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Periodic solutions of non-linear systems

of differential equations. (**)

Introduction. Consider a system of differential equations of the form

— e

(1) T AT - £GF; € (" = d/dt),

where A is a constant n-n matrix, @ = (L1, Lay .oy Ta)y @ = (G1y -y ¢u) and &
is a small parameter. Differential systems of this type have been studied by
Lixpstepr [10] (1), LiarouNorr [9], Poixcarf [14], MacMitrax [11], DUF-
FING [5], KRYLOFF and BoGOLIUBOFF [7], BULcAKOV [2], and, among many
others, more recently by CoppingToxN and LEVINSON [4]. If ¢ is a small real
parameter and the equation # = A% has a periodic solution of period 27, the
problem of interest is to determine conditions for the exigtence of periodio
solutions of (1) with a period close to 2z, According to the terminology of
PoINCARE, these periodic solutions are called limit cycles. .

In the present paper, general theorems are given (§ 3) assuring the
existence of periodic solutions of system (1) when the functions q,.‘ are ana-
“lytic. A method of successive approximations for the periodic solutions of (1)
is defined and the convergence of the method is proved. This method is
varviant of PoOINCAR®’s method of casting out the secular terms in the
solutions of (1) and is similar to the method used by L. CESARI [3] for linear
- equations with periodic coefficients. See, also, J. K. HALE [6]. By a direct
examination of the approximation series, general sufficient conditions (§ 2)
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are obtained for the existence of periodic solutions of (1) from which then
the general theorems of § 3 (3.1., 3.3.4, 3.4.i, 3.5) are deduced. These theorems
seem to be new (for » > 1) and, with exception of 3.1.4, seem not to be
divectly deducible from known results.

§ 1. — A method of successive approximations.

In the following, we shall denote by ¢, the family of all functions which
are finite sums of functions of the form f(z) = (), — oo < @< -0, where
o is any complex number and ¢(z) is any complex-valued function of the real
variable 2, periodic of period 7= 2zfv, L-integrable in [0, T]. If @(x) has the
FoURIER series,

4
Pl) ~ 3 e,

7= — 0

_then we shall denote the series.. ...

to
fz) = e¥p@) ~ 3 T
N o
as the series associated with f(x). Moreover, we shall denote by mean value
m[f] of f(z) the number m[f] =0 if int 4+ 2 £ 0 for all n, mf] = ¢, if
nt - o ==0 for some n.

We shall also make use of the following theorem: If j(@) = ) e C,
and m[f] = 0, then there is one and only one primitive of flx), say "e“‘(p(t) de,
which belongs to C, and also such that m[ “(,’M(p(t)dt]:: 0. Moreover

+o

(Gat(p(t) dt = eat’l/)((l)) — & z C,,(i?’b’l,’ o “)__1 einrx .

N =5 e SO

For a proof of this theorem, essentially known, see J. K. HALE [6].

1.1 — Description of the method. TLet us consider the system
(1.1.1) ¥ = AT + 0(7; ¢,
where ¢>0 is a small real parameter, A=diag (ic,—ic, 03,... Gy), Y= (Yryeees Ynu)s
G = (1, ¢a); and o > 0, g3, ..., 0, are complex numbers such that imo+06,50
(=3, ..ym; m=0, 41, -2, ...). Moreover, we assume that

<} ©

(L.1.2)  qi(F58) = 2 'qul(y) = 2 & 3 gpetwyMeytn (j=1,2,.., n)

k=0 =0 m,.m, =0 '

for e <&, ly,|l<K (G=1,2,.., n).
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Let 2f = min|imo -+ o‘”! (m =0, 41, ..; =23,.., n). We know that
p>0. For each u let I, be the imaginary part of o,, let I= max [I,],
and M be an integer such that mo >2i 4+ 28 for all m > M. If we choose
an arbitrary real number v >¢/2 such that [v—o| < /M, then for all
|m| > M we have limt -+ 0,| > |mz + I,| > (1/2) |m|oc—]|I,] > I 4-f—I=p>0.
For all |m|< M we have also |imt + ¢, | = |im(z— o) -+ (imo + 0,) | =
> 28 — m(f] M) > B > 0. Thus, for all m and g, we have

(1.1.3) limr 0, Z>F>0.

Let us replace o by 7 in (1.1.1) and consider the auxiliary equations
(1.1.4) ¥ =By + q(T; o)
where B = diag (it, —1T, Ogy ..., On).

By a convenient modification of the method of successive approximations,
we shall determine a solution for the equation

s ey @)Y+ £4(75 &) -

where «,, a, ave constants and Iz, & a4, a,) = diag (f;, f,, 0, ..., 0) and
feo=fulr, & ay, @) (k=1,2). If it is possible to choose 7, a,, « in such a
way that B-— eF= 4, the solution of (1.1.5) will become a solution of (1.1.1).

Before proceeding, we shall introduce some notation which is similar to
that introduced by S. LerscuETZ [8]. We shall denote by ¢,; the coefficient
of em 1 (m=1,2,...) when ¥, ..., ¥, in ¢;(¥y) are replaced by

(1.1.6) Y1) = @, (1) - exy,(8) + 2, (1) + ... (=1, 2,..., n),

where each @, (1) is independent of & It is clear that each s,,;,=
= Sui(@oy Tiy ooy Tpyey) (F=1,2,..,m; k=0,1,2,...; m=1,2,..) is a
power series in the components of @,, @y, ... ,@,—; with coefficients which consist
of positive integers and the coefficients in the expansion of ¢ (%).

Moreover, we shall denote by s,; the coefficient of ¢"' (m=1, 2, ...) when
Uiy -oey Yo 0 q;(¥) are replaced by (1.1.6). From (1.1.2), we then have

(1.1.7) Sm:i == Smio + 8!71—1,7’,1 + + 'S.l,j,m—l .
In the following, we shall consider only the case where each s,,;., and,
thus, each s,; is a power series in ¢, ¢~ . Then each $,;, $.; is contained

in the class €, and for convenience, we put

(1.1.8) ay S = M e 801, oS o = ML 8 ,01],
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and

‘ Sy = mle” s, ], s S, = m[ €75, ],
(1.1.9) _ o
l 8= g (Sry Say 0y ey 0) (m=1,2,...),

where a,, 4, ave constants different from zero. Since in the sequel a,, a
will be known complex constants, the formulas (1.1.8) uniquely define the
numbers 8., , Sn and the formulas (1.1.9), the numbers S,,, S,..

.We, therefore, have the result that
(1.1.10) N == Shawo =+ St o1 -+ v = St k=1,2; m=1,2,..).

It is to be noted that if s,,, contains a term in a,e’™, then S, is merely
the coefficient of this term. If s,,, does not contain a term in (zlei", then
m{e” " s,:] =0 and we take 8, =0. Similarly, for S,..

With these notations, we define our method of successive approximations
as follows:

[ Yy = Xy = (a;€"", aye™ ™, 0, ..., 0),
(1.1.11) ' n
Vo= By, 4+ 3 50— (2 8) ¥y (mod em*t), (m=1, 2,...),
k=1 fe==1
where
(1.1.12) Y = Ty -+ &8y ... + &I, ,

@y, a4, are constants different from zero, and in the m™ approximation, we keep
only terms in ¢°, &, ..., e. Note that |a,|, [a,] must be less than K so that
we may substitute in the ¢,(¥).

We make this choice of the zeroth approximation because if some of the
other components are different from zero and of the form ¢°‘, we introduce
the small divisors in our successive approximations. Also, by defining the
method of successive approximations in this manner, we are subtracting all
those terms which would give rise to secular terms. We are subtracting terms
other than the secular terms so that our solution will satisfy an equation of
the form (1.1.5). These extra terms are also the reason for the congruence
between polynomials in the definition.

If we replace 7, in (1.1.11) by its expression (1.1.12) and equate coefficients
of powers of ¢, remembering in the m™ approximation that only terms up
through e are considered, we have
Ty = (a,6'", ae™ "%, 0, ..., 0),

(1.1.13) 1 - N -
l Ty = BT + S — (81 %01 + SaTucs + - —F S0io) (m=1,2,..}
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and we may point out that these relations are equalities and not congruences
as in (1.1.11).

If we let ¢8t= diag(¢’™, e ™, €% ..., '), ePl==diag(e™ "™, ™™, ¢7, .., e7),
then we have the tollomng particular solution of (1.1.13):
l By = (16", aye™ ", 0, ..., 0),
(1.1.14)
l Tp= e’”fe—’”-[(“i,,— Suy) — (81 Ty e = Sy y)] Aty (=1, 2,...),

where the integrations arve always performed so as to obtain the unique pri-
mitive of mean value zero. This is possible since we have already subtracted
the secular terms, i.e., the integrand has mean value zero.

Since we are only performing the operations of additon, subtraction, and
multiplication of terms of the form a.e’™, a,e” ", and since we only integrate
terms of the form

e~ ™ At = (mit — o)™,

we necessarily have that s,,;, @, are power series in the zeroth approximation
gy = 416°%, Tpy = e~ for every m=1,2,... and j=1,2,..., n. Therefore,
we may write

= n — {my,Mg), m m.. — (my,ma) My, M (Mg —ma)iTt
(1.1.15) By = 3 GTeMIgligre = 3 oY aMay ™ ;
uty, M0 my, My Z0
v o . (m. z.,) RTIP  PRN (my,ms) m (my —nindivt
(1.1.16) Sy = 3 QITgigte = 3 ol aay 0™ .
My, My =0 ml,m..¢0
If we repl‘xce Lriy Sriy (B=0,1, m—1), in (1.1.14) by their correspond-

ing expressions (1.1.15), (1.1 16) and mtegmte to obtain the unique primitive
of mean vﬂue zero, remembering that S <%, is contained in ¥,, we obtain

e 3 s 1 ok o
A Z [Q(;Zzhl\ ?— Sllo‘gz—ll)1 e — B 10‘?1 - )] [ — 1yir]™! ‘plaiwoi
‘ By =0
(1.1.17) T == Z [9(17;‘» 2 — 1’0'(:;_“ e Sy >0‘(1]:3 Y[k — ke -+ 1)iT]? ‘ngf'loo
Ry lea=20
k) —g Tzt (t0==38,4 n)
z [Qmp ][ /I’T O-] (1/ 1702 H 3 Fyoery M)
B, k220

1.2. — Majorants for the w,;. In order to majorvize the functions ,;, we
shall make use of the function ’

‘ x\—n . n\ x w4+ 1\ z\?2
asn g =(1-3) —+ () + (" o)+ -

w|< K.
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Let # be replaced by o Foemy - ety - () mdependent of ) and

order the result according to ascending powers of ¢ to obtain

&

w
(1.2.2) glr) = z VT (&g By oy Tppey)
M= 1
where w,(%,, #;, ..., ©,-,) is a power series in Loy X1y -eey Loy whose coefficionts
are positive numbers. We may make the above substitutions for » provided
that #,, ¢ are small enough in order that lw|<< K.
By assumption,

= (s L P Lol ] PR A A

CZ)I«(?,/) = z gf;?l mny], L"'y-;’;nn7 33/H<K7 (] *'1727"'; U k== O?’ 1%‘“'):“
mj,‘,“mnzo

where ¢j ™% are constants. Moreover, there exists a constant M such that

ig(ml‘....m“) 1< J{’K<‘ml~”.—« M)

|
ik

for all §, k. Thus, we have

| =y ! m mo) ! s ! . - 4 Nt

nT) 1< 20 (g g e MO T (1 ’Ji’r) ,

) My ey mﬂzo o ' Is=1 ITi
for |y;|<<K', 0< K'< K. TLet

2 / Y\t

1.2.f Qs o ) = M L
(1.2.3) H Y1y ey Yn) lel /c) >
and we then have
(L2.4) ) < QW) (1=1,2,.,n; k=0,1,2,..),

where we understand by < that the coefficient of Yyt Lyl in qu(7) is
in absolute value less than the corresponding coefficient of yTwy™s .. yorin Q).
Let, also, the effect on any number or function, of replacing each coefficient
in ¢, by the corresponding larger coefficient in @ be denoted by { }.

From (1.1.15), we have z,, = 3 o rrane (=1, 2, ..., n) and we shall

My, My 220

denote by &,, a common upper bound for 2 {0 gy e g, ™= (j=1, 2, ..., n),
By iy 220

where, also, in the {} everything is replaced by absolute value, Moreover,

let &= (&m, ..., &), As 2 consequence, since the coefficients of the coordi-

nates of %, @y, ..., X,y in §,, consist of positive integers and the coefficients

in the ¢,, we have

—n

gsmy‘k(?ﬁy ?19 crey £m~1) §< {Smﬂ'k(‘g\()) ?17 ceey E;n-"l)}

(=12 ,n; m=1,2,..; k= 0,1,..).
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Moreover, since Q(y, ..., y) = Mep(y), we have, using (1.2.4) that
(]25) {'\)m;‘/.:(g()y 51; Sm ))} = sz/’m(Euw S eeey 5m~1)

i

and, thus,

— N .

(]-2-6) gs'm/‘[;(é:o; 513 vees & im— 1) < ]1 2/'m(g() 517 sy t‘tm*l)

=12, n: k=0, 1,...; m=1, 2,000
Furthermore, from the definition (1.1.8), ;'S0 = 208 p1r, s €S o=

== L4o8,0 ave mevely terms in Smins Suzr, respectively, and, as a ('onsequeuce,,

we must also have Ee{Sumnrt, &EofSua) are terms in l(s,,u,(f ery E,,H )}

{'Sm'.’k(go; weey §1lr~-1)}7 l'esl)e(ftively. ThlIS, _g(»'{Sm]I;}' << ‘{'Sytzlzjy 5()[‘511:0 <

moreover,

{ s m'_’k} a‘ndy

(1L.2.7) Sty {Suer) < (A/E) wul&y,s &1,y .. oy Sum) (B=0,1,2,.; m=1,2,...).
Furthermore, from (1.1.7), (1,1.10), we see that

[ [$ms | < MW + Wy + .. + ) S (i=1,2,.., 1),

[ Sty {8me) < (MIEN (o + Py + o - W) (m=1,2,..).

Using (1.1.3), (1.1.17) and the results above, we have

L ]<ﬁ—l[ E {Qt,’f'{ka)} ﬁmmf”‘fﬂ@ozf g {81} 2 {O'f,]fi_’kf,)l ;(Z’()lfhfxozfmi + o
Tyl 0 Ty Jia 20

v Uedeay | 0 1 Fey !0 1Ey
-+ {/\Suzﬂ,l} Z {‘7111 };"101} l;-lozl ] <<

Ty ke2 20
< ﬂ*l[{S:)zl}T‘_ {‘g11}§m~1 “,_ .- _JL {‘S'm—l,l}fl]<

< Jk[ﬂ—l(y)m + 7/)"1*1 + v -|L '1P1) + -‘1[(/),50)—1[/1/)15711—1 “;“ (I,U2 + 7/)1)5:::—2 + sen —':_

+ Py e )&

Similarly, one finds that §;1?,,,2§ is less than this same expression and

< MBE (P + Py - oon + W) (e=3,4, ..., ny
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Therefore, we may take

’ &y = 505 & = J[f Y

(1'2 9 §m = -B[/) ?/)m + vee T 7/)1 —T‘ M /3"{:0 [w‘lgm -1 T (1/)’ + 7p1)§m~ _}_ +
l b Pt + o ] (m =2,3,..)

and it should be noted that these evaluations are independent of &.
Finally, in order to show that the series

P — Y ey |

(1.2.10) Y =@y + e, + w, + ...
converges for & sufficiently small, it remains only to show that the series
(1.2.11) E=§& + & + & + ...
“eonverges for e sufficiently “small.
1.3. — Proof of the convergence. Consider the equation
(1.3.1) P& &)=eM[B(L — )] (&) + eM[BEL—e)E]p(£) - (E—&o)— (E—En) =0,

where @(&) is defined by (1.2.1) and &> 0 is at least smaller than:one. If we
can show that for e sufficiently small, this equation has a unique solution

£(e) = D bpg* and the coefficients b, satisfy the recurrence relation (1.2.9),
k=9
then we will have shown that the method of successive approximations defined

by (1.1.14) converges. This is the same type of reasoning used by Liarouxorr[9].
oF |
From (1.3.1) we have F(&, 0) =0, and, moreover, 7% i = —10.

. i&6.0
Thus, from the theorem on implicit functions for complex variables [13], for ¢

sufficiently small, there exists a unique solution of (1.3.1) of the form
(1.3.2) &(e) = E bre*,

and such that £(0) = &,, i.e. b, = &,.
It remains only to show that the coefficients b, in (1.3.2) satisfy the recur-
rence relation (1.2.9). From (1.2.2), we see that

oo @

(1.3.3) = (S bet) = 3 &by, by, oovy bia)
I

== () R==1



PERIODIC SOLUTIONS OF NON-LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS 289

provided that b, =&, and & are small enough so that |&|< K. This may cer-
tainly be satisfied since & may be taken to be max(|a.,c™|, |a0™ ) =
=max (|a, |, |a.|). We also see from (1.3.3) that each Wielboy Byy vory br—y) 18 2
convergent series in b,, by, ..., by—;. Moreover, since £ << 1, we may write

(1.3.4) A—e)y'=14¢+ e 4+ ...

If we replace & in (1.3.1) by its expression (1.3.2), make use of (1.3.3), (1.3.4),
and equate the coefficients of powers of & (k=0,1,2,...) to zero, we get

by =&,
MB1p,(by) — by = 0, |
MEHpw + Yooy + e 1) + M (Bbe) [ (Widus + o A Ponaby) +
- Pz + oo F Prghy) F oo+ (91by)] — b = O (m=2,38,..)

0or

ﬂ'[ﬂ_l("/f‘m -+ y)nr']V + o 4 7/)1) + fu(ﬂba)“l['l/hbm—q -+ (7112 -+ y)l)bm—z + o -
-+ (/lpm—l + Wips + 4 7/)1)b1]‘— by =0 (m = 27 37 )

which is precisely the recurrence relations((1.2.9).

Therefore, the series (1.2.11), with &, finite, converges for ¢ sufficiently
small. As a consequence, for ¢ sufficiently small, the series (1.2.10) converges
absolutely and uniformly for all ¢, — co <<t << -+ oo, since we saw before that
& may be taken as max ([ay|,]as]).

Furthermore, we have already observed in (1.3.3), that ¥ eTyu(&,, &1y oony Ery)
Fe==1

Qs

converges for g, &, small enough in order that & is such that |&|]< K. More-
over, since <1, we have that the series

@

[2 &1 — o) = 3 (g + pea + oo+ 92)

k=1 k=1

is convergent for ¢, & such that |£|<< K. Therefore, from (1.2.8) and WERIER-
STRASS’ test, we see that the series

(1.3.5) 1i(z, & a1,y @) = 8y; + &8,; + &8 + ... (1=1,2),

and the series
S1x + ESar -+ €384 + ..o (k=1,2,..n)

19 - Rivista di Malematica.
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converge absolutely and uniformly for all {, — co <<t < - co. Moreover,
(1.3.6) 2 Em‘lsmk = qk(?—i; 8) (k - 17 27 v n)'

m=1

Making use of the first component of %, in (1.1.14), we have

© @

Ly
Z FY ILT Z 8 ‘mml + z sm‘sml z 87"(811[07)»—1,1'11’ ree + Smlmol)
=20 m=0 m==l

and since the right side of this equa’mon is absolutely and uniformly con-

T,
m _1’1‘

o«
vergent, we have that > & sTaller Z e™,, = ¥, . Therefore, if in the above
m==4 Mm=1

expression we make use of (1.3.5), (1.3.6) and the fact that the last sum is
a product, we get the final result

i = [,’5’5_ efi(Ty & @y, )]y + e (V5 €) -
The same reasoning may be applied to the other components of #,, in (1.1.14)

and we obtain a solution to equation (1.1.5).
It remains only to show that the equations

1T— efi(T, & a1, @) = o,
— 1T — ef,(T, & 4y, ) = — 10,
have a real solution 7 for some a,, a,. This implies first of all that f, =f,

at least for the solution of these equations. Later, we shall show that this
relation is satisfied in very general cases.

§ 2. — Further considerations on the method.

2.1. — Consistency of the equations for 7. Consider the system

&; + ad; + O‘?(B,- = BQi(ZE7 i; €) (i=1,2,..,m),
(2.1.1)

&, + ﬂ[zm,u = 6(1“(5, ?7 &) (u=n+1,.., N),

where &>0, 0,>0, o;20, 8,>0 Tom= (B, e, By), @ = (@yy.n, )
and each ¢, is analytic for e < g, |o], |&:|< 4, (k=1,2, .., N). Moreover,
we assume that 40 —of >0 (j=1, 2,...,, n). Notice that the vector ¥ has
N coordinates and # has n comdma-tes. ‘We make this choice in order to
simplify the notation.

We shall designate the roots of the equation g* -+ a0 + of = 0 by o4,
g2 We then have

{ on =—(@f2) + (2, 7= (Aol — )% >0,
(2.1.2)

Q2 = 0i1 » (7=1,2,...,,m).
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If we introduce new variables z, ..., 2y:, defined by

Byjmy == — Qjpll; + &5, @5 = (219;) YRy —+ Zay),
Ryy == 01— &5 , By = (20y,) 051251 + 02%2;),
(2.1.3)
(1=1,2,...,m),
By =, (=n+1,.., N),

the system (2.1.1) is transformed into the canonical system

Byj1 == 0518051 + S,qj[ (27:Vy)_l(zzv~1 + 22y Zont s vy Bntyy (27:')/1')_1(@'122:'*1 -+ szzaxv)]y

(2.1.4) 2oy = 0, — eqi...], (j=1,2,..,n),
b= Pusn +eq ] (u=n-+1,..,N),

_where in_the arguments for_g; the symbols (21y,)" (a7, (2995) 71001 R 001 =
+0m%:) denote 2n fo the arguments obtained by letting » =1, 2, ..., n.
Moreover, [...] denotes that the arguments of the functions are the same as
those of the first function.

Ifin (2.1.1) we have «; = 0 for some §, say j = 1, then ¢,y = i0y, 01, = — 0y
and system (2.1.4) is a special case of the system considered in § 1. Therefore,
we replace ¢, by v and consider the auxiliary system

& = Aty toeq...],
2, =—1iT2%—eqf...],
(2.1.5) Zoj = On% t+egl..],
£y, = Qpfy— &q...], (1 =2,3,..,n),
Entp = — PBpnin+ eq,...] (4 =mn--1,..., N),

where the arguments are the same as in the preceding system.
If we assume that

(2.1.6) imo, + Qi =0 (1=2,38,..,0; k=1,2; m=0, -1, --2,...),

then we may apply the preceding algorithm to system (2.1.5), and we take
a8 the zeroth approximation

(2.1.7) Fo = Ty = (ae’™t, —@e™ "L 0, ..., 0).
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(In terms of the preceding notation, we have let ¢; = «, a, = —@.) We shall
denote the m™ approximation by Z, =7, + Ty + ... + e"%,.
It is obvious that

(2.1.8) Sr0-1 == 8,2, (j=1,2,.., a).
Lemma 2.1.i. If we apply the preceding algorithm to system (2.1.5)
with zeroth approximation given by (2.1.7), we have

)2

Ly gy — Ty 2j s mr,n-ﬂt = Tp,ntp Sr = Sr1, Sn = Srz 3

for r=0,1,2,...; j=1,2,..,n; p=n+1,.., N; [=1,2,.., n--N.

Proof. We shall first prove by induction that @, = —F, 05, Trpip =
= Tr iy for all v, §, u. From (2.1.7), we see that the assertion is true for r=0.
Assume - assertion is true for r=0, 1,..., m—1. Then Trpjey1 F Lro; =

== D2 — &y 95y i3 purely imaginary, and . 9@ -1 05% 2= 0n% i

-~ 0;%,4_, is purely imaginary. As a consequence, since

T
Zroj—1 & Bre; = z el(wl,i.’i—l -+ mz,zj) s
1=0
r

051%r,2j~1 T Qsafr,2; == z anl,ﬁz 1+ 0508125 )

we have 2., , - Rpg; = (Zr25m1 + #r25); (051% 051 + Q2% 9;) = — (Qi1%r 251
-+ @jo%ry2;), and, therefore,

QL[ 27/)/1' zr,zv 1 + 2 fw) Zrandly o0y Brontas (2@}/1')"1(91'17 Zrav—1 +Q1lzzr,2v)§ 3]:

(2.1.9) .
=+ qk[(Z’”VV)_I(zr,zv*l + Zr,zv): ] (k=1,2,.., N),
or, q, is real for every k.
From (2.1.5) we see that 8,0,1,.8:;y Sr i, are merely the coefficients of
e in g (299.) M, 201 + #rov)y -1y —gl..], qﬂ+,,[...], respectively, and, thus,
from (2.1.9), we have that

(2.1.10) - Spr = S r=12,...,m; k=1,2,.., N)

We know, also, from (2.1.7) and (1.1.9) that S, and S,,(— ae~ ") are
terms in s,, and s, respectively. Moreover, since s,, = — 8., we have that
S,a€* 4 S,,0¢~ ™ is a term in s,. Therefore, since s,, is a power series in
6", ™" with constant coefficients and s,, = 5,;, we have 816" - S, e~ =
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= 8., + Snae’™. As a consequence, since a =0, we have

(2.1.11) Sy = B (r=1,2,.., m).

Therefore, if we use all the previous results in (1.1.14), we obtain

- —ivt [ it § o= T = :
Ty = 4 f@ [‘Sml_ (Sllwm—l,l + aee _!_ Smla’ol)] dt =
—irt | i
=€ JGW [8m1 + (S12wm—1,2 + o+ Spete) ] dt =
it izt
= " fe i {Sms - (81253:11—1,2 + o + szwo‘.!)]dt = = Tz
Fmgjm1 = egiltje‘gix‘E,,l’2j~1 dt = — %! "e“i’fﬁsm’ﬁ At = — @y o (§=2,..., n),
= tf,—Butg
Tty = eﬁ# f@ Pr S ntp dt = Lo ntpe (‘L(; =n + 17 ey N))

_and_the induction on the . is_completed. Therefore, (2.1.10) and (2.1.11)

also hold for all » and the lemma is proved.
From (1.3.3), we have that

@

fiT, & a) = z e 18, (1=1,2),
m==1
and, thus, from the preceding lemma, we necessarily have fi(z, ¢, a)=T,(t, & &)
for all real numbers 7, & . Finally, we have the following lemma.

Lemma 2.1.Ji. By applying the preceding algorithm to system (2.1.5)
with zeroth approximation given by (2.1.7), we have f.(z, & a) = fulz, & a)
for all real numbers 7, & a, and the equations

f

{ it —efi(t, 8, a) = oy,
— it — efo(T, & a) = —10y

are equivalent.

2.2. — Existence of periodic solutions. We saw in the preceding section that .
the equations for = were consistent and, therefore, in order to find a periodic
solution to (2.1.1), it remains only to find a real solution v to the equation

(2.2.1) - it — efy (T, &, &) = 1oy

for some value of a.
A closer inspection of the function f,(z, ¢, a) shows that it does not depend
on the complex number @, but on |a|?; for, S, is the coefficient of %, in 8,
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i.e. 8, will arise from terms of the form @f"'wl, = @*(— @)“zy, = |a|¥w,,. There-
fore, if we let
2.2.9) { h(zy e, [af®) = I (f;) = I (Su) + &I (8a) + ...,

9(T, & |a]?) = R(f,) = R(Sy;) + eR(Sy,) + ...,
then equation (2.2.1) will have a solution if the twe equations

H(z, ¢, |a]?) = 1—¢h(z, &, |a]?)— 0, = 0,
(2.2.3) { ,
g(7, & 1“;2) = 0,

have a solution. :

It Blfi(r, & a)] = g(v, &, |@[?) = 0 for every a, then H(oy, 0, |a]2) = 0,
aH 3 0, '12 . e . . - .
m,{?!__5;,[_“”[0)‘ =130 and the theorem of implicit functions implies that

there exists a unique solution to equations (2.2.3) of the form

T =03 _!_ bkeky

i

i
where the b, are constants depending on oy, |a]2.

Now, suppose that

aR(8y)
2.2.4 RS, =0,  ESw
#:24) (Sue) 3(lal?

for some |a|?=¢;>0. Then H(o,0,c?) =0, g(o,, 0, c2) =0, and

‘BH(GI, 0, ¢i) 1 oH{o,, Q:E‘(i) _
or o 3(|al?)

0, 1% =0,

8901, 0,¢8) _ BR(Sy)

= 0.
ol  alan) 7

Thus, the Jacobian of equations (2.2.3) at the point (o, 0, ¢}) is different from
zero, and by the theorem of implicit functions, there exists a unique solution
to equations (2.2.3) of the form

where b, ¢, are constants depending on o;.
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Thus, let us assume that equations (2.2.3) are satisfied for some 7, |a]?,
and try to find the behavior of the corresponding solution of (2.1.1). If we
let a=[a|e’”, and use (1.1.15), we observe that the following identity holds

Qi) s + Tnz) = 3, (2 oW + G a (@) =

C My, Me=0
= z[(zi)—lBirll)jezl(ri-l-f]?) + (i) 1B P e et
=0

where B, B“"P are constants. Moreover, we have also observed in lemmsa

mi? mj

(2.1.1) that (2iy;) " (@m,2j—1 +Tm,2;) is real. Therefore, we must have

¢~P(24)" 1 BSP = ¢1(20) " IBY, = — ¢~ 7(20) B},
or B;Y =— B®,. Therefore, if we let By, =y, -+ 16, where pi, 6 are

real, we have

(21’7}1)_1(‘1)»2,21—1“‘1_ mzﬁ,"} 2[7% sin Z (13 + (p) + 6(772 cos Z Tt+ (p)]E -
(2.2.6) 120
: = 1’le~('lft _IL' ‘P) ?

where W1t +¢) (=1, 2,..,n; m=0,1,..) is periodic of period 2z/r in t.
Similarly, we have a,,, = W (7t +¢) (g =n+ 1,..., N). Moreover,

(2i0,)H(@or + 2oe) = (240,) @] (€*7+P — 675+ P) = |a|oy " sin (vt +- @) ,
Lo, = 0 (k=3,4,..,n+N).

As a consequence, since z; = &o; + &#; + &2&;+ ..., we have, upon apply-
ing (2.1.3), (2.1.7) and (2.2.6), that

{ #; = |a|o] " sin (7t + ) + eWi(zt + 5 €),

ay, = eWi(tt +@; &) (k=2,38,..., N},

where each Wy(tt +¢;¢) (k=1,2,..., N) is periodic of period 2z in 71+, ¢
an arbitrary constant. Therefore, we have the following theorem.

Theorem 2.2.i. If in (2.1.1), o; = 0 for some j, say j =1, and if the
equation
4T — efi(T, & a) = ioy

has a real solution

7 = 1(e) = 0y + , be*

L= 1
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for some value of a, then there exists a solution

{ oy = |a|oyt sin (7t + @) + Wy (vt +¢; &),
o, = eWi(tl + @; €) (k=2,3,..,N), |

of system (2.1.1) periodic of period 27 in Ti+@, where @ is an arbitrary constant.
The above equation will have a real solution v if either

(o) Blfi(r, e,a)] =0 for all =, ¢, a,
or

OR(8y;)
) R(8y) =0, a(](allzl) #0 for some a.

Remark. We shall show in the Appendix that the sufficient condition )
is- precisely —the condition given by CopDINGTON and LEVINSON [4] for
systems of the type (2.1.1). It should be remarked that here the condition
is derived from the method of successive approximations. For one second
order differential equation, see KRYLOFF and BOGOLIUBOFF [7]. The con-
dition («) given in the present paper is not contained in the quoted papers.

2.3. — Explicit expression for §,;. In order to find an explicit expression
for 8,;, let us write
(2.3.1) 0@, T; &) = Alwy, &) + Blay, &) -+ ¢ (@, 73 ) ,
where .
A(— P, a}l):A(xl: &), B(’“mly ¢1):_B(x1) &’.1)7 q\.;k(wly 0, : 0, #,0, ey 05 0)=0,
and 4, B, ¢ are analytic for &< &, l;|, |#;]< 4. Then by definition and
(2.3.1), we have :
811 = Q[ (2907)H@o, + 240), O, cy 0y 27 (@01 — @42), 0, ..., 05 0] =

= A[ (2i0,) (@, + Lgs)y 27H(@gy - @op)] + Bl[...],
and

-t

$11] = 'm[g—i?tA ((27:01)-1(-”01 + oo}y 27Xy — xoz))] —+
+ me” " B(...)].

a8y =m[e
(2.3.2)

If, as before, we let a=]|a|e™, then (2901 )" (@o1 +To2) = | @] o7 * sin (2t +)
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27wy, — @yy) = |@ | COS (78 + @) and (2.3.2) becomes

S =|a["mfe” """ PA(|a|oy " sin (vt -+ @), |a]cos (vt + @))] +

+ |a|7me” " OB()] = (Ja| T) [A(.) e P ar + ({a.lT)*lfB(....)e”f"‘+‘i”’dt,

o [)

where T'=2n/v, and the symbol (...) is to mean that the arguments of all the
functions are the same, ie. |a|o;"sin (tt4¢), |a
-+ by ¢, we have

cos (tt-+¢). If we replace

8= (Ia[‘?n)—‘[fz([a]afl sint, |a|cost)e~tdt + ﬁ?(...)é—“dt] =
(2.3.3) ’ | ’

2 2

= (2z]a|)7[ [A(|la|o7" sint, |acost) costdt—ifB(...) sin tdt],
0

Q

. since A(|a|o;sint, |a|cost)isan even function of t, and B(|a|o; " sint, |a|cost)
is 4n odd function of .
Thus, we have the result that

2 .
R(8y,) = (2n;a})~1f W(|ajortsint, 0,..., 0, |a|cost, 0, ..., 0; 0) costds

0

(2.3.4)

= (27;[@[)"1}1'1(](1[0;1 sint, |a|cost) costdt,
Q

where A is given by (2.3.1).

One may also obtain the explicit expression for R(Sy;) by first observing
that the coefficient of x,; in the expansion of B[(2i0,) (% ~+Tee)y 27 (%01 — Tp2)]
is purely imaginary since B is odd in the first argument. Then, from (2.3.2),
R(S;;) is merely the coefficient of z,, in the expansion of 4, i.e.,

A (2ioy )M o1 + @42)y 271 @0y — To2)] =

(2.3.5) . . | 3 |
= R(Su)ag’ft + z Dkakezkrt + E«D—k("‘“ &)ke—-zrkt ,
2 k=0

k=

where D,, D_, are constants depending on |al|*
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§ 3. — Systems with periodic solutions.

3.L. — A first general statement. In equation (2.3.5), we observed that
E(S,;) is merely the coefficient of »,, in the expansion of A[(2{c, )~ (s, -+2.),
271wy — @o2) ], Where 4 is defined by (2.3.1). Let us consider the special case
where

Ay, &) = @a)d; = &, Y a2
E=0
Then
A[ (2P0, @o1 + Tgp), 271 (2o, — Toa)] =
(3.1.1) -
= 27 &gy — ®2) Z (— 1)*20, )%y + L) 2.
k=0
Moreover,

(Tor — Zo2) (Xo1 + pe)* =

Y 26\ L. 2k Y
oy +( )wo’; Mgy - oun - (70—1)56‘ Bhlghot

2k
+<k) 07; ¥ i;z+ —!—SL‘ }(5001*—.1702):

2k 2L 2\ (— 1)*a|2®
+l<k>_(o——lﬂ o g +(7¢>( k-,Ll(;l o1+ oo

Thus, if we substitute this expression in (3.1.1) and keep only the coef-
ficient of x,, we have

) 1.2 ap (28\[|a]\*

) = SR el
(3.1.2) B(S,;,) = 3 gl - 1(76)(20‘1 .

Theorem 3.1.i. Consider the system of equations

l ¥+ 0’?% = ef(®)d, + egley, &) + 871/(3?, ".77, €),

(3.1.3) B - gy 4 on; = eq; (@, T g) (i=2,3,..n),
+ﬁ,u = 8(1,;(5?, ZE; 8) (:u:n - 1?“') N))

Where & == (Ty, wy By)y T = (B1, ..y &), £> 0, 0;> 0, ;>0,8,>0, and 46} —
— i > 0, imoy — (a;/2)+(i/2)Vd0E — 0250 (m=0, +1, £ 2,...;j =1, 2, ...y
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w=mn+1,.., N). Morcover, assume that

m

flo) = X aa?, Aol << 0,

k=0

gy, i) =— g, &), (@, 0, ..y 0, iy, 0, ..., 0; 0) = 0

and g(@, &), M@, T; ¢), qu(@, T; &) (h=2, 3,0y N) arve analytic for &< g,
l2], |&|<A. Then R(S,) as « polynomial in |a|* has a zero at la]?= c; > 0.
If such a zero is simple, there will be a periodic solution to equations (3.1.3) of
the form

@y = |a]oyt sin (vt -+ @) 4 e W, (2 + @5 ¢),
(3.1.4) {

T, = eWp(tt + @; ¢) (h=2,3,..., N},
_periodic of period 2z in Ti-4-g@, @ an arbitrary constant, and the numbers-z and la|

are given by

w (=]
T =0y + > be*, [a] + ¥ et
k=1 L=1

o

where b, and ¢, are constants depending on oy, ¢

Proof. From (3.1.3), and (2.3.1), we see that A(z,#,) = &,f(x,), and
from the expression for f(x;) and (3.1.2), we have

250k + 1 20,

2m

n )< 0. Therefore, the function R(S;;) has a positive zero. If

and a, ———-- <
m

4+ 1\m
it has a simple zero, then from theorem (2.2.i), we prove Theorem (3.1.i).

Corollary. If, in (3.1.3), ;=0 (j==1, 2, ..., n), there may be #u such
limit cycles (3.1.4).
Example 1. Suppose that in the system (3.1.3) the functions ¢, &, ¢;, 9

are arbitrary functions satisfying the conditions stated in the Theorem (3.1.i)
and that the polynomial

2 2k ‘
f(ml) = Uy + a’lwl "f‘ see ’*' ammm) Aoty < 0 ?

has exactly one variation in sign. Then the sequence of numbers aq, ¢;, 2d,, ...,
2m .. ..

(m —'rl)‘l( )am has exactly one variation in sign and, thus, by DESCARTES rule
m
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of signs, the function (3.1.5) has exactly one positive zero. As a consequence,
there is only one periodic solution to (3.1.3) of the type described.

’Exa,mple 2. Let us consider a more specific example where flwy)=1— &2,
Then A(z,, @) = (1 — 234, and

wn= (2]

2 20,

for |a|= 20,. Then there is a periodic solution to (3.1.3) of the form (3.1.4)
with

T = 0; + > b, la]=20; + > ¢.&*.
k=1 k=1
Note that this system contains the VAN DER PoL equation & — g(1 — 22 +w=0
as a special case. ‘
Example 3.  As a pavrt'iélﬂai’w case of E\ample 1, eon81de1 ' the system
Jl P4 z— g(l_mz—Ji’)(i; = é‘f(a?, Y ’/) ’
Y+2y—el —a*—y*)i = eglw, &,9) ,
where f(—a,y,9) =—f(z,9,9), gl#, & —y)=—g(@,y) are any analytic
funetions in «, #, y, §. There are two periodic solutions to this equation
given by
o=, [sin (7 + @) + eWy(rit + ;5 8), y=eW,(r,t+ P; e),
T=1+4o0(g), |a|=2+o0(e),

and

Moreover, by applying the conditions given in MINORSKY ([12], p. 158), we see
that both of these solutions are stable in the sense of LIAPOUNOFF.

3.2. — Some preliminary formulas. Consider the system of equations
(3.2.1) ; &+ o'y = eqy(F, T} €) (j=1,2..mn),

where T = (2, ..., ©,), T = (&,..., &,), and 6,, 0u, ..., 7, ave distinct real numbers
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such that 'ma;- G020 (=k; jb=1,2,..,n; m=0, 41, 4+2,...), and
each function ¢; is analytic for e<<C &, |a;], |&]< 4, =1,2,.., n).

System (3.2.1) is clearly a special case of system (2.1.1). From (2.1.2),
we have g;; == i0;, 05 = — %0; and equations (2.1.4) become

fyj1 = 1038051 + Q[ (29070) 712y + 2y -y (2900) HRon—1 + Z2n),
(3.2.2) 274z, —22)y ey 27 MRon—1 — %2n) 3 €],
Byy = — 10,2y — EQ[-- ]y (i=12,..mn),
where [...] denotes that the arguments are the same as those of the preceding

function.
Since we have assumed that each ¢;(@, @; &) is analytic, we have

©

@

. —"‘ —* Ay + 10} o1 CUNEN ] S

8) = ¥ ehqul(@, T) = D & > Opffal .. apedis .. @la,
k=0 k=0 (r+m=0

—_—

q;(T

- g

'

where (¥ 4 ) = (V1yeery Vuy Moy ey a) and the O} are constants. If we let
QTN e T T e Uy Q00 = DU then we may write (3.2.2) as

z"z 1 == 1032, T € E e* Z D(N‘#)H 107) T " Ror—y + 1)U Baz— — 222),
k=0 ()20 Tzl

3.2.3 . .
( ) Rps == —— V0% — & Z gk > D+ l l (i01) " Zor—y + 2o (B — 220)",
k=0 (=0

(=1,2,...,n).

Let us replace o; by 7 and consider the auxiliary system

H
-]

b= itz ey &Y D‘”“’H (10,) " HRa1y = 20)) U Bo1my ~— 201)"

k=0 v+ )20 =1

«©
By = — T2 — & 2 & D (w.)

k=0 r+m=0

Zyjmy = 10jR35—; + € Z ok Z D(v+;l)H

k=0 (v+u)=0

Boy== — 10;2s; —e >EE D (o), (G=2,8,..,7m).

k=0 (r4+uwr20

We shall again take the zeroth approximation to be

- (3.2.5) 3, = T, = (ae’™, —ae~"" 0, ..., 0)
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and shall denote the m™ approximation by

T = Ty + €Ty + . o T, (m=1,2,..).
We, therefore, have

§
) L - P o
] Booj—1 T Bspy == 28 (wn,ﬂj—l 7 -L,,,g,),

p=0
(3.2.6)
ke
] Zs2j-1 T &s,05 = Z 8”(%»,2;‘—1 - 1731»,2]‘)
p= 0
and
s vy
(Bs21-1 + Zop)t = 3 et (-’E‘\o,ez—l‘x{‘ ‘vwa,ez) ’
(3 5 H) al,....o:,,l=0 LES )
2.0
& ‘ . "
(#o1m1 — 2ot = 3 P+ T (@) 011
. NI ﬁ;-'t--ﬁyﬁ‘o; R A1 N .

From the definition in § 1, we known that $r05-1 18 the. coefficient of ¢!
in g when 2, 42, #,-1 — 2y, ave replaced by their corresponding expressions
(3.2.6). Thus, if we substitute (3.2.7) in (3.2.4) and keep only terms in &7,
we obtain

l Sroime= 2 DG TT (i0y) -
I=1
(3.2.8) l

4] "y

’ EH (wcvly,‘ll—l + ‘z‘aa,‘zl) )I—.[ (mﬂ;_,‘zl—l " wﬁ;,.ez) )
=1

d=1

where the last sum is to be taken over all values of o, ..., «, and Bry s oy,
such that

(3.2.9) oy . o, + pr+ . ﬂﬂl =y—1,

and the first sum is taken over all values of »,, ..., v,, iy -y My Which make
(3.2.9) possible.

3.3. — A second general statement. Let us suppose in (3.2.1) that
T; &) = (7, %‘i; &) (=1, 2,..,n),

3.3.1) (T, —

- Then each of the numbers g, ..., u, in (3.2.4) is even. If we use the same
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notation as in (1.1.158), (1.1.16), i.e

{my,m, ) My oy Mia
" 1 1
',L”U Z Gm:r ‘D
My, Ma 20
(11, M) L\ My My
Sm:i Z Qmi .’I}‘ '1’()’ b

My, Ma = 0
we can prove the following Lemma.

Lemma 3.3.i. If the preceding algorithm is appled to system (3.2.4),
satisfying (3.3.1), and with zeroth approximation given by (3.2.5), we have

(mg,mg)

(Mmy,my) (my,ms) (Mg m,) .
m,2i—1 Sml Sm"

== Oy 2 27 b th Qm
for every m,, my>0;m=10,1,2,...; j=1,2,..,n; k=1,2,.., 2n.

Proof. (By induction.) From (3.2.5), we see that obs_, = obsy
(1=1,2,..,n). Assume that oy’ = o™ for all m,, m, >0, and p=0,
Ty -1~ Then

— {my,my) m, Mo
Dp,2i=1 = Z Or0i—1%0 %oz s
my,Me=0
. nnl my) My M Z (CL PRI ,m.. g
Tpos = 2, O gy Tyo Opai—1%o1 Lo s
My, Ma =0 7711,111220

for j=1,2,..,n; p=0,1,..., m—1, and thus,

. p (m,,m ) m ‘m..
Ly i—1 “F po; = z e G Toregs) ,
(3 3 My.mpa 20
2)
. .
(my, m,.) m1 M My
Tp2j—1 " z Gﬁ"]—l olw .._4;1/ /EOO)
my, M0

If we substitute this expression (3.3.2) in expression (3.2.8) for s, .-, We
see that the last sum in (3.2.8) consists of a sum of terms of the form

] 1y
,7116 ’6 _‘"l_&‘ m‘é 7217 1, 7 1122 1'112’
(3.3.3) [T (@0 a,? + @y, | ] — Xy @3}
. 5=1 =1
m, May M 7, 7, 1 N .
where g Pag’ + ap @, wlta — gttt are  terms AN @agai-r - Tagers

@Bt 1 — Lpgety 1espect1ve1y.

Let us consider any term in the development of (3.3.3), say xlials.
Then, the corresponding term z%:al: will also be in the development of (3.3.3)
and the coefficients of these two terms will differ by a factor (-~ 1)"(— 1)*=1
since, by assumption, g, is even. This means the coefficients are the same
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for each term of this form. As a consequence, since
Sr2i—~1 == Sroj-1,0 Sret,25-1,1 T eee - 81,251,015

we have that the coefficient of w"‘moo in §,4;-, is the same as the coefficient
of al:z% in 8y 25—y 1.6

{ IS . .
(3.3.4) oy = il 0=12.,m5 r=1,2,.., m; my, my>0).

In particular, gfi*"® = 9™+? (r—1 9, .. m). But, from the definition
(1.1.9), whe have that 8,,z,,, Says are terms in $,, S, respectively, and since

81 == — 8, We must have that §,2,; — S, is a term in $1. As a conse-
quence, since """ = @I+ e have
(3.3.5) Sy = — 8, o r=1,2,.., m).

-If -we- substitute (3 3.5) in(1.1.17) (note that o, is replaced by ic ) ‘we
have

mymy) (my,m} {my,my) 1
Ty = D [plmems Sy T — . — 8, 20 P (my — my — 1)i7] Yy agyt
my,my20
( 2 (my,175) (my,m) =
L z Lot -+ Sy ol 3t T+ S poy ™ (my — my +- 1)iz] 14113"1’930» y
My, My =0
(my,my), 1 M
Tmpimr = 3 O 2j 3l (Mg — Mo)iT — do, T aiam:
My, M0
(my,m ) — e
Bm,as = z Qn;n;]m [(7"1—‘ m")”’— + ZG:J 1x’mmo" ’ (7 - 27 3’ “evy ’)’I,)
My, My =0
Moreover, since s, ;1= —s,,;, We have ™™ — giremd - and if we make

use of (3.3.4) and our assumption on the oy (s =0,1,..., m), we have

Tme = 3 [ohn™— 110'::3’;’:1”) oo = g1 05" Y (1 — My — 1 JixI g,
My, My =0

Tmpi = D O (my — mp)iT — o] lwprams (i=2,3,..,n).
My, My 20

Thus, o4y = o'ns™, and the induction on the m,; is completed. As a con-

m,2s5

sequence, (3.3.4) and (3.3.5) also hold for all » and the Lemma is proved.

Theorem 3.3.i. Consider the system

(3.3.6) &+ ofw; = eq,(T, T; ) (i=1,2,..,mn),
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awhere 6y ..., 0, are distinct positive numbers such that mo;-+0.70 (j7=k;
Ge=1,2,.,n; m=0, 1, + 2,..), and each (T, W e) s analytic for
, <A, e<eq, and, also, ¢,(%, — T 8) =@, T3 8) (=1,2,..,n).
Then, for & sufficiently small and every complex number a, lal<< 4,
there ewists ¢ solution o the equations (3.3.6) of the form

|
1%

®; = |a|o; " sin (tt + @) + eW;(wt + @; ¢)
(3.3.7) {

Wizt +@; &) (b #j; k=1,2,..,n),

?

1

where all Wirt-+@; &) (j =1, 2, ..., n) are analytic functions of & with coefficients
which are periodic of period 2z in ti-t+p, ¢ an arbitrary constant, and T is de-
fined by

x
T = 0; Z bye*,
k=1

achere the b, are constants depending on gy, &. As j takes on the values 1,2, ..., n,
there exist n such systems (3.3.7) of periodic solutions, each depending wpon the
two parameters |a|< A, ¢ arbitrary. (Thus, n two-manifolds of periodic solu-
Lions.)

Proof. Combining Lemmas (2.1.i) and the preceding Lemma, we have

8, = 8, Sy =— 8, and, thus, 8, =—=8,, or 8,, 8. are purely imagi-
nary for every ». Furthermore, using (1.3.5), we have that fi(z, ¢, @) is purely
imaginary for every a, |a|<< 4. Therefore, using («) of Theorem (2.2.i), we
find a solution of the form (3.3.7) for § = 1. But, it is clear that in the be-
ginning of our procedure, we could have replaced either of the o; j=1,2,.., n)
by v and carried out the above process. Therefore, the Theorem is proved.

3.4. — A third general statement. Let us assume in (3.2.4) that

(@, — T3 &) = — (@, T €), _
(3.4.1) . . (j=1,2,3,..,0).
¢i(— @, T; &) = — ;(T, T'; &),

Then each of the NUMDErs ¥y, ..., Vuy fla; ooy thn i (3.2.4) is odd. Moreover, it
is easy to show by a simple induetion proof that we must have '

— {0y, my) ., My 0 s ) . z My g) Tty s
Ty == Z O’ For¥oz s Sms = 2, Qm;  TorLoz s

My, Ma 0 Ny, Mg 20

where m, - m, is odd if m is even and m, + m, is even if m is odd. Further-
more, since there will be no secular terms in the odd approximations, we will

20 — Rivisla di Malematica.
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have
(3.:4.2) ‘g21'+1,1 == S-zrﬂ,z == 0 (r=20,1,2,..).

We shall now prove the following Lemma.
Lemma 3.44. If the preceding algorithm is applied to system (3.2.4),
satisfying (3.4.1) and with zeroth approximation given by (S.A.o), we have

mypang) ¢ ym ey Cmg,ma)y gy o Cg,my)
m2i—1 7 ( 1) O-m,‘.!j ] ka - ( I) gml:

L J
' ‘Sml - T bm'.: ]

for every my, my>0;m=0,1,2, ... j=1,2, . ,n; k=1,2, ..., 2n.

ey L

Proof. (Byinduction.) From (3.2.3), we see that ¢'5,% YD (=1,2, .., n).

0. 21 GO 27 - ’
Assume that opyy ™y = (— 1)2a}"2" for all my, m, 2> 0, and p = 0,1, ..., m— 1.
Then

P {my, m..)A 1)1, _m. i . Pty i), 2
‘l’n,*lz z Gp 25 & 7 - z ( 1 ) qu "J—~1' ‘02

iy TRy RSEDT

for j==1,2,...,n; p=20,1,..., m—1, and, thus,

(my .ty ) SNy Ty s Mg
‘ln 2j—1 +Jp.‘.1'_“ Zop )‘]—1 '1011' h ("“1) K x) ]
My, Mo 220 .
(3.4.3)
o (g 0, ) My Me 3 pE lﬁ nl,.,‘m1
Ly ey~ pay == D Oy @it + ( 1) Ton') -

nyn, 20

If we substitute this expression (3.4.3) in expression (3.2.8) for Srajet iy WE
see that the last sum in (3.2.8) consists of a sum. of terms of the form

m ]

(3.4.4) Db (= 1) H (wyPwpsh 4 (— 1Pt gty ity

where a0z 4 (— 1) %o, .vu; Lt (—1)P2 1y, i are terms in Lag21-1-1
G Lagar, Tgyei-1-— Lp, 2, 1espect(1vely.

Let us consider any term in the development of (3.4.4), say x2iz’:. Then,
the corresponding term 2822 will also be in the development of (3.4.4) and the

coefficients of these two terms will differ by a factor

(__ 1 )a, -’r;x:%u..»fa.\-,,l R (__ 1.)ﬁ‘+f3:+"‘+’lil‘l(*~ 1 )/ll —

= (= TS I ) = (e 1) (1) = (- 1),

from (3.2.9) and the fact that u, is odd. Therefore, using the same reasoning
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as for the case of even functions, we see this implies that
(3.4.5) olmem — (. 1)rpimam (r=1,2,..,m; j=1,2, ..., n; my, ms >0).

Sr2i—1 -T..J—l !

In the opening remarks of this section, we have observed that in order

to have a term o0 >P2%+ 128 we must have r even. From (3.4.5) this implies
010 — %040 But, from the definition (1.1.9), we see as in the preceding
Q-Sl 28,1 M ¥ =
section that Sy, ; = — N,,,. Moreover, from (3.4.2), we have

{3.4.6) 8,y = —N8,, (r=1,2,..,m).

If we substitute (3.4.6) in (1.1.17), we have

. {my,my) Y (ny,ma) {my,ny) e N y Wiy NG Y 1 IS [ 7Y
Ly z[\mll : bllo-m—xl,l . ’5“1 -1,1011 v ][("l’l M nl‘i—*l)“"] ‘E()ll'l’():! ’
Hy it 20
. {ne RUTY IS J (my mg) { {1y, ng) ’ i N JON T SO 1 P
Lo EL"]; ESno s e = S a0 [ my — my - Lyie el
Ly, My 20 . . . CIN e
. (my,m5) 1 P2 ,m.
Cpsms == 2 Q" (g — MR )iT — i6, i,
iy, N =0
. i Gy, ) 7, ; Ny My Ny T e
Bugs = 2 0 (my — my)iT - do;] gy (G = 2,3, .., n
my,ma 20

(Mg, mg) C(mq,ma)

Furthermore, since s,.,_, == -—— 8,,;, we have o =05, and if we

<m,2i—1
make use of (3.4.5) and our assumption on the o{*™?, we have

(m Ma) : —1,(ny )
1]1 l) PR 223 1 - L— P—.
mz T Z[(— g11( 1)' Gm——l‘l LA
ml,ngo
27(7)""-.’1 ney

S(m“ »112)( (m PR ,)]
m—1,1

(M — 1y — l)
(_ 1)mg(m,,ma),l;mzmm1

m,25—1 . 5
Ly = Q2 = (:] = 1, 2, ceey ’N:).
mymeze (Mg — M )iT — 0

As a consequence, since Sy;; = Sy, = 0, we have oy = (— 1)"gira™,

and the induction on the #,,; is completed. Finally, (3.4.5) and (3.4.6) hold
for all # and the Lemma is proved.

Theorem 3.4.i. Consider the system of equations
(3.4.7) ¥ + ojw; = eq,(T, @; €) (G=1,2,.,n),

where oy, ..., 0, are distinct positive nwmbers such that mg; + o, = 0; j = k;
k=1,2,..,m; m=0, +1, 4+ 2, .., and each (T, 7;c) is andalytic for
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l;], [81<< A, e<< e, and, also,
4T, — T &) = — q,(F, T; &), @~ T, T;6) =—q(F T ), (G=1,2 ).

Then, for ¢ sufficiently small. and ever y complex number a, la|<< 4, there
exists a periodic solution to the equations (3.4.7) of the form (3.3.7 ) as in Theorem
(3.3.1). As j takes on the values 1,2, ..., n, there exist n such sysiems (3.3.7),
each depending upon the two parameters |a!<< 4, ¢ wbitrary. (Thus, n two-
manifolds of periodic solutions.)

Proof. The proof is exactly the same as the proof of Theorem (3.3.1).

Example 1. By Theorem (3.3.i), there is a two-manifold of periodic
solutions to the second order equation

@ ot = ef(w, ),  fla,— ) = f(z, ).

In particular, if # = 0 is a solution of this equation, then the solution z = 0
is stable in the sense of LrapouNorr. The function f may be the function
fw, &) = o + a® + &= )

Example 2. By Theorem (3.4.i), there is a two-manifold of periodic
solutions to the equation

i+ 0% 4 ef(@)i = 0, fl— ) = — f(x) .

As before, the solution # = 0 is stable in the sense of LIAPOUNOFF. In par-
ticular, we might have f(z) = & -+ 2%

3.5. — Theorem. Consider the system of equations

By oty = eqy(w, @),

. . . Y Lo N
Xy + o + o%; = &q; (%, T; &) (1=2,3,..,m),

(3.5.1)

&, + P, = eq,(F, T; €) (p=mn-+1,..,N),

e
where 6,>0, 0,20, a;>0, f,>0, T = (1, ..., %), &= (i, ..., ), and
moy +0; F0; 1=2,3,..,n; m=0, £1, 42,.., and each ¢, q;, q, is
analytic for |a.|, |#;|<<A, (k=1,..,N;j=1,.. n). Morcover, we assume
that either qy(wy,— &) = qu(ay, &), oF (— @y, &) = — (21, 3), @@y, — &)=
= — q1(®, %). Then there is a periodic solution of (3.5.1) of the form (3.3.7)
as in Theorem (3.3.1) for every |a|<< A (a two-manifold of periodic solutions).
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Proof. ¥From Theorem (3.3.i), we see that the first equation has a two-
manifold of periodic solutions of the form (3.3.7) if g, (ay, — @) = ¢ (%, &).
If qi(—ay, &) = — qu(@1, %), (@1, — #1) = — q1(@y, &), then we see from Theo-
rem (3.4.i) that the first equation has a two-manifold of periodic solutions of
the form (3.3.7). Since the first equation depends only on @, &, the Theorem
follows immediately from Theorem (2.2.i).

Example. Consider the system

{ i+ o =70,

§—e(l—y*)y +y = ex,

where mw = 1; m = 0, -+ 1,.... This system satisfies the conditions of the
above Theorem, and, thus, there is a two-manifold of periodic solutions of
period 2s;/w. Furthermore, we see that we have obtained a periodic solution
to the equation

;}/-* e(l — Y2y + ¥ == sa cos (wt + @),

for every «, ¢.

§ 4. — Appendix.

As remarked after Theorem (2.2.i), the condition (f) of Theorem (2.2.1) is
precisely the condition obtained by Coppingron and Lmvingox [4] for the
existence of a periodic solution of systems of the type (2.1.1). We wish to prove
this statement in the present section.

In equations (2.1.1), let o, = — 01@1, Yo == &1, Yop—1 = By, Yo = Tu, (=2,
3y ey MYy Yuts = @ (j = n -+ 1, ..., N), and we obtain the system

I = ——01Y:2,
. . -1 ) .
Ya = 011 + Qu(— 07 Yis Ysy voey Yon—ay Yoy Yay ooy Yanj €) 5

Yopr = You s

Yo = — G/‘iil/z/t—l = Oy lfapn + EQul-es), (o =2,3, ..., n),
Tui = — Bi¥¥nvs + 84{.--) =n+1.,N),

or,

T = AT + QT ¢
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and the matrix 4 is in a form which satisfies the conditions required of the
matrix 4 in CoppineroN and LmvINsox [4, p. 30, formula (2.1)]. Moreover,
it should be noted that the first component in the vector T is equal to zero.
Using the notation of CoppiNerox and LEVINSON, A is of the form A =
= diag (S;, C) where 8§, = j:—gl ;;, and € is defined as in [4, p. 22]. The-
Y1 ;
refore, according to the tefminology in [4], the first and second components
of the vectors under discussion shall be called the exceptional components.
As a consequence, as is pointed out in [4, p. 30, formula (2.5)], the only
undetermined constants are ¢,,, ¢, and since the above system is independent
of #, we may choose ¢, == 0. Thus, equations (2.8) of [4, p. 31] become

27
J fql(al“‘cm COS 018, — Co; 8ID 038, 0, ..., 05 0) sin gy5ds = 0,
ﬂ

25
] — Cyy¥ -+ ](11(6;10(,1 COS 018, ~— Co1 SN 6,8, 0, ..., 03 0) cos oy8ds = O,
. . I . :

If we veplace 0,8 by s 4 (71/2), we see that these equations become

27
[0:(cor07 sin's, ¢y cos s, 0, ..., 050) cos sds = 0,
B
27
— ¥ + o7’ fql(cmofl SIS, €op €088, 0, ..., 0;0)sinsdy = 0 .
o

Condition A, (v) of [4, p. 32] requires that these equations have a solution
for some ¢,y = b and v = »,, and that the Jacobian of these equations with
respect to ¢y, v be different from zero for these values ¢y == b, v = »,. But,
this Jacobian is precisely

2

[a(’ ¢y €08 sds)/Pey | (— cy1) s
o

where ¢); = b. Since the second factor of this product if =0, we have
‘-"n
éc‘(“ Gy €08 s ds)/Cey |,y 7 0
4]

which is condition (f).
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