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ROBERT A. GAMBILL (*)

Criteria for parametric instability

for linear differential systems with periodic coefficients. (**)

Introduction. In a previous paper [2} (%), we have considered linear
systems of ordinary -differential equations: : ’

@ - ¥i + 0ty + 2 3, ealtlys = 0 (G =1,2 .y n)
. 1
" where: (A) oy, ..., 0, are distinet positive numbers; (B) 1 is a small real para-
meter; (C) @u(t) are real periodic functions of period T'= 2njw, with
: +® 4+
J‘P:h( )dt 2‘0 : ‘P;h Zh :hkelkw" 2: Icihkl <0, G,k = 1y ey )3

D) mw #0; = o (J, h=1,...,n;m=1,2,..). As we have pointed out in [2],
condition (D) assures that no resonance occurs between the small periodic restor-

n

ing forces 2 Zh @ ¥r and the harmonic oscillations of the differential équatidns
1 . _ ’ ) .

Z’]j -+ 0’; y; = 0.
For n=1, system (1) reduces to the well known HILL equation

(2) B 4 ot + Ap(tyy = 0.

Here, condition (D) reduces to mw =20 (m =1, 2,...) and it is known that
under conditions {(A), (B), (C), (D), all solutions of (2) are bounded in (— oo, --0o0)
for every A sufficiently small in absolute value. i
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However, for systems of the form (1) with » > 1, the situation is some-
what different. Conditions (A), (B), (C), (D), are not enough to ensure that
every solution of (1) is bounded in (— oo, -o0) for |A] sufficiently small, as
it has been proved by L. CEsari [1], by an example. Nevertheless, additional
general conditions on the matrix @ =|@,(t)| assure the boundedness of all
solutions of (1) under conditions (A), (B), (C), (D), and for |A] sufficiently
small. These additional conditions are essentially conditions of symmetry on
the matrix @, namely either («) @(f) is even [@u(t) = gu(—1) (j, h=1, ..., n)],
or () @(t) is symmetric [@;(t) = @) (G, b= 1, ..., n)] [1], or (y) @ = Py+¥
where @, = diag (D, ..., @;) is the direct sum of blocks @, ...,P,, each sa-
tisfying (o) or (f), and the elements of ¥ on and above [or on and below] the
blocks @y, ..., @ of @, are all zero [2].

We may mention here the concept of parametric stability, in the line of
L1aPoUNOFF, used in [2]. We say that the solution [y; =0 (i =1, ..., n)],
with 2=0, of system (1), is parametrically stable in (0, 4-o0) or in (0, —co)
provided; given &> 0, there exists a > 0, such that for every |i| <,

|9:00)]< 68, |5:0)| < 8, we have |y(t)|<e, |y:dt)|<e for all 0 <t< +oo
[— o<t < 0]. If conditions (A), (B), (C), (D) and any one of the conditions
(@), (B), (), are satisfied, then the solution [y; = 0 (i =1, ..., n)] of (1), with
A =10, is parametrically stable, as we have seen in [2]. :

In the present paper, we shall see that if such additional conditions-on
the matrix @() are not satisfied, it is likely that system (1) with » > 1 has
unbounded solutions in (0, +-co) no matter how small || is (1540), and that
the solution [y, =0 (i=1,...,n)] of (1), with 1= 0, is parametrically unstable.
(This is a rather unexpected situation since by (D), no particular relation
exists between the period of the small periodic restoring forces and the periods
of the harmonic oscillations, that is, no resonance is expected.) We shall give
a general criterion for this situation, namely, we shall define certain functions
Pyjy Pajy ... (§j=1,..., n) and we shall see that the condition for the mentioned
parametric instability is that any one of the expressions P,;, P, ... (j=1, ..., n)
is not zero.

We shall use consistently in the next sections the concepts and formulas
given in [2]. For the sake of brevity, we shall refer to them by quoting section
and formula number.

§ 1. - Explicit expression for the imaginary part of 4, ,.

We have seen in {2, § 1] that the characteristic exponexits 7:{, Tyy ooy Ton
of system (1) with conditions (A), (B), (C), (D), are.given. by the system of
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equations
10y == Ty — AQy{Tyy oery Tan, A)
e 3Gy == Ty — Ap(Tyy ees Tany A)

(1.1)
?:Un = Tap—1 ™ )&dzn__l(fl, eeey Tapy l)

— 10, == Top— Ay (Tyy ooy Tany 4) 4

where each dj(ty, ..., Tan, 4) is a holomorphic function of A, and of the 2n
variables 7y, ..., 7,,, for |1] sufficiently small, and 7, ..., 7., belonging to con-
venient small circles C,, ..., C,, with centers io,, — 0y, ..., i6,, — 16, respec-
tively. We have -already seen in-[2, § 2] that if we replace 7y, ..., 7o, bY i1,
— ATy, ooy Tny — UTaj Tyy ..., To Teal, then the equations (1.1) are replaced by
the 2n equations »

. . M 3 . . ,
ioy = AT — g d, (T, — 1Ty, ey 170y — 1Ty, A)
1
. . A . ) , ,
— g, = — i1, + o dy (371, — 4Ty, oy 1Ty — T4, A)
1
(1.2)
. , M . , . .
0= ATy 5— Ay Ty, — 1Ty ey 9T, — Ts, A)
n
. M . , . .
— 0 = — 1T + 5— y o(TTyy Ty y vury TTny — 4Ty A) .
n

For the new functions d, ,(it,, —171, ..., ¥, — iTs, 4) We have seen in [2, for-
mula (2.9)], the following expression:

IS

n 2
(1.3)  dy; =32 Dhan, 20 (— 1 ey e {0 [(— 1Tt R + 7]} +
1 [}] 1

2

n
+ Z tys s zlr,-}-kg—%k; lz.‘u,,ug("—l)ur!-“: C,'i,k‘ cc,t,k._. Gtzjka{o'txovt2 [(_1)u‘7:gl+(k2+ ks)w +T:'] '

1 0

Do
I

. [(“1)““’:;2 + ko +Ti]}—1 + O(#) (j=1,..,n),

where the indices k; are never zero and in the sums, all terms are excluded
whose denominators are zero. In (1.3), put k, = — %, in the terms of order 4,
and k, = -~—k,—k, in the terms of order A2, then using the property that

+ oo

Cine = Cj—r, €xpress all sums Zk as sums of the form Zk In the so obtained
. Fart ; < = :

expression, pub ¢ = (@ — 0ue)/2, k> 0, where @, by, are the coefficients
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of the real FOURIER series of g;,(t) = % (@ cos kwt-+by,, sin kwt). We now
1

extract the imaginary part from this expression, obtaining

V A S 22 7 i2 J
(1.4) Im (d,,;) = =3 12 12 o B, o™ Wi, by, ) (— 5;’; 5t L o R gy 12)

;') n (-]
+ o 32 th t: Zf» s { o T Wb ey g, btga‘kg = By, Cuin, b:pt,,.k2 -+
1 tz

@y, G, bjtl,k T T w1y Do, ke Do)
1y i22 £511 £.22 {p711 i1z ghizt 12712 { 921
([, + ORI [6™ 4 o] — 0w+ S, 003 + 7)) +
+(— a’ftpk,_k,a’txt:kgbtzikg + B st gy By i, bt,t._,z.-, -

= e, B, b:‘tx.k,—k, - b:‘tl,k,—kz bzlt._.kzl?t‘jka) ’

. ’([61”‘22. + 6m}f,1+k ] [6t3722+ 51 2711 l—a}t;:izk‘ 6}2}}_23] [(St 112 +6§:§121]} +0(;;3) e

ks —;-L,
where

[ 00" = (v, + ko + 7)1, S = (v; + ko — 7,)1
1.5
(-2 [ &% = (z;— ko + 7)1, O = (1;— ko — 1,)71 .

We have therefore

(1.6) Im (dy,5) = Py (T2, ey Ta)A + Py y(Thy ony Ta)A® + i
We shall consider now the numbers

.7 Py = Py (01 ...y 0,) - (=1,2,., 05 k=1,2,..)

obtained by replacing the variables 7,, -y Tn by the numbers oy, ..., 0, in the
coefficients P, ; of A* in (1.6).

§ 2. - A criterion for parametric instability.

- Theorem I. Consider the differential system
(2.1) o ?/J+G?/:+lzn§0m =0 - (=1,.,mn),

where the conditions (A), (B), (C), (D) of the mhoducmon are satisfied. If any
of the numbers P, j(oy, ..., 6,), Py,5(01y <oy On)y ooy are mot zero, then system (2.1)



CRITERIA FOR PARAMETRIC INSTABILITY FOR LINEAR DIFFERENTIAL ... | 41

A

has unbounded solutions in (0, --c0), no matter how small 18 (A5£0), and the
solution [y; =0 (j =1, ..., n)] with A =20, is parametrically unstable.

Proof. As we have seen in [2], the characteristic exponents i, ..., Tan
of system (2.1) are given by (1.1). Let us now assume, as we did in [2, § 2]
that (t,,7.); (Ta, Ta)y ooy (Tan—1, Ten); are pairs of complex conjugate, purely
imaginary numbers. Then the system of equations (1.1) is replaced by the
system (1.2). Let us write (1.2) in the form

io, = ity _2—a: R1(dy,,) —L:-:Im(dl 1)

— g, = — i1, +:;1 RI1(d, ,) : Tm(d,,,)
(22) ........................
ig, = Ty --2—— Rl(d,, )+ 5% Im(d,,,)

— 0, = — i1, +—; R, ) ——G Im(’«‘i n)-

Now the condition that one of the numbers Py, = P(oy, ..., 0,) 18 not zero,
implies that Im (d;,;) = 0 for all real 7; in a convenient small neighborhood
of o; (j=1,..,n) and for all |1] sufficiently small, and thus equations (1.2)
cannot have a real solution t,, ..., 7,. All this can be restated by saying that
the hypothesis that the characteristic exponents 7y, .., T.. are two by two
complex conjugate and purely imaginary has led to a contradiction. Hence,
at least one characteristic exponent must have a non-zero real part. Since
for systems (2.1), the sum of the characteristic exponents is zero [2, § 1], we
have finally that at least one characteristic exponent has a positive real part.
Thus, at least one solution of system (‘) 1) is unbounded in (0, +o0). Thereby
Theorem I is proved ’

§ 3. ~ Examples.

Example I. Consider the system

[ % + oy + Alsin wt + sin 20t)y, = 0

3.1
6-1) i yz+02y2+}.(smcot+2sm2wt)y1+lsmwt yz_().

We see here that bl..1 = bypy == Dyyy = bypy = 1 b212 = 2 b= @ = 0 other-
wise, and , \

3. ;
—_ . 2 2 2122 2111 (2112 2121 Q2122 92111 (2112 <2121
P, (0,, 02) = 5 oiw(— 20— o] + gz),éa- o; ’ o; 62 O O 0y 65,
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where, in 8], replace everywhere 7, by o,. For a fixed pair (a1, 03), Pyy(0y, 03)
is different from zero for all w with the exception of the value w for which
— 2w*— g} + 07 = 0. Thus, with the possible exception of this particular
value of w, system (3.1) presents parametric instability according to Theorem I.
Even at that excepted value of w, we may say that we have parametric insta-
bility provided we consider both A, w as parameters. This example shows
that condition (x) of the introduction ecannot be replaced by the condition
that the matrix @ be odd.

Example II.- Consider the system
[ % + oly = Asinwt-y,

(3.2) i
| %+ 02y, = Acoswt-y, .

We see here that by = @y =—1, aj= by = 0 otherwise, and

2122 1 2112 (212
P = woy 671 6T 6712 07 52 0

Thus, system (3.2) presents parametric instability for every w. This example
was studied by L. Cesar1 [1], for particular values of 01, 0, and w = 1. The
~numerical analysis. used there has been replaced here by the general discussion
above.

Example III. Consider the system

(3.3) {[ i’}1+0'i.7/1 +lsinwt-y2:_40
. L Yy + 63 Y2 + A (sin wt — cos 2wt)y, + A cos wt -y, = 0.

We see here that ay, = by = by =1, @sp=—1, @ ="Dbj =0 otherwise,
and the number P,,(0;, 0;) relative to (3.3) is the negative of P, (01, 0z) rela-
tive to system (3.1). Hence the discussion of Example I applies here. We
remark that the unstable system (3.3) can be obtained from the stable system

. [ % +6*y, + Acoswt-y, =0
(3.4 . .
: | %2 + 03 9. + A (cos'wt + cos 2wit)y, + A cos wt-y, = 0

by changing symmetric elements of the matrix

. 0 cos wi
D) = R
. cos wt + cos 2wt €08 wi
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relative to (3.4), by a given phase; ie. let @5(f) ~ @(t— 7/(20w)), @u.(t)—
= @u1(t—7/(200)) , Pua(t) = @as(t). We then have the matrix

- 0 sin wt
e =
sin wt — cos 2wt cos wt

relative to (3.3).

Remark. We haye seen in [2, § 2], that the reality of the functions d,,;,
for all real 7,€¢; (j=1,2,..,n), and |A| sufficiently small, is a sufficient
condition for the boundedness of all solutions of (2.1). We remark here, that
it follows from the proof of Theorem I, that the reality of the functions dy,;
is also necessary for the boundedness of all solutions of (2.1).
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