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CoristorH J. NEUGEBAUER (%)
A strong cyclic additivity theorem of a surface integral. (**)

Introduction.

Let Q be the unit square in the (u, v)-plane, @ = [0 <u, v <1], and let

~Hy-be-the-Tuelidean -{@;-y;-#}-space. : s i
Let § be a FrécaET surface of the type the 2-cell represented by the con-
tinuous transformation T :¢Q > E,,

(1) T: x=wau, v), y=yu v, &==zu v), (u v)eq.
Denote by L(T) the LEBESGUE area of 8. For I(T) < + co L. CEsar1 [4] in-

troduced a surface integral J(T) = J'Fdo as a WEIERSTRASS integral. Re-

s
cently, J. Crccont [1] has shown that the integral J(T) is weakly eyclicly ad-
ditive in the following sense.
If

T=1lm, m.Q=>b, 1.6 UL,
is a monotone-light factorization of 7, then
(2) J(T) = Y JI(r.m), CcCo,

where C is a proper cyclic element of ), and r. is the monotone retraction
from Ol onto C.

(*) Address: Department of Mathematics, Purdue University, Lafayette, Indiana,
U.8.A..

(**) Received April 12, 1955.
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The formula (2) extends a cyclic addivity theorem due to T. RADO; namely,
if I(T) is the LEBESGUE area of the surface represented by (1), then we have
the following weak ecyclic additivity formula (see Rapo [9]),

(3) LTy =3 Lir, m), CcC9lo.

In a paper by E. J. Micxre and T. Rapd [8], the writers established a
strong cyclic additivity theorem for the LEBESGUE area in the following sense.
It

T=sf, [.:0—N, s:b—H,
is an wnrestricied factorization of T (see 1I-1), then

(4) L(T) = 3 Lsref), € c Mo,

where 7, is again the monotone retraction from e onto a proper cyclic ele-
ment C of . The question arises whether such a strong cyelic additivity theo-
rem does also hold for the surface integral J(T). It is the purpose of this paper
to answer this question affirmatively, i.e., we will prove that

(5) J(I) =3 I(sr.f), CcCMo.

It is clear that the formula (2) of J. CEccoNI is a special case of the formula
(3) to be established in II-17.

The approach followed to prove (5) is different from the one followed by
J. Crccoxt [1], and does not make use of his formula (2). By application of a
theorem of L. CESARI concerning convergence of J(7') it was possible to ve-
duce (5) to essentially a topological consequence of (4). This remark accounts
for the fact that the first part of this paper deals with some of the topological
issues that are needed later on.

I.~ A-sets and proper cyclic elements.

I-1. — In this paragraph we will recall to the reader some vesults of the
theory of A-sets and proper cyclic elements of a PEANO space P. As a general
reference the reader is referred to T. Ran6 [9] or G. T. WuyBURN [10]. Let
A be the generic notation of an 4-set and let C be the generic notation of
a proper cyclic lement of P. We remark that an 4-set is always a non-dege-
nerate subset of P, i.e., A contains at least two distinct points.
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(1) Cis a cyclic 4-set of P, and every A-set of P is a PEANO subspace of P.

(2) There is a unique continnous and monotone retraction +, from P onto 4.

(3) If ¢ is a component of P — A, then the frontier of @, denoted by Fr(G),
reduces to a single point, whiecli is, of course, in 4. Moreover, the closure of
G, denoted by c¢(G), is an A-set of P. If G is a component of P — 4, and », is
the continuous and monotone retraction from P onto 4, then » () = Fr(@)
for every xe6.

{4) The proper cyclic elements of A coincide with the proper cyclic elements
of P which are subsets of 4.

(8) If P — A decomposes into an infinite number of components { G, }, then
o(@;) = 0 as ¢ — oo, where g(G;) denotes the diameter of @;.

(6) Let { @, } be the sequence of components of P— 4, and let them be di-
vided into two disjoint classes { G, }, {6, }. Thend*=4AuuU G; is an A-set
of P, and the components of P— A% are { &, }. n>1 ‘

(7) If & is a collection of A4-sets of P such that H = n 4, 4 &, contains
at least two points, then H is an A-set of P.

o 8) Lot be.a.conneeted. subset. of - P... Then-K.-n-4-is-connected (possibly' :
empty).

(9) Let P* be a PeANO subspace of a PEANO space P, and let 4 be an 4-set
of P. If P*n 4 is non-degenerate, then A%*= P*n A is an A-set of P* If
P* is an A-set of P-and A* is an A-set of P*, then A* is also an A-set of P.

(10) There is only a denumerable number of proper cyclic elements of P,
and two distinct proper cyclic elements of P are either disjoint or else have
a single point in common.

(11) If the sequence { C,,} of proper cyclic elements of P i3 infinite, then
(C,) =0 as 7 — oo. '

(12) ¥ E is a cyelic subset of P, i.e., F— x is connected for every z € P,
and if I contains more than one point, then F is a subset of a unique proper
cyclic element C of P. :

(13) A point @ will be termed a cut-point of P provided P — x is not connec-
ted. If C is a proper cyclic element of P, then a point # € C'is a cut-point of
P if and only if there is a component G of P— ( such that Fr(G) = x.

(14) If Cis a proper cyclic element of P and 4 is an A-set of P such that
A n C contains more than one point, then C c 4.

In what follows we shall make free use of the properties listed above. The
main result of this part of the paper is the Theorem in I-12,

1-2, — Lemma. Let P be a PEANO space, and let C, be a proper cyclic
element of P such that P— (, has at least three components Gy, G,, G, with
Fr(G,;) # Fr(¢;) (¢ 557§; 1, j =1, 2, 3). Let ¢ 5= (, be a proper cyclic element
of P. Then at least two of the sets Gy, G, G4 lie in a component of P— C.

16, ~ Rivista di Matematica.



242 C. J. NEUGEBAUER

Proof. Since ¢ 5 (¢, there is a component & of P-— (¢, such that
C co(G). Then at least two of the components @y, G,, Gy, say Gy, G, are distinet
from ¢ and Fr(G,) = Fr(G) (i =1, 2). Then[Ci— Fr(G)] U G, U G,is a connec-
ted set in P—c(®) ¢ P— (. Hence Gy, G, lie in a component of P — (.

I-3. — Definition. Let P be a Praxo0 space and let @y, ..., @, be n >1
distinet points of P. We define H(2y, ..., @,) to be the smallest A-set containing
By oony Ty 1o, H(@y, ..., @) is the infersection of all A-sets of P containing a,

ceey By

I-4. — Lemma. Let Xy, ...y ¥, be n >1 points of a PEANO space P. For
any Ad-set A of P in H(wy, ..., @), the set H(z,, ..., x,) — A decomposes into
at most » components and each component contains at least one of the points
Byy ey @y '

Proof. It follows from the properties listed in I-1, that 4 is also an 4-set
of H(xy, ..., #,) . Excluding the trivial case 2, € 4 (¢ == 1, ..., n), we may assume

that @, , ..., #, , j < n, are not in 4. Let G, ..., Gy, k <n, be the components
of H(wy, ..., ;) —4 containing x;, ..., ;. Now A*=AU G, U ... U G,is an 4-set
of H(zy, ..., ®,) containing &, ..., @,. Ience, by Definition I-3, 4% =
= H{®y,..., ®,). Thus the components of H(wy, ..., #,)— A are G4, ..., Gy,
E<n, and G;n (U ... Ua,) =0 (=1, ..., k).

I-5. - Liemmma. There is at most a finite number of proper cyelic
elements of H(w, ..., #,) having more than two cut-points with respect to
H(zy,y ...y @) )

Proof. Denying the assertion, we-assume that there is an infinite number
of proper cyclic elements €y, ..., C,, ... of H{z,, ..., ,) having more than two
cut-points with respect to H(wy, ..., @,). Then foreach m thereare at least three
components @', ¢, 7 of H(w, ..., »,) — C,, such that

(1) Fr(@7) = Fr@7) (04 4§ =1, 2,3);

(2) there is an 27 € (#; U ... U®,) which is in G}" (i =1, 2, 3) (see I-4).
Since there is only a finite number of points ay, ..., »,, there are integers
My, My such that /=g ({ =1, 2, 3). Then, by renumbering if necessary,
we have by I-2 that G} U G} lies in a component of H(z,, ..., 2,) — C,, . This
2

7

contradicts that i, a;* lie in different components of H(w, ..., @) — C, .

I.6. — Lemma. Let P be a PEANO space and let ¢ >0 be given. Then
there exists a finite number of distinct points @, ..., @, in P such that if G is
a component of P— H(w,, ..., @), o(G)<<e. ‘
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Proof. Since P is uniformly locally connected, we have a § >0 such
that all pairs of points #’, 2" of P with g(a’, «") < 0 lie in a connected subset
of P whose diameter is less than &/3. In the PEANO space P there is now a
finite number of distinct points @, ..., @, (»n>1), such that for each x e P,
o(@, ;) < 0 for some ¢ (1 <i < m). If P— H(xy, ..., #,) 5 0, let G be a compo-
nent of P-— H(x, ..., #,). For xe & we have a ;€ H(wy, ..., #,) such that
oz, ;)<< 6. By the choice of § >0, there is a connected set B of P with
o(E) < ¢/3 containing #, #;. But then Fr(¢) e I [note that Fr(G) reduces to a
single point], and hence o[z, Fr(G)] < ¢/3. From the triangle inequality there
follows now that g(G) < e.

I'7. — Lemma. Let P be a PrANO space, and let{ c, } be the sequence
of proper cyclic elements of P. Assume that there is only a finite number of
proper cyclic elements of P having more than two cut-points of P. For ¢ >0
given there exists a PEANO space P* c P with the following properties.

(1) P* contains only a finite number of proper cyclic elements each of
~which. is..a. proper.cyclic. element. of P.. -

(2) There is a continuous retraction ¢* from P onto P* satistying
olz, t*(@)]<<e for xe P.

(3) If O is a proper cyclic element of P*, and ¥, », denote the monotone
retractions from P* onto ¢ and from P onto C, respectively, then r, = r*¢*.

Proof. If { ¢, } is finite, then set P*= P, and let t* be the identity on
P. We may then assume that { C, } is infinite. Then o(C,) =0 as » — co.
Therefore there is an integer N,(e) > 0 such that o(C,) < e for » > N,. By hy-
pothesis, there is an integer N, >0 such that for # > N,, C, contains at most
two cut-points of P. Let n, be a fixed integer greater than max (N, N,).

Let now » be any integer greater than n,. Then U, contains either one
cut-point @, or two cut-points #,, ¥, of P. In the first case let B,= =,, and in
the second case let B, be a simple are in , with endpoints «,, ¥, . Since 0, is a
Prano space we have that Z, is a continuous retract of C, (WrYBURN [10]).
Hence there is a continuous transformation f,: C,== F, such that ¢, (z) =«
for x € E,.

I-8. — (Continuation.) Let P*=(P—U C,) U UE,, and define a
llla»pping t$:P=>P* by n>n, n>ng

sm, if (L'EP"‘—U‘Cny
n>ng

1¥() = )
2 to(w), faxel, (1 > ).

We assert that t*is a continuous retraction from P onto P*. Thus P*is a PEANO
subspace of P.
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i )
Proof. Let P,=(P,— U C,)u U E, (i =my 1, ny + 2, ...).
n=mng 41 LETE | ‘

Define a mapping 7 : P= P, by

. S.’I!,_ it e P— CJ O,== K;,
17 (®) =

n=no+ 1

(t,,(a:), ifeeC, (ny<<n<9).
We observe that ¢ is continuous on K;, and on C, (n, < n <1i). Since

(i) ¢ nC, is either empty or else in E, (n,<<n < 1),
() C;n ¢ (j#k)is either empty or else in B; n By, (n, < §, k <),

(i) tF@) =, achB, (ng<n<i),

k2

the intersection of any two. Hence t; is continuous on P.
In order to show that t* is continuous on P it suffices to demonstrate that
t7 — t* uniformly on P. But this is a ready consequence of the definition of

t¥, t* and the fact that p(C,) — 0 as n — co. Since t*(x) = » for z € P* *isa
continuous retraction from P onto P*. We note that ¢* need not be monotone.

I-9. — (Continuation.) Let ¢*: P== P* be defined asin I-8. Then

1) ol t*@)] < € for we P,
(2y if C is a proper cyclic element of P and G is a component of
P — (, then t*(G) C ¢(G).

Proof. To prove (1), we note that, if ve P— U (,, then t¥*(x) = . If
7)>710

we O, for some n > n,, then t*(z) € €, . Hence g[wx, t*(2)] < p(C,) < &. In order

to verify (2), let us take z € G. If x is in no C, (» > n,), thent*(z) = 2. If v e C,

for some n > n,, then C,Cc(@) (see I-1), and *(») e C,ce (G). Thus t¥(G) c e(G).

1-10. — (Continuation.) Let P* De defined as in I-8. Then P* is a
- Prano subspace of P, and Cy, ..., C, are the proper eyclic elements of P*.

Proof. Since C,cP* (i =1, ..., u,), we have that C; is a proper cyclic
element of P*. To show that P* does not contain any other proper cyelic ele-
ments, assume that there is a proper cyclic element ¢* of P* not equal to O,
(7 == 1, ..., %). Since C*is a cyclic subset of P, we have an integer n >n, such
that C*c(C,. But then C*cH,, which is impossible since ¥, is éither a single
point or a simple arc. '

we have that ¢ is continuous “on a finite number-of closed sets and agrees-on
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I-11. — (Continuation.) Let ' be a proper cyclic element of P*,
Denote by 7%, », the monotone retractions from P* onto ¢, and from P onto C,
respectively. Then

(1) PEAE =,

Proof. If »e ¢, then (1) is obvious. For = ¢ (, let ¢ be the component
of P— C that contains . Then Fr (G) =y, y € € and r(z) = y. From I-9 we
have that t*(z)ec(G). I£1%(r) = I'r (@), there is nothing to prove. If then t*(x)eG,
let G* be the component of P*- (¢ containing t*(w). Then G*cG and
Fr* (G%) =y, where Fr* denotes the frontier operation with respect to P*
Hence ¥ t*(x) =y and (1) follows.

This completes the proof of I-7.

1-12. — The following theorem is the main result of this section. It will be
used-in-II-18-to-approximate-a-given-continuous-mapping - which- makes-.it--
possibile to apply a result of L. CESARI to complete the proof of the assertion
made in the Introduction.

Theorem. Let P be a Peano space, and let ¢ >0 be given. Then there
eaists @ Peano space P*CP with the following properties. '

(1) P* contains only a finite number of proper cyclic elements cach of which
is a proper cyclic element of P, and if C is a proper cyclic element of P¥, then
Pi#— (C decomposes into a finite number of components.

(2) Thereis a continuous retraction t* from P onto P* satisfying o[, t*(x)] <e
for weP. '

(3) If for C a proper cyclic element of P*, v.* and r, denote the monotone
retractions from P* onto ¢ and from P onio C, then v, = rEpE,

Proof. From the paragraphs I-4, I-5 and I-6 we have an A-set P'c P
satisfying the following conditions. '

(i) If G is a component of P-— P', then o(¢)<C &/2.

(ii) If C is a proper cyclic element of P', then P'— ¢ decomposes into a
finite number of components. Moreover, there is at most a finite number of
proper cyclic elements of P’ containing more than two cut-points of P’ .

Since P’ is an A-set of P, the proper cyclic elements of P’ ave those of P
which are subsets of P'. Let » denote the monotone retraction from P onto P'.
In view of (i) we have (see I-1) 4

(i) | o[z, 7'(@)]< ¢/2  for eP.
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The PEANO space P’ satisfies the conditions of I-7. Therefore there is a
PEANO space P*cP' with the following properties.
(iv) P* contains only a finite number of proper cyclic elements each of
which is a proper cyclic element of P’ and hence of P.
(v) There is a continuous retraction ¢" from P’ onto P* (defined as in
I-8) satisfying g[z‘ ()] << /2 for zeP'.
(vi) If for ¢ a proper cyclic element of P*, ¥, 7 denote the monotone
retractions from P* onto €, and from P’ onto C, 1espective1y, then 9'; = ",
Detine t¥*=t"". Then t* is a continuous retraction from P onto P*, and
from (iii) and (v),

oz, t¥(w)] < ofw, »'(w)] + o[+'(®), t"7"(x)]<< & for weP.

We also have »Ft*=1*t"' =, p'=r,, from (VI) ‘md the umqneness of monotone

~retractions onto A bets (see I 1y

I-13. — (Continuation.) It remains to show that for ¢ a proper
cyclic element of P*, P*— ( decomposes into only a finite number of ¢ompo-
nents. From (ii) in I-12 we know that P'— ( possesses only a finite number
of components. In order to prove our assertion it suffices to show that for
G' a component P'— C, G' n P* is connected (possibly empty). Let us deny
this and assume that G' n P* is not connected. There are then at least two
distinet components G, G;° of P*— (' such that GFcG’, GJcG’. If Fr', Fr* de-
note the frontier operations with respect to P’, P* respectively, we have
Fr#(G) = Fr#(G}) = Fr' (@) = a*, x%eC.

Since x* is an accessible boundary point of GF, G* there are two mmple
ares p;', va such that y*cGF u ¥ joins #* to a point xf e G, and yFcG} v a*
joins @* to a point #*eG. Since G’ is acrwise connected (WHYBURN [10]), we
have a simple arc y'cG’ joining #) to .

Since yUyuy’ contains a simple closed curve s with the property that
x¥es, we may for the sake of notational simplification assume that
8 = yl UyFuy'. In view of the fact that s is cyclic, there is & unique proper eyclic
element €' of P’ containing s. Now C’ cannot be a proper cyclic element of
P¥ since O'nG # 0, 0'nG] 0. We also have that On(’ = &%, and yFuy’ = «
is a simpie arc in (" n P¥ which contains «* in its interior. Since ¢’ : P’ = P*
is defined as in I-8, and since o = t"(a)ct’(C”), we infer that ¢ has exactly
two cut-points relative to P’. Clearly, #* is one of the cut-points. Let y'eC
be the other cut-point. But then by the definition of ¢ (see I-8), ¢"((") is a
simple are £ of ¢' with endpoints 4%, y’. Since act’((") = f, «* cannot be an
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interior point of . This is a contradiction. The proof of I-12 is therefore com-
plete.

The writer is indebted to Professor E.J. Mickre for many kelpful sugges-
tions concerning this part of the paper. For other recent independent research
on A-sets and proper cyclic elements see B. J. MickiLE and C. J. NEUGEBAUER

[71.
II. - A cyclic additivity Theorem.

II-1. — Let P be a Praxo space and let P* be a metric space. Let 7' be a
continuous mapping from P into P*. A

Definition. An wunrestricted factorization of T consists of two mappings
f, s and a PEANO space Dl such that

(a)  fis a continuous mapping from P onto O,

(b) s is a continuous mapping from DG into P*,

(©) T =sf.

We shall write 7 = sf, . P =9, ¢ — P* and we shall term il
the middle space of the unrestricted factorization.

Definition. We shall term T a partial mapping of a continuous mapping
T, from P into P* if and only if the following holds. There exists an unrestric-
ted factorization To= sf, f : P=> Olo, $ : ORo — P* such that T' = sr, f, where
r, 1s the monotone retraction from 9 onto an A-set A of Dk (F).

II-2. — Let & be a class of continuous mappings from P into P* such that
if Te§, then also all the partial mappings of T’ are in 8. We remark that we
do not require that & is the class of all continuous mappings from P into P*.
(For the applications see -7, II-8).

Let @(T) be a functional defined for each Te§ satisfying the following con-
tions. ‘

(1) In [8] an unrestricted factorization is defined as above except for the condition
(a) which is replaced by o

(a') f is a continuous mapping from P inte Ol .

The restriction that f is a continuous mapping from P onto Ol has been made to
assure that T(P) c T,(P), where T' is a partial mapping of T,
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(1) D(T) is real-valued and finite for each 7eJ. In particular @(T) could
be negative, but for no Ted we have either D(T) = + co or D(T) = — co.

(2) If Ted admits of an unrestricted factorization whose middle space
is a dentrite, i.e., & PEANO space containing no proper cyclic elements, then

D(T) = 0. i

(3) Assume Ted admits of an unrestricted factorization 7' — sty |1 P=> 9o,
819 — P*, where Olis = A,ud,, dind,= a2, 2, 4, 4, being A-sets
of O. Let », r, be the monotone retractions from Dl onto 4; and from O
onto 4., respectively. Then @(T) = D(sr, f) + D(sr, 7). Note that sr f, sr,f
are in §.

Remark. If Tees is constant, then @(7) = 0. For then 7 admits of an
unrestricted factorization whose middle space is a simple are.

II-3. — Lemma. Let T =sf, f: P—= Mo, .9 —LP* be an unre-
stricted factorization of a mapping TeS. Assume there is a finite number of
LA-sets Ay, ., 4, of O such-that-

i) Mo =4,u ... ud,,

i) (AU ... Ud)nAd . s a single point of N (¢ =1, veey 1),

Let »; be the monotone retraction from Mo onto 4; (i =1, .., n). If Tis a
functional satisfying the conditions of II-2, then

(1) D(T) = 2D(sr: f) .
. i=x}

Proof. The proofis by induction on n. If n = 2, then &(T) = D(sr, f) +
+ D(s1, f) by condition (3) of TI-2. Suppose now the formula (1) is valid in
case the number of 4-sets satisfying (i), (ii) is not greater that #~—1. In order
to establish (1), write O = (4,U ... UA, JUd,. Let A = A,u ... ud,_,. Then
4 is an d-set of O, and by (ii), And, is a single point. If » denotes the mono-
tone retraction from il onto 4, we lmve by the case treating n = 2, &(T) =
= D(srf) + D(s7,1).

The transformation srf:P — P* admits of an unvestricted factorization
rfiP=> AU .. cUAdpy= A4, $:A4 - P* Since 4, is an A-set of 4 (i =1,

n—1), let 7; be the monotone retraction from 4 onto 4;. By the mductlon
n1

hypothesis, @(srf) = SD(sr; rf). The mapping 7, r: Oo=> A, is monotone and
i=1

hence by the unigueness of monotone retraotions onto A-sets, »,= r; . Thus

we obtain finally &(T) = D(srf) 4- D(sr, f) z@ sr.1f) -+ D(sr, f Z(I)(w -

i=1
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4. — Lemma. Let T=sf, {:P=>, ¢ Do -»P* bean unrestricted
factorization of Ted. Tor ¢ a proper cyclic element of Olo, let », denote the
monotone retraction from 9 onto €. If il contains only a finite number of
proper cyclic elements, €, ..., U,, with the property that for each i, O — O,
decomposes into only a finite number of components, then
(1) DTy = Slsre, Py

i==1

where @ is a functional satistying the conditions of II-2.

Proof. The proof is by induction on n. If n =1, Dl contains only one
proper cyclic element C,. By assumption, there is only a finite number of
components Gy, ..., G, of Mo — ;. Let 4= C, and A,= c(t;) (i =2, . , k).

Then for each i, 1<<i <k, 4,;is an A-set of D, and 44, ..., A, satisfy t;he con-
ditions of II-3. Hence

2) (L) = D(sre | z(l) sr

Fe=2

where 7, is the monotone retraction from dilo onto A, (i = 2, ..., k). But sr, f
admits of an um‘estmcted factorization whose middle space is 4,. By I-1,
A, is a dendrite (i = 2, ..., k), and hence by condition (2) of II-2, &(sr, f) = 0
(=2, ..., k).

Suppose now that (1) is valid in case the number of proper cyelic elements
of Dl is not greater than n—1. In order to prove (1), assume Ol contains
exactly n proper cyclic elements €y, ..., C,. If Gy, ...; G} are the components
of ®to— (), then using the same argument and notation as above, we have

(3) DT :- Dsr, | E(D srif

=2

Let K; be the class of proper eyclic elements of 4,= ¢ (&) (i =2, 3, ..., k). K;
may be empty for some i. Then K,nkK;= 0 for i 5 j, and if (ekK,, ' is one of
the sets Cy, ..., ¢, (see I-1). Thus the number of proper cyclic elements in each
A;, 2 <i <k, is not greater than n—1, and if Cc4., 4,— ¢ decomposes into
a finite number ‘of components. If r, denotes the monotone retraction from
A, onto CcA,, then in view of the observation that sr; f admits of an unrestrie-
ted factorization with middle space 4, we obtain by the induction hypothesis,

" (4) Osrif) = S B(sror: ) = 3D (sr.f)  (E=2, ...y k).

oCay oC4;
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The formula (1) follows now from (3) and (4).

IL5. — In what follows we will restrict the PEANO space P to be the unit
square @ =[0 <u, » <1), and the metric space P* to be the Huclidean
(@, y, 2)-space ;. Let T be a continnous mapping from ¢ into H,,

1 1. == a{u, ), Y=y, v), 2=z, v), (1, ).

We introduce now three plane transformations by the formulas:

Ty Y=yl v), &=z, v), (u, v)eQ,
T,: Zo==2(u, v), x=uau, v), (4, v)EQ,
Ty @ == w(u, v), Y= yu, v), (4, v)eQ.

~ Let I, be a square with sides parallel to the coordinate axes such that 7'(Q)cK,
(¢ ==1, 2, 3). For z a simple polygonal region in ¢ we denote by sz* the coun-
terclockwise oriented boundary curve of . Let @(pl T” 7) be the topoloom‘d
index of a point p,el; with vespect to T'y(zw*) if p,¢T(x*). Weset O(p;; T;,7) =0
it p.el’(*).
Liet o be an open subset of ¢ and denote by ¢ a finite system of non-overlap-
ping simple polygonal regions [n;; k = 1, ..., n] belonging to . We deﬁne ac-
cording to L. CmsArr [3] the follomno quantities:

AT, 7)) = [[ 1O Loy m) |, oy 7) = [[O (pi; Tiy ), (i =1, 2, 3),
£y E;
T, 7) = (17 + T3+ )2,
Vipis Ty o) =1lub. 3| O (pss Tiy m)| (=1, 2, 3),

[} k=1

GAT, @) =Luwb. 3¢, (T, m) (=1, 2, 3),

G k=1

Ty o) =1ub. 3 ¢TI, m),

[e3 k=1

where ¢(7, 7)) = (9i+ g2 + ¢5)¥*. The least upper bound in the above ex- .
pressions is taken with respect to all systems o.
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For the proof of the following two theorems the reader is referred to
L. CmsaArr [2].

(1) For « an open subset of ¢ we have

Uqf P s GAT, o) [2; 128, ()]

(ii) Let B be a closed subset of @ and for « an open subset of ¢ let { 6}
be the collection of components of «— K. TUnder the assumption that

| T(E)| =0 (measure of T(H)) for ¢ =1, 2, 3, we have
(1) Yip:; = >W¥ip:; T, 9), ae. in K,
(2) : (T, w) = 3 G(T, o

~where the summation in (1) and (2) is extended over all cSe{ 6} [2; 21 -4, (1)]

II-6. — For later application we shall state in this paragraph two immediate
corollaries of II-5, (ii).

(i) Lemma. Given T, 7T, (4 =1, 2, 3) as in II-5. Let ¥ be a closed sub-
set of @ such that @ — E= «| f3, i.e., o, §, are non-empty disjoint open subsets
of § — E whose union is Q —E. Assume that |T(B)| =0 (i =1, 2, 3).
Then G(T, Q) = GAT, «) + G{(T, ) (i =1, 2, 3).

Proof. If we denote by{ o'}, { o } the components of «, f5, respectively,
we have as a consequence of II-5, (ii),

Pipis Ty o) = 3/ Hpi: T, ), Pps T, p) = 2" Wipss T, &),
Yips 1, Q)= Wipis T, &) + X" WPip:; T, ") ae in K,
where 37, 3" are extendul over all &e{ ¢}, 6’€{ 8"}, respectively. Thus

Yip; T, Q) =Wups; T, o) +=¥dps T, B), ae. in K,. From II-5, (i) we
deduce the desired equality.

(i1) Lemma. Assuming the conditions of (i), we have the following
formula: ‘

(T, Q) = G(T, @) + G(T, B).

Proof. The proof follows immediately from II-5, (ii).



]
3
(8

C. J. NEUGEBAUER
Remark. If the conditions of (i) apply,
(T, Q) = KT, Q — B),  G(T, Q) = G(T, Q— B) (i =1, 2, 3).

H-7. — In this paragraph we shall summarize some results of a surface
integral introduced by L. Cmsart [4].

Let X be a compact subset of H,, and let F(x, y, z, u, v, %) be a funetion
defined for each (v, 7, z)e X and for each triple (u, v, w) 5= (0, 0, 0) satisfying,
moreover, the following conditions.

(1) (@, y, 2, u, v, w) is continnous for each (z, y, 2)eX and for each tnplo
(u, v, w) 5= (0, 0, 0). ‘

(2) F(x, y, 2, u, v, w) is positively homogeneous of degree one with respect
to wu, v, w, le.,

I, y, 2, kuy, kv, kw) = EF(x, y, 2, u, v, w) for each % > 0.

1f we put F(z, y, 2, 0,0,0) = 0 for each (x, y, 2)eX, we have as a consequnece .
of (2) that F is also continuous at each point (x, ¥, 2, 0, 0, 0) where (z, y, 2)eX.
Let T, T, (i =1, 2, 3) be given as is II-5. Assume that 7(Q)cX and that
the LEBESGUE area L(l’) is finite. Let o be an open subset of §. For [m,; k =1,
., ] a finite system of non-overlapping polygonal regions in «, let us consi-
der the following quantities:

N

i on ! o
mo=max | 3 Tix’) |, 0 == max o[ L'(z;)],
i=1,2,3] b=1 | B=1, .50
== max zt s @)y GAT, o) — ZI (T, m) | (=1, 2, 3)],
fe==1 Jre=, .

where o[Z(z,) denotes the diameter of T(x,);.

- The numbers m, &, x are termed the indices of the system of polygons
{73 k =1, ..., n] with respect to (7, «), and arve > 0. In view of the hypothe-
sis L(T) << oo, it is possibile to determine for ¢ >0 given, a system of non-
overlapping polygonal regions [7;; k =1, ..., n] in « with indices less than y
with respect to (7, «) (see L. CEsAr: [3]).

Select a point (u, ©;) from each z; and consider the sum

E'F[mml’k; JUI:)) :'/(‘u’kg 'l}lc)r z(uk; vk)y TI(T; nk): rZ(T? TE};), T3(T: TC};)]'
k=1
L. Cusarz1 [4] has shown that

lim E"F[ ]

My, >0 k=1
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exixts and is finite, and we shall denote this limit by J(T, a) = fF do. In case
o = @, we write J(T) = J(TI, Q). e

The following three theorems are due to L. CESART [4].

Theorem 1. J(T) is independent of the representation of the surface 8.
Let now & denote the class of all continuous mappings T': @ — E; such
that (1) T(Q)cX, (i) L(T) < 4+ oo.

Theorem 2. There exists ‘a positive number M such that \J(T)i<
< MI(T), and M does not depend upon 7e€8.

Theorem 3. Let 7, T, (n=1,2,..)bein §. If T, - T uniformly and
L(T,) - L(T), then J(T,) — J(T).

II-8. — Let & be the class of all continuous mappings 7: @ — ]’3 as defined
in I1-7, i.e., (Q)CX and L(T) < + co.

Lemma. If Toes then all the paltml mapplnos of TO are . also in § (%ec'
II-1).

Proof. Let T be a partial mapping of T,. Then there exists an unres-
tricted factorization Ty= sf, f: Q@ == Do, §: Ol —F, suchthat T'= sr, f, where
r, is the monotone retraction from 9l onto an A-set 4 of 9. We only need to
verify that L{T) < co. If r, denotes the monotone retraction from it onto C,
and if 7, denotes the monotone retraction from 4 onto a proper eyclic element
C of 4, we have in view of the strong cyclic additivity theorem of L([’) (see

[8]):
(1) L(T,) = 3 L(sr.f); Ccdlo,
(2) I(T) = 3 Lsr.r, f), = Ccd.

Since A is an A-set of Do, a proper cyclic element € of 4 is also a proper cyclic
element of & and 7.r, = r, (see I-1). Hence :

= 3 Lsre ) < 3 Lisre ) = L{To) < + oo

oc4 ccONo

The class & satisfies therefore the conditions of IL-2. We proceed to verify
that J(7) also satisfies the three conditions of II-2. '
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II-9. — Lemma. J(7) satisfies the condition (1) of II-2.

Proof. This is an immediate consequence of II-7.

Lemma. J(T) satisfies the condition (2) of -2, i.e., if 7S admits of
an unrestricted factorization whose middle space is a dendrite, then J(T) = 0.

Proof. In view of the strong cyelic additivity theorem of L(T) mentioned
in II-8, we have L(T) == 0. From Theorvem 2 in II-7, J(T) = 0.

II-10. - (Continuation.) In order to establish that J(T') satisfies the
condition (3) of II-2, let us first diseuss two lemmas.

Lemma 1. Given T, 7, (i =1, 2, 3) as in II-5. Assume that Ted. If
I is a closed subset of @ such that ) — E = « | f and T(E)is of measure zero
(i =1, 2, 3), then ‘

J(L) = JI(T, Q) = I(T, o) + J(T, f).

Proof. This Lemma is an immediate consequence of the definition of
J(T, o) and of the section II-6.

Lemma 2. Let « be an open subset of Q. If for Te§, G(T, a) = 0, then
t](T, O() = 0. R B

Proof. It follows from the definitions in II-5, that then for every polygo-
nal region wCa, (T, #)=0 (i=1, 2, 3). From the definition of
F(w, y, 2, u, v, w) there follows then that F = 0. Henece J(T, «) = 0.

II'11. — (Continuation.) We are now ready to verify that J ()
satisfies the condition (3) of II-2. Assume that 7§ admits of an unrestricted
factorization T' = sf, f: Q= Olo, s: D — Hy, where O is the union of two
A-sets 4., 4, and A,n4, reduces to a single point z of O .

Lemma. J(I) = J(sry f) + J(sr, f), where 7., 7, denote the monote retrac-
tions from i onto 4, and from O onto 4,, respectively.

Proof. Let E =fa). Then F is a closed subset of ¢ such that
T{E) is of measure zero (i =1, 2, 3), where 7'; are the mappings introduced
inIL-5. In view of f(@)n(A,— ) 5= 0 (i = 1, 2) we have, setting o = f~2(4, — 2),
f=f*4y—a) that Q — E =a|f. Now from the Lemmas 1 and 2 in II-10
we have that :

1) Jrf) =J(srf, ) +J(sry f, B) = JI(sryf, @),
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since G(sry f, f) = 0. Similarly,
(2) J(sry f) = J(srs f, @) + J(sraf, B) = J(srsf, f).
‘We also have
3) ; JA)y = J(T, o) +J(T, f) =dJ(sr f,a) + I, B).
Combining (1), (2) and (3), we obtain the desired conclusion.
II-12. — Lemma. Assume 7€ admits of an unrestricted factorization
T =sf, f:Q=>95, 5.9l — F,such that Ol contains only a finite number
of proper cyclic elements (, ..., C, with the property that for each i, o — C;

decomposes into only a finite number of components. If », denotes the mono-
1
tone retraction from S onto C; (i =1, ..., n), then

J(T) = > ‘J“(si-;i f.

Proof. This formula follows from II-4, since in the preceding paragraph
we have shown that J(T) satisfies the conditions of II-2.

II-13. — We are now ready to prove our main result.

Theorem. J(T) is strongly cyclicly additive in the following sense. Let
T =sf, [.:Q=>0, 5.9 — E; be an unrestricted factorization of TeS. For
C a proper cyclic clement of O, let ¥, denote the monotone retraction from o
onto C. Then

1) ' J(T) =3 J(sr.f),  CcOe.
Proof. From [8] there follows that
(2) L(T) = 3 L(sr. f), Ccole.

II-14. - (Continuation.) We proceed now to exhibit a sequence of
mappings T, in & which converge uniformly to 7' on Q. Bach T, satisfies,
moreover, the following properties. BEach T, admits of an unrestricted factori-

czation 1= 8,f,, f..Q=>Mon, .. — H, such that

(1) DNw.CcONo (n =1, 2, ...);

(i) 9o, contains only a finite number of proper cyclic elements each
of which is a proper cyclic element of 9i;
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(iii) if C'is a proper cyclic element of Oo,, ORe,— € decomposes into a
finite number of components;

(iv) if for € a proper cyclic element of Dl,, 7™ and », denote the
monotone retractions from ®il, onto ¢! and from 9 onto ¢, then s,74f,= s, f.

Proof. Let n be a positive integer. Since s : Ol — FE, is uniformly conti-
nuous, we have a number ¢ = g(n) >0 such that for all sets Hcol with o(F) < &
we have g[s(E)] << 1/n. From I-12 there exists a PEANO space 91,0 satis-
fying the following properties.

(1) Properties (ii) and (iii).

(2) There is a continuous retraction ¢, from 9 onto D}, satisfying
o[z, t(x)] < ¢ for xedlo.

(3) If for ¢ a proper cyclic element of Oiis,, 7™ and », denote the monotone-
retractions from i, onto Cand from e onto ¢, respectively, then r, = 9‘(0"’t,,.

Define 7T,=st,f If we let $,=8, f.=1t,f, it follows from (3) that,
s = s¥™t, f = sr, f. Now let w be any point of ¢. Then f(w)edl and in

view of (2), g[f(w), t, )] < & Henee o[ To(w), T(w)] = ofsty f(w), sf(w)] < 1jn~

for every we@).
If T, is defined in this manner for every positive integer n, we have that
T,— T uniformly. ‘ .

I1-15. — (Continuation.) Let {7, }be the sequence of mappings in
& as defined in I1-14. We assert that L(T,) — L(T).

Proof. Since 7,-> 7 uniformly,

) ‘ IL(T) < lim int I(T,) .

N—>c0

From (2) in II-13, however, L(T) > Y L(sr.f) = z L(s,1™ 1) = L(T,). Hence

ccOlo, ccOlo, :
(2) L(T) > lim sup L(T,).

1) and (2) imply I(T,) — L(T).
1-16. — (Continuation.) From Theorem 2 in II-7,
1) | J(T) | < ML(T,)  (n=1, 2, ..).

From II-12 and I1-14 there results

(2) J(Tn) = z J(S,, 7.171) .fn) = z J(S'rc f)
ccONo, ccOe

ccOlo,
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Finally, Theorem 3 of II-7 implies
(3) J(Tn) —> J(QT)

Let now & >0 be given. Then there exists a positive integer N such that

(4) | () —J(T,) | < e/2 for n>N,
(5) | (D) — LT, | =| 3 Lsrof)|<¢/2M) for -n>N.
¢,

Now from (2),

FI(D)— S d(sre ) | < | J(X)— L) | + | J(Tn)— D (s f) | <
ccOllo . ocOle

e =y (/s B A U R B Y 26/ L B S90S 3 B RS es BV A L1 SR
N, ¢,

<|J(ID)—J(T) |+ M3 L(sr. )<< g2 4+ Me/2M) == ¢
¢ Do,

for # > N. Since ¢ >0 was arbitrary, we finally obtain
¥, y

J(T) = S I(s7. f).
ccOlo

This completes the proof of Theorem in II-13.

II-17. — In the next two paragraphs we shall discuss a generalization of
the Theorem in II-13.

Let TeF and let T = sf, [0 >N, s Mo - I3 be an unrestricted factori-
zation of 7. It should be noted that we assume now that f is a mapping into a
PEANO space 9o instead of onto . 1f for Ca proper cyclic element of Ol we
denote by 7, the monotone retraction from i onto ¢, then it may happen that
s7, (@) is not contained in X. Consequently, J(sr, f) need not be defined since
the function F(2, ¥, z, u, v, w) is assumed to be defined only for (x, ¥, 2)eX
(IX-7). This difficulty can be overcome as follows. Tirst let us observe that
the function F(wz, ¥, 2, «, v, W), (@, ¥, 2)eX and (%, v, w) any triple of num-
bers, can be extended to a funection Folw, y, 2, u, v, w) defined for all
(@, ¥, )el; and any triple of numbers (u, », w) preserving uniform continuity

17. - Rivista di Matematica,
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and positive homogeneity of degree one with respect to (u, v, w). Moreover,
for -t wt=1, Fyw, y, 2, w, v, w) possesses the same bound as
F(x, 9, 2, u, v, w), (x, ¥, 2)€X, w2-+v*-w?=1. Such an extension can easily be
carried out by a result of E. J. McSHANE [Eutension of ramge of functions, Bull.
Amer. Math, Soc. 40, 837-842(1934)]. For the actual computations see I,
CESARL [An ewistence theorem of Caleulus of variations for mtegrals on parame-
Wric surfaces, Amer. J. Math. 74, p. 281 (1952)].

II-18. — (Continuation.) With any continuous mapping T from
¢ into Z; for which I(T) < co we can now associate a surface integral J,(T)
defined as in II-7 by using the function Fy(z, ¥, 2, u, v, w). For T(@)cX and
L(T) << o0, we have J,(T) = J(T).

The Theorem in I1-13 can now be formulated as follows.

Theorem. Let TeS and let T =sf, [0 = Mo, 5.9 —>F, be an
_wnrestricted factorization of T. If for C a proper cyclic element of Ofo we denote...
by r. the monotone rvetraction from Mo onto C, then

(1) J(T) - z JO(Src ;f)a CC@KQ

Proof. The proof is entirely analogous to the proof given for the Theorem
in IE-13.

Remark. If we denote by 3’ the summation in (1) over all proper cyclic
elements ¢ of Dl for wich Cnf(Q) 5= 0, then

(2) J(I) = 3 J(sro f) .

Proof. If Onf(@) = 0, then in view of the connectedness of f(§)) we have
that 7, f(Q) is a single point in €, and hence sr, f is constant on Q. Consequently,
Jols?s f) = 0. If now C is a proper cyclic element intersecting f(@), then it fol-
lows from T. RADO [9, IT-2-42] that », f(Q) = f(@)nC. Consequently, sr. /(Q)cX
and Jo(sr. f) = J(s7, f). From (1) we infer now (2). )
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