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RICHARD BELLMAN (%)

Dynamic programming and a new formalism

in the Calculus of variations — 1. (*%

§ 1. — Introduction.

~Jn-a-series-of -recent -papers;-see-[1]-and-[3]-where bibliographies-may-be-
found, we haveinvestigated the theoretical aspects of multistage decision proc-
esses of both deterministic and stochastic type. Since these are programming
problems of non-static type we have coined the name «dynamic programming »
to describe them. : A

A fundamental tool in our investigations is the use of functional equations.
The purpose of this paper is to show how this general method may be applied
to the calculus of variations regarded as a multi-stage decision process of con-
tinuous type. Consistent with this initial aim of exposition we shall restrict
ourselves only to the formalism of the method and bypass all questions of rigor
in this first paper of the series. Actually it is not difficult, using classical results
in the calculus of variations, to justify our results and procedures as we shall
show in the second paper. However, we feel that this justification would at
the moment obscure the scene with analytic foliage.

We furthermore restrict ourselves to one-dimensional problems. A treat-
ment of multi-dimensional problems would seem to involve functionals and
functional analysis. A hint of this appears in our corresponding treatment of
integral equation theory, [4].

By use of functional equations we shall obtain partial differential equations
for the extremum values of integrals as functions of certain state variables.
Using these equations we can obtain successive approximations to the extre-
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mum value and extremal curves, and monotone convergence. We shall illu-
strate these points by a consideration of the problem of determining the
maximum of

(1) I) = | P, y) a

0

subject to

=%

T
i

l

(2) = G(z, ¥), z(0) = ¢,

[=%

and the eigenvalue problem associated with

(3) w' + 22 Dt)u =0, w(0) = u(l) = 0.

§ 2. — The Calculus of variations as a continuous decision process.

Before showing why we may regard various problems in the calculus of
variations as continuous decision processes, let us discuss the concept of a de-
cigion process itself.

Let 8 be a spce of some type, N-dimensional FEuclidean or, as more fre-
quently occurs, a function space and P a typical point in this space. Let
{ e, @) }, where () belongs to another space R, be a set of transformations of
point in § into points in S.

Furthermore let D be a domain in § with the property that PeD implies
T(P, Q@)D for all QeR. We shall occasionally refer to P as a state variable below.

A choice of @ is a choice of a transformation and we call this choice a deci-
sion. Asequence of decisions, i.e. asequence of Q’s,{ Q. }, discrete or continuous,
we call a policy. Each policy yields a corresponding sequence of P’s, { P, } , Which
in many cases will be a set of stochastic variables. Considering for the moment
an N-stage process, one where we make N decisions, let F(P) be some function
defined for PeD, and assume that we are to choose these N decisions so as to
maximize F(P ). If{ P, }is a stochastic sequence, then 7'(P) will be an expected
value. This maximum will be a function of P, the initial point, and N the
number of states. We may then write

(1) f,(P) = Max F(P,).
{ Q)
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A policy which y1elds f(P) we call an optimal policy. By asolution toa decision
process we mean the determmfxt-lon of all optimal policies.

Tt is clear that an optimal policy is characterized by the following intuiti-
veh obvious:

Principle of Optimality.. A4n optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision.

Using this principle, we see that the members of the S(,quenoe { 1.(P) } satis-
fies the. functional recurrence relation

(2) Fyia(P) = ng 1,(T(P, Q).

If we have a continuous process where the discrete sequence 1, 2, ..., is re-
placed by a continuous parameter 7', then (2) becomes

3) ©j(P, 8+~ T)=Max {(T,(P), T),
D10, S} .

where T' (P) is the state at time § due to decisions over the interval [0, §], and
we maximize over all policies over this interval. A more detailed discussion
may be found in [1] and [3].

Let us now show that we can transform a general class of problem in the
calculus of variations into continuous decision processes. In some cases, the
transformation is almost immediate; in others it requires the introduction of
additional state variables.

Consider the problem of maximizing the functional

(4) J(w) = f Pz, o, t) dt

The classical approach is to obtain variational conditions which characterize
a local maximum, @, by considering J (@ -+ ex) for small ¢ and suitably chosen
2. This is modelled after the finite dimensional approach, and considers the
extremal curve, », as a point in function space.

Alternatively, we can consider the choice of () as a continuous decision
process where we must choose our continuation along z(t) at each time #. That
is to say at each time ¢ we determine da(¢)/d¢ which in turn determines the
continuation of the curve. '

In geometric terms we are determining an extremal as an envelope of tan-
gents. This is the approach of the theory of dynamic programming as contras-
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ted with the classical approach which views a curve as a locus of points. Our
emphasis then is upon determining the «im kleinem » continuation from a
generic position rather than the «im grossem» continuation from a fixed ini-
tial point. ' ,

Since we are exploiting the duality of Euclidean space, we might expect
that this duality should manifest itself analytically by means of the theory
of characteristics of partial differential equations, and this is indeed so.

It seems reasonable to expect also that the combination of both approa-
ches should yield more than just one or the other, and this also seems to be so.
Particularly the concept of a policy, and the further concept of « approximation
in policy space», seems to be fruitful.

For those who are interested in seeing further applications of the theory
of dynamic programming, we recommend the papers [1], [3]. The results con-
tained in this paper were announced in two Notes [5], [6].

§ 3. — Applications — 1.

As an application of the concepts which we have discussed above let us
consider the problem of determining the maximum of

1) , J@) = [ Flz, y) .
. 0
subject to the constraint
© dee J— G 4 O e
2) = = G,y #(0) =c.
We set
(3) ' " Max J(y) == f(¢) .
Then, we have
@ flo = Max [[ B, y) @+ [ P, y) @i

DI0,s] o s

where D[0; s] is a choicé of y(t) over the interval [0, s].
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Employing -the principle of optimality cited above, (4) is equivalent to
(5) fle) = Max [| Fz, y) dt - fle(s))].

D[0,s] o

Let us now assume that f(¢) has a continuous derivative and that y(¢) is conti-
nuous in £. Then, (3) yields :

(6) fle) = Max [s F(c, y(0)) + f(e) + s G(e, y(0)) f'(c) = o(s)],

w0

a8 § — 0 using the consequence of (2), ¢(s) = ¢ 4+ s G(c, y(0)) - o(s).
The limiting relation is

{(7) 0 = Max [F(c, v) + Gle, v) f'(e)],

“where we have set for typographical convenience v = y(0).; The maximum o¢-
curs at the values of v determined by .

(8) 0= F,+ G, f(c).

Hence, for the determination of v = v(¢) and f'(c) we have the two simulta-
neous equations

9 0 =F +Gfe)y, 0=F,+G7f@.
These yield, upon elimination of f'(c),

- F(e, v) e, )
(10) |
| Fole, v)  Gule, v) |

as the equation détermining 2 as function of ¢, This function yields y(0) as
a function of #(0) for any initial point or generally, ¥ as a function of # for any
t. To determine x and y as functions of ¢, we return to (2) and use the equation

do

(11) e Gz, y(x)), z(0) = ¢,

to determine x(t) and thus y(f).
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It is interesting to observe that # and y as functions of ¢ may be quite com-
plicated, yet y may be simple function of #. Thus the solution in terms of op-
timal policies may be much more meaningful and informative. Essentially,
¥ a8 a function of w is an instrinsic equation of the curve, much as the defini-
_ tion of a circle as the locus of points equidistant from a given point is an in-
trinsic definition. - :

If G(x, y) is taken to be negative for all values of x and Y, equation (7) is
susceptible to a very interesting interpretation. We have

(12) 0> Fle, v) + Ge, ») f'(e)
for all v with equality for at least one value v = »(¢). Hence

(13) f'(e) = Fle, 'v)/{-f Gle, v) }

with equality for at least one value, which implies
(14) f'(¢) = Max [F(e, »)/{—G(c, v)}].

If we think as the original process as an economic process, then the interpreta-
tion of (14) is that at each time we proceed so as to maximize immediate
« gain» over immediate « cost. » .

It may be verified that (10) is a first integral of the EULER equation derived
used the classical variational techniques, and (14) is again equivalent to the
‘BULER equation.

Applying the same technique to the two-dimensional problem of maxim-

izing

(15) J(Y1, Ya) = , By, vy, yi, ) &

[

sﬁbject to the constraints

da,
i Gy, Ty Y1y o) 2,(0) == ¢,

dx,
Fri H(wy, @y Y1y 4o)s 75(0) = ¢4,

(16)
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we obtain the equation

Pley, ¢, u, v) G(ey, Coy w, V) Hiey, €2y u, v)
(17) r, G, H =0,
Ft’ G!? H1

connecting % == 2,(0) and v = 2,(0) .

It is again easy to verify that (17) is a consequence of the two EULER equa-
tions.. We have not been able to the present to obtain another equation which
will yield expressions for « and » in terms of ¢; and ¢, and thus solve the original
problem without the intervention of differential equations.

b

S

§ 4. — Applications - II.

Let us now consider the more general problem of maximizing

z
(1) o](y) = J F((G7 Y, t) di,
0
subject to the constraint
dx
(2) e Gz, y, 1), #(0) =¢.

We imbed this problem within the problem of maximizing

T

3) . J(y) = J B(w, y, 1) di,
subject to the constrairt

du )
(4) - ?ﬁ = G(.’L’, Yy t)y .’I)((L) == 0,

Keeping 7 fixed we may write
ping )

(5) ’ Max J(y) = f(a, ©).
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The functional equation for f is
at-8 '
(6) fa, o) = Max ([ Flo, y, &) & + fla + 8, o)),
Dia,a+S8] a

which yields, following the same formal procedure as before, in the limit as § — 0,

(7) 0 = Max [F(e, v, a) + fut Gle, v, @) f.],

where v = v(a, ¢) is the value of ¥(0).
From (7) we obtain the two equ'mons

0 = Flc, v, a) + fu+t Gle, v, a) Jes
(8)

0::_F1, -+ thr

Solving for f, and f,, we obtain

fe= ——'FU/IG': P(e, v, a),
(9)

fo= (FG,— F,G)/G,= Qc, v, a),

with P and ¢ known functions of ¢, v and a. Equating fea and f.., we obtain the
first order partial differential equation for v,

(10) P,v,4 Py= Qv'vc+ Q.

It may again be verified readily that the characteristics of this. equation are
equivalent to the EULER equation obtained from (3) and (4). This result carries
over to the more general multi-dimensional situation. Here, however, the
proof of the equivalence is much more complicated, see OSBORN [8].

The value of v at @ = 7' is obtained by maximizing F(e, ¥, T) as a function
of v,

o

§ 5. — Constraints ~ 1.

In many problems of interest in physical, economic, engmeeung and direct
analytic applications, a forthright application of the eclassical variational
technique is not possible because free variations are not alw ays pexm1ss1b11e
Problems of this kind occurin many physical situations when we impose realis-
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tic bounds on velocity, acceleration or radius of curvature, and similarly in
mathematical economics when we impose bounds on rate of allocation, and so
forth. ; )

Let us consider a simple problem of this type. We wish to maximize

() T = | Pla, y) d,

subject to the constraints

da;
i Gz, ¥y), 2(0) = ¢,

(3) fle, T) = Max J(y).
Then, as above, f satisfies the equation

4) fp= Max [F(¢, v) + Ge, v) f.].

0svsc

We have in another place, [7], discussed this problem and obtained the structure
of the solution under various assumptions concerning F and &, using both the
classical method and the techniques of dynamic programming.

Let us proceed formally here to illustrate how the equation in (4) may be
used to obtain an over-all view of the solution. We shall assume that F(z, y)
and G(x, y) ave concave functions of y. Then F(e¢, v) + G(c, v) f. is a concave
function of » provided we assume that f.>> 0. This will be true if F(z, y) and
G(x, ¥) are monotone increasing in . : ‘

Since a concave function has a unique maximum which must occur at
v = 0, ¢ or a point in between, we see that the solution will have intervals where
y =« followed by intervals where 0 <C y < @ followed by intervals where y = 0
or @, and so on. An interval where y=0 cannot be followed directly by or fol-
low directly one where y = x. If we wish to obtain more information concer-
ning the structure of the solution, assume that f,is monotone increasing in 7.
In particular, assume that f.— co as T oo, and also that F,<<0, G,>0, for
all e : : ‘



202 R. BELLMAN

At T =0, F,<< 0 and v = 0 is the maximum value. As T increases, F(c, v) -+
-+ G(e, v) achieves a maximum inside the interval [0, ¢]. As T gets still larger
G, f.-- F, becomes positive for all v in {o, ¢]. Hence the maximum stays at
o= C, v

In (@, y) space this means that the solution has the structure

() ¥ ==y T = Ty(e).
(5) () Oy <e.  Tyle)< T < Ty(e),
(¢) ¥y =0, 0 < T < T'yfe).

As we have mentioned above, rigorous details may be found in [7].

§ 6. — Constraints — II.

Let us now consider the same problem with the additional constraint -

e
(1) [yadt<m.

a

2) Max J(y) = f(a, ¢, m).

The functional equation for f is now

(3) .= Max [F(c, v) + G(¢, v)f.— v fu] .

0 v=c
Here the analysis is more. difficult and we have not as yet investigated any
particular problems using this technique. We have, in the meantime, developped
a new method, combining the functional equation approach whith LAGRANGE
multipliers, wich is particularly applicable to problems of this type.

§ 7. — Successive approximations.

o

Returning to an equation such as (3.5), it is tempting to envisage the use
of -successive approximations-in solving this equation. "If we choose an initial
function fy(¢) and define

7 ki
(1) © o hle) = Max[[ F, y) at + fole(S)],
Do, 8] 0

we see that in the limit as 8 — 0 we must have f(¢) = foc).
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At first sight this would seem to render the use of successive approxim-
ations impossible. The answer is that we must approximate in policy space
rather than function space. What this means is that we must concentrate on
the function v(e¢, T') rather than the function f(e, T).

Let us, to illustrate this point, discuss the problem of maximizing

(2) J(y) = fTF(ﬂv-, y) dt

subject to dz/dt = G(z, y), ®(0) =c¢. We choose an initial approximation
vo=Vy(c, T'), which is equivalent to y,= y,(x, I —1t). Using this value of y,, we
compute v, by means of the differential equation

) d:r" y m
(3) e G(a, yolay, T — 1)), 2y(0) = ¢.

Having a, and y, we compute
r -
(4) , fole, T) = [ Flao, yo) dt.
0
Thls funection, f,, satisfies the partial differential equation

(9) fOT:: Fle, v) + Gle, vo)foe-

To determine the next approximation to an extremal %, an «optimal pol-
icy », we determine v,{c, ) as a function which maximizes

(6) ' . Fle, v) + G(C7 %) foc

Let us for the moment assume that v, is unique. Using v, we compute =z, and
f. as above. Having obtained f, we compute v, as the function v = v,(¢, T)
which maximizes

™ | LB )+ 6 ) fa

and continue in this way, deriving a sequence of approximations to f, { fn }, and
a sequence of approximations to v, {vn }
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§ 8. — Monotone approximations.

Let us now show that this sequence of approximations is monotone increas-
ing. We shall in the second paper of this series discuss the convergence of the
process. This fact has important theoretical and computational advantages.
We have

fir= Flc, v;) + Gle, vy) fuoy
&) ) o o ,

for== Fle, v,) + (;"((’7 vo) foe< e, vy) == (G ) foc -
Hence
(2) flr‘“for >G(C7 ‘vl) (flc"‘“ fﬂc)?

and from-this follows that fi>f,

§ 9. - Eigenvalue problems.

Let us now turn to the problem of ascertaining the valueb of A which permit
a non-trivial solution of the equation

(1) w' -+ 22 P(t) u = 0, #(0) = u(l) = 0,
to exist.

Under light conditions upon @(#), this is equivalent to the problem of deter-

1
mining the relative minima of f %'? dt subject to the constraints
[}

(2) ‘ | J}(D(t) u* dt = w(0) = u(l) =

. 1
or, conversely, that of determining the relative maxima of { D(t)u* dt subject
to the constraints

3) ‘ ' J w'tdl =1, #(0) = u(l) = 0.
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In this form the problem is quite similar to the the problenis we have consid-
ered above.

There is, however, one major difference. In the previous problems, it was
immediately evident what the state variables were. In this problem, as we
proceed along an extremal, the type of problem changes since the condition
u(0) = 0 is violated immediately. . :

Consequently, we must ‘mbed this problem'in a class of problems which
possess the requisite invariance properties. There are several ways of doing
this.

The first method we shall employ is that of determining the minimum of

(4) J(u) == fT'u-"l dt.

Subject to the constraints

(a) (T(D(t)u2 dt <k f (T —)P(t) dt =1,
(5) ‘ 1; 4(1 .

(b) u(a) = w(T) = 0.

As we shall show below this will provide us with an invariant formulation. The
state parameters are a and k, keeping 7' fixed. Let us write

(6) Min J(u) = f(a, k).

u

We shall derive a partial differential equation for f below which will be non-
linear. Nevertheless it will be useful for computational purposes, and can be
utilized to obtain power series in k.

In order to obtain a useful approximation to the solution of this equation,
we can if we wish consider the simpler problem of determining the minimum of
T

‘ %'t d¢ subject to the constraints

a

o a

S (a) fuﬂ At + k f(T —tyu(t) df =1,

(b) w(a) = w(T) = 0.
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For a close to 7' we may write, for a <t < 7,
(8) - D) = D(T),
and so obtain (7) with k'= k ®(T). A better approximation would be to set
(9) D(t) = H(T) + (t— T) DT,

a device used by LANGER in connection with the WEB method. Although the
coefficients are no longer constant, the problem with & = 0 is soluble in terms
of BEssEL functions of order 1/3.

~§ 16. = The approximation of (9.7)."

Let us now consider the approximation of (9-7) above. We write (1)

T

(1) f(k, T) = Min [ ' d¢.

w0

To obtain a functional equation for f we write, following the method we have
employed above,

5 Ser
@) fy 8 +T) = [urat + [wear,
0 §

for an extremal . We now wish to express the second integral in terms of k*
and 7', where k*=k*(k, 8, u).

Since we are interested principally in the partial differential equation for
f; we shall restrain ourselves to the case where § is small. From (2) we obtain

(3) ik, 8 + T) = 8 uw'*0) «—Tu dt + of8) .

s

(!) We are now keeping the lower limit fixed and using the upper limit as a state
variable.
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We must now perform a change of variable, transtorming u into a xmmble
v which i zero at t =S and t =8 + T'. :
We set

(4) o(t) = u(t)— S w'(0) (8§ + T— )/t

Then
S v(8) = u(8) — Su'(0) -+ o(8),
5 .
) (S + T) = u(S +T) =0.
Hence to terms in o(8),

() W) =S A ) =
The expression for w'(z) is

(7) w'(t) = v'(t) — S %'(0)/T,

which yields

s+T ST S+7

(8) [waz —jv’“dt 231}‘ )/ o At + o(8) = /v at + o(S).

Combining this with (3), we may write
s+7
(9) flly 8§ + T) =8 «'*0) -+ [ v'2dt + o(8S).

It remains to convert the constraint of (9-7a) into one involving v. We have

S+r ST

(10) fuﬂdt —‘;—kf(S:*T—t)udt_—_
& . s

S 8
‘=1~—fu2dt-k [(8 +T—tudt =1+ o).

8
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- Replacing «(?) by its expression in terms of #(¢), the above equation yields,
after some slight simplification, '

S+7 B+1
’ 28u' (0
(11) /@2 at (7 + -—S-—';,(—)>f(s +T—to@) A& =1—kSu(0) T3 + o(8) .

To normalize this relation so that it will have the form of the original constraint,
we set

(12) o(t) = w(t){ 1—k Sw'(0) T2/6 }.

The relation in (11) then becomes

o . SHET S S N £
28u/(0 '(0) k2T :
(13) . fwzdt + (k + ‘5’;( ’vsu(é f) [(.s' Tty w) dt =1 - o(S),
with
(14) w(8) = w(§ + T) = o(S).

Furthermore

(15) fk, 8 + 1) = Sw'*0) +{1—&8 u'(0)T2/6 }'szu' dt + o(8).

§ 11. - The functional equation for f(k, T).

We are now ready to derive the functional equation for f(k, 1.
Combining (10.15) with (10.13) and (10.14), we see that we have

@) fky 8 + T) = 8u'%0)+

! 2 1 3 o, 22
+(1__‘7i§_u_~(:9~)~1_’)}((k7'_25’;(0)~A‘3u(Oﬁ)lzT ’ T)"ro(S).

\
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Since «/(0) is to be chosen to minimize flk; 8 + 1), we obtain the basic func-
tional relation ‘

@) fky 8 +1T) =

kST 28v  Svk T
==Mm[sw+(r— b >4k+ A

T T T)} -+ o(8),

where we have v = w'(0) = v(k, T).
Expanding both sides in powers of S, this yields in the limit as § — 0,

The minimum is assumed for

L[/2 kean. kT

T 6 6

Substituting in (3), we see that f satisfies the nonlinear partial differential
equation

) 11/2 k2Te kT2 f]2
e

§ 12. - Power series in k.

For k =0, the characteristic functions are

(1) U = V% sin (2zzm/T) (m=1, 2,...).

T . -
yielding as the minimum of f w'*dt the value
0

(2) ‘ T 4u T
Let us then attempt to find a power series for fk, T') in k,

(3) f(ky T) = Jo+ kJy+ BT 4. .

14, — Rivista di Matematica.
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Substituting in (11:5), we may determine the coefficients recurrently. In
particular

Jy=av8/VT,

(4) n? 1
e o Ja=—= =0T
Continuing in this way we can obtain an excellent approximation to f(k, T)
for small & and 7. Having the solution for small 7' we can use numerical integ-
ration to determine it for larger values. These results are useful in connection
with the approsimation @(a) =~ @(7T) discussed above.

§ 13. — The functional equation in the general case.

Using the same methods as ‘Lbove we may shm\ that the funcuon fa, 7.)

as defined by (%)

(). fla, B) =Max [[ St + k[ (1 —nd()u

“

subject to the constraints

(a) flu’z dé = i,
2)
(b) w(a) = u(l) =

satisfies the nonlinear partial differential equation

2 kG
(3) fa= (+—_(“-)) (e fe— 1)
where
(4) f 1—1) @(t

The advantage of considering this' formulation rather than the one abovc
resides in the fact that f(a, k) ——>O as a — 1.

(2) We bave now reverted to usé of the lower limit.
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§ 14. — The higher eigenvalues.

There are several methods by which the problem of determining funetional
equations for the higher eigenvalues may be approached, based upon min-max
characterizations, or upon variational representations involving restraints.
We shall discuss these questions-at a later date.

§ 15. — Eigenvalue problems. Second approach.

In the first approach above we maintained the boundary conditions u(a) =
= u(T) = 0 at the expense of introducing the somewhat artificial constraint

T T

1) [ @) w2 dt + & J‘(T—t)@(t) wdt = 1.

~ In lieu of this, let us consider the problem of determining the minimum of

T
f w'® dt subject to the constraints

a

(a) f@(t) wdt =1,
(2) a
(b) u(a) =k, w(l)=0.

The procedure is very muech as above, and we derive for

-
3) N fla, k) =Min [ > dt, .

the nonlinear partial differential equation

(4) f,=—1i4 + k2 D(a) /2 — k: D(a) f .

§ 16. — Monotone convergence of eigenvalues.

Using the concept of approximation in policy space, we can now obtain a
monotone sequence of approximations to the eigenvalues. Let us consider, for
example, the problem of determining the maximum of

a+r a47

1) Jw) =] o) wrdt +k [ (T +a—0)P(t) u dt
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subject to

‘ (@)  wla) =ula + T) =0,

2 a+T
@ ?(m [wrat =1.

Using the above technique, we obtain for

(3) fla, &, T) = Max J(u),

"

the partial differential equation

“ Mk G, )

where .

) Hoo, )= fork o[+ 0] 00 1],
with

(6) mm:%f&+amw¢mM

a

To obtain a sequence of successive approximations, we make our first ap-
proximation in policy space,

(1) Vp== u;(a) = vpla, k, T).

Using this function », we compute f, as the solution of the partial differential
equation ‘ ) o '

(8) ) fOT:H('voy fohs fola, k, 0) = 0.
Now choose v,= u;(a) as the function of v which maximizes H(v, f,),

9) vy ={ G(a) + 2foi) T }2(fs— Kforl2) -
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Using this value of », we compute f, as the solution of
(]—O) f]T: H(vu f1)7 fl(a'a k, 0) = 0.

and continue in this fashion.
The proof that f,< f, is now almost precisely as before.
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