_2 f, \beta) = J(sr_2 f, \beta).$$

We also have

(3)
$$J(T) = J(T, \alpha) + J(T, \beta) = J(sr_1 f, \alpha) + J(sr_2 f, \beta).$$

Combining (1), (2) and (3), we obtain the desired conclusion.

H·12. — Lemma. Assume $T \in \mathfrak{F}$ admits of an unrestricted factorization T = sf, $f: Q \Longrightarrow \mathfrak{OlG}$, $s: \mathfrak{OlG} \to E_3$ such that \mathfrak{OlG} contains only a finite number of proper cyclic elements $C_1, ..., C_n$ with the property that for each $i, \mathfrak{OlG} - C_i$ decomposes into only a finite number of components. If r_{c_i} denotes the monotone retraction from \mathfrak{OlG} onto C_i (i = 1, ..., n), then

$$J(T) = \sum_{i=1}^{n} J(sr_{c_i} f).$$

Proof. This formula follows from $\mathbf{H} \cdot \mathbf{4}$, since in the preceding paragraph we have shown that J(T) satisfies the conditions of $\mathbf{H} \cdot \mathbf{2}$.

 $\mathbf{H} \cdot \mathbf{13}$. — We are now ready to prove our main result.

Theorem. J(T) is strongly cyclicly additive in the following sense. Let T = sf, $f: Q \Longrightarrow \mathfrak{N}_{\mathfrak{S}}$, $s: \mathfrak{N}_{\mathfrak{S}} \to E_3$ be an unrestricted factorization of $T \in \mathfrak{T}$. For C a proper cyclic element of $\mathfrak{N}_{\mathfrak{S}}$, let r_c denote the monotone retraction from $\mathfrak{N}_{\mathfrak{S}}$ onto C. Then

$$J(T) = \sum J(sr_c f), \quad C \subset \mathfrak{I}_{\mathcal{G}}.$$

Proof. From [8] there follows that

(2)
$$L(T) = \sum L(sr_c f), \quad C \subset \mathfrak{I}_{\mathcal{G}}.$$

II·14. – (Continuation.) We proceed now to exhibit a sequence of mappings T_n in \mathfrak{T} which converge uniformly to T on Q. Each T_n satisfies, moreover, the following properties. Each T_n admits of an unrestricted factorization $T_n = s_n f_n$, $f_n: Q \Longrightarrow \mathfrak{Id}_n$, $s_n: \mathfrak{Id}_n \to E_3$ such that

(i)
$$\mathfrak{O} \otimes_n \mathfrak{C} \mathfrak{O} \otimes (n = 1, 2, ...);$$

(ii) \mathfrak{I}_n contains only a finite number of proper cyclic elements each of which is a proper cyclic element of \mathfrak{I}_n ;

- (iii) if C is a proper cyclic element of \mathfrak{Old}_n , $\mathfrak{Old}_n C$ decomposes into a finite number of components;
- (iv) if for C a proper cyclic element of \mathfrak{I}_{o} , $r_{c}^{(n)}$ and r_{c} denote the monotone retractions from \mathfrak{I}_{o} onto C and from \mathfrak{I}_{o} onto C, then $s_{n}r_{c}^{(n)}f_{n}=sr_{c}f$.

Proof. Let n be a positive integer. Since $s: \mathfrak{I}_{\mathbb{G}} \to E_3$ is uniformly continuous, we have a number $\varepsilon = \varepsilon(n) > 0$ such that for all sets $E \subset \mathfrak{I}_{\mathbb{G}}$ with $\varrho(E) < \varepsilon$ we have $\varrho[s(E)] < 1/n$. From $\mathbf{I} \cdot \mathbf{12}$ there exists a Peano space $\mathfrak{I}_{\mathbb{G}_n} \subset \mathfrak{I}_{\mathbb{G}}$ satisfying the following properties.

- (1) Properties (ii) and (iii).
- (2) There is a continuous retraction t_n from $\mathfrak{I}_{\mathfrak{S}}$ onto $\mathfrak{I}_{\mathfrak{S}}$ satisfying $\varrho[x, t_n(x)] < \varepsilon$ for $x \in \mathfrak{I}_{\mathfrak{S}}$.
- (3) If for C a proper cyclic element of $\mathfrak{D}\mathfrak{S}_n$, $r_c^{(n)}$ and r_c denote the monotone retractions from $\mathfrak{D}\mathfrak{S}_n$ onto C and from $\mathfrak{D}\mathfrak{S}$ onto C, respectively, then $r_c = r_c^{(n)}t_n$.

Define $T_n = st_n f$. If we let $s_n = s$, $f_n = t_n f$, it follows from (3) that, $s_n r_c^{(n)} f_n = s r_c^{(n)} t_n f = s r_c f$. Now let w be any point of Q. Then $f(w) \in \mathfrak{N}_{\mathcal{S}}$ and in view of (2), $\varrho[f(w), t_n f(w)] < \varepsilon$. Hence $\varrho[T_n(w), T(w)] = \varrho[st_n f(w), sf(w)] < 1/n$ for every $w \in Q$.

If T_n is defined in this manner for every positive integer n, we have that $T_n \to T$ uniformly.

 $\mathbf{H} \cdot \mathbf{15}$. - (Continuation.) Let $\{T_n\}$ be the sequence of mappings in \mathfrak{F} as defined in $\mathbf{H} \cdot \mathbf{14}$. We assert that $L(T_n) \to L(T)$.

Proof. Since $T_n \rightarrow T$ uniformly,

(1)
$$L(T) \leqslant \liminf_{n \to \infty} L(T_n).$$

From (2) in **II·13**, however, $L(T) \ge \sum_{c \in \mathfrak{I}} L(sr_c f) = \sum_{c \in \mathfrak{I}} L(s_n r_c^{(n)} f_n) = L(T_n)$. Hence

(2)
$$L(T) \geqslant \limsup L(T_n).$$

(1) and (2) imply $L(T_n) \to L(T)$.

II.16. - (Continuation.) From Theorem 2 in II.7,

(1)
$$|J(T_n)| < ML(T_n) \quad (n = 1, 2, ...).$$

From $\mathbf{H} \cdot \mathbf{12}$ and $\mathbf{H} \cdot \mathbf{14}$ there results

$$J(T_n) = \sum_{c \in \mathfrak{N}} J(s_n \, r_c^{(n)} \, f_n) = \sum_{c \in \mathfrak{N}} J(s r_c \, f).$$

$$c \in \mathfrak{N}_n$$

$$c \in \mathfrak{N}_n$$

Finally, Theorem 3 of II·7 implies

(3)
$$J(T_n) \to J(T).$$

Let now $\varepsilon > 0$ be given. Then there exists a positive integer N such that

$$|J(T) - J(T_n)| < \varepsilon/2 \quad \text{for} \quad n > N,$$

(5)
$$|L(T) - L(T_n)| = |\sum_{c \notin \mathfrak{O}(\mathfrak{S}_n)} L(sr_c f)| < \varepsilon/(2M) \quad \text{for } n > N.$$

Now from (2),

$$\begin{split} \left| \ J(T) - \sum_{C \subset \mathfrak{D} \mid \mathfrak{S}} J(sr_c \ f) \ \right| &\leqslant \left| \ J(T) - J(T_n) \ \right| \ + \left| \ J(T_n) - \sum_{C \subset \mathfrak{D} \mid \mathfrak{S}} J(sr_c \ f) \ \right| \leqslant \\ &\leqslant \left| \ J(T) - J(T_n) \ \right| \ + \left| \ J(T_n) - \sum_{C \subset \mathfrak{D} \mid \mathfrak{S}_n} J(sr_c \ f) \ \right| \ + \sum_{C \notin \mathfrak{D} \mid \mathfrak{S}_n} \left| \ J(sr_c \ f) \ \right| \leqslant \\ &\leqslant \left| \ J(T) - J(T_n) \ \right| \ + \ M \sum_{C \notin \mathfrak{D} \mid \mathfrak{S}_n} L \ (sr_c \ f) < \varepsilon/2 \ + \ M \varepsilon/(2M) = \varepsilon \end{split}$$

for n > N. Since $\varepsilon > 0$ was arbitrary, we finally obtain

$$J(T) = \sum_{c \in \mathfrak{IG}} J(sr_c f).$$

This completes the proof of Theorem in $II \cdot 13$.

 $\mathbf{H} \cdot \mathbf{17}$. — In the next two paragraphs we shall discuss a generalization of the Theorem in $\mathbf{H} \cdot \mathbf{13}$.

Let $T \in \mathbb{F}$ and let T = sf, $f: Q \to \mathfrak{D}$, $s: \mathfrak{D}$, $s: \mathfrak{D}$ be an unrestricted factorization of T. It should be noted that we assume now that f is a mapping into a Peano space \mathfrak{D} instead of $onto \mathfrak{D}$. If for C a proper cyclic element of \mathfrak{D} we denote by r_c the monotone retraction from \mathfrak{D} onto C, then it may happen that $sr_c f(Q)$ is not contained in X. Consequently, $J(sr_c f)$ need not be defined since the function F(x, y, z, u, v, w) is assumed to be defined only for $(x, y, z) \in X$ ($\mathbf{H} \cdot \mathbf{T}$). This difficulty can be overcome as follows. First let us observe that the function F(x, y, z, u, v, w), $(x, y, z) \in X$ and (u, v, w) any triple of numbers, can be extended to a function $F_0(x, y, z, u, v, w)$ defined for all $(x, y, z) \in E_3$ and any triple of numbers (u, v, w) preserving uniform continuity

17. - Rivista di Matematica.

and positive homogeneity of degree one with respect to (u, v, w). Moreover, for $u^2 + v^2 + w^2 = 1$, $F_0(x, y, z, u, v, w)$ possesses the same bound as F(x, y, z, u, v, w), $(x, y, z) \in X$, $u^2 + v^2 + w^2 = 1$. Such an extension can easily be carried out by a result of E. J. McShane [Extension of range of functions, Bull. Amer. Math. Soc. 40, 837-842(1934)]. For the actual computations see L. Cesari [An existence theorem of Calculus of variations for integrals on parametric surfaces, Amer. J. Math. 74, p. 281 (1952)].

H·18. – (Continuation.) With any continuous mapping T from Q into E_3 for which $L(T)<\infty$ we can now associate a surface integral $J_0(T)$ defined as in **H·7** by using the function $F_0(x, y, z, u, v, w)$. For $T(Q) \subset X$ and $L(T)<\infty$, we have $J_0(T)=J(T)$.

The Theorem in II·13 can now be formulated as follows.

Theorem. Let $T \in \mathbb{F}$ and let T = sf, $f: Q \to \mathfrak{NG}$, $s: \mathfrak{NG} \to E_3$ be an unrestricted factorization of T. If for C a proper cyclic element of \mathfrak{NG} we denote by r_c the monotone retraction from \mathfrak{NG} onto C, then

(1)
$$J(T) = \sum J_0(sr_c f), \qquad C \in \mathfrak{I}_{\mathbb{G}}.$$

Proof. The proof is entirely analogous to the proof given for the Theorem in $\mathbf{H} \cdot \mathbf{13}$.

Remark. If we denote by \sum' the summation in (1) over all proper cyclic elements C of \mathfrak{IK} for wich $C \cap f(Q) \neq 0$, then

(2)
$$J(T) = \sum' J(sr_c f).$$

Proof. If $C \cap f(Q) = 0$, then in view of the connectedness of f(Q) we have that $r_c f(Q)$ is a single point in C, and hence $sr_c f$ is constant on Q. Consequently, $J_0(sr_c f) = 0$. If now C is a proper cyclic element intersecting f(Q), then it follows from T. Radó [9, II·2·42] that $r_c f(Q) = f(Q) \cap C$. Consequently, $sr_c f(Q) \subset X$ and $J_0(sr_c f) = J(sr_c f)$. From (1) we infer now (2).

Bibliography.

- 1. J. Cecconi, Sulla additività ciclica degli integrali sopra una superficie, Rivista Mat. Univ. Parma 4, 43-67 (1953).
- 2. L. Cesari, Surface Area, Princeton University Press, Princeton 1956.
- 3. L. Cesari, Sui fondamenti geometrici dell'integrale classico per l'area delle superficie in forma parametrica, Mem. Accad. Italia 13, 1323-1481 (1943).
- 4. L. Cesari, La nozione di integrale sopra una superficie in forma parametrica, Ann. Scuola Norm. Super. Pisa (2) 13, 77-117 (1944).
- L. Cesari, Condizioni necessarie per la semicontinuità degli integrali sopra una superficie in forma parametrica, Ann. Mat. Pura Appl. (4) 29, 199-224 (1950).
- 6. L. Cesari, Condizioni sufficienti per la semicontinuità degli integrali sopra una superficie in forma parametrica, Ann. Scuola Norm. Super. Pisa (2) 14, 47-79 (1948).
- 7. E. J. MICKLE and C. J. NEUGEBAUER, Weak and strong cyclic additivity (to appear).
- 8. E. J. MICKLE and T. RADÓ, On cyclic additivity theorems, Trans. Amer. Math. Soc. 66, 347-365 (1949).
- 9. T. Radó, Length and Area, Amer. Math. Soc. Col. Pub., Vol. 30, 1948.
- 10. G. T. Whyburn, Analytic Topology, Amer. Math. Soc. Col. Pub., Vol. 27, 1942.

