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A variational Algorithm. (*%)

1. - Introduction. In one approach to the Calculus of Variations, adopted
in the case of curves by CARATHEODORY [ 1], and Harpy-LiTrLEWooD-PoLya [2],
the principle of minimum is exhibited as a consequence of an apparently much

stronger statement, which leads to the classical equations and conditions, and
which we term the homology principle: it asserts the existence of a non-negative
integrand f -+ ¢ whose integral vanishes on some admissible locus — the desired
minimizing curve or surface — and to which the integrand f of the given
problem is equivalent (in the terminology of CARATHEODORY), or, as we prefer
to say (with pE RuaM [3]), homologous.

We shall widen slightly the scope of the homology principle by allowing
certain discontinuous integrands. The purpose of this Note is to show that
the homology principle is then equivalent to the principle of minimum in its
natural formulation. In fact it suffices to show that the principle of minimum
implies the homology principle, and this constitutes the algorithm in our title.
Essentially this algorithm will be found to reduce to the HAHN-BANACH
theorem. We shall treat explicitely only the case of parametric surfaces; that
of curves is much simpler and is in part treated in {4].

Let us observe that the homology principle implies the principle of mi-
nimum in its strongest form. To this effect we agree to denote by (L, f) the
integral of f on the surface L and to mean by the statement f--¢ is homo-
logous to f that (L, ¢) depends only on the boimdary of L. Suppose now, in
accordance with the homology principle, that a non-negative f--¢ is homo-
logous to f and that (L,, f+¢@) =0 for a particular surface L,. Then for

(*) Address: Department of Mathematies, University of Wisconsin, Madison 6,
Wisconsin, U.S.A..

(**) Received October 25, 1954. This paper was sponsored by the Office of Ord-
nance Research, U.S. Army, under contract DA~11-022-ORD-1511.
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every L with the same boundary as L, we have (L, @) = (Ly, @) and hence
Ly ) — (Loy ) = (L, [ + @) — (Lo, f +¢) = (L, f+ ¢) > 0, so that the minimum
of (L, f) is attained for L = L, (in the class of L with the same boundary
as L,) without any restriction as to the topological type of L.

For the validity of our algorithm, the parametric surfaces must therefore
not be subject to any restriction as to topological type. It is unfortunate that
annatural restrictions as to the topological type occur in nearly all the lite-
rature, even in PLATEAU’s problem whose solution has never been freed from
them; indeed according to [5] a solution is not possible within the classical
framework when the restrictions are removed, and the existence of a minimum
is thus known only in terms of generalized surfaces, to which we shall return
in a moment.

Actually the principle of minimum needs strengthening still further, except
for surfaces situated in 3-space when this turns out to be immaterial: if we mo-
dify the brief analysis given above by taking for L a surface with the boundary
of L, taken twice, we find that (L, f) > 2(L,, f), and that for each %k = 1,2,...
and for each L with the boundary of L, taken % times, (L,, f) is the minimum
of kYL, f). Thus the problem of minimum that really concerns us is a very
natural one in which we admit surfaces (of all topological types) whose bound-
aries are multiples of the given one and we compensate for this by dividing
the surface integrals by the appropriate integers. We shall term it problem A.

It is necessary to specify in it more precisely what is meant by boundary,
80 as to ensure that, when L has boundary k times that of. L,, the relation
(L, ¢) = k(Ly,p) holds for every o homologous to 0; this relation does not
hold in general if we adopt the traditional definition of boundary as one or
more FRECHET curves, unless we exclude the case of « heavy curves »; however
we can ensure its validity without exception, simply by defining, in an abs-
tract way, the boundary of a surface L to be the restriction of the linear func-
tional (L, @) to functions ¢ homologous to 0. The notion of boundary, that
we are thus led to adopt, is the g-boundary defined in [6]; it extends automa-
tically to generalized surfaces, which have to be introduced to give substance
to the principle of minimum, but when the boundary of a generalized surface
is preseribed, we are entitled to suppose that it is not too wildly different from
that of some ordinary parvametric surface; the precise class of boundaries to
which we shall in fact confine ourselves constitutes a space /A that we define
in § 2.

Another definition which will give us some trouble is the precise meaning
attached to the surface integral (L, ¢) when L is a generalized surface and ¢
a discontinuous function homologous to 0; the definition selected is slighfly
artificial, because @ is not in general everywhere defined, and partly, perhaps,
because the nature of @ is not yet fully understood: we do not know at present
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whether some extension of ¢ = @, J) is linear in J; this result is actually
true in 3-space, but the state of affairs in higher space is unclear on account
of peculiar difficulties due to the non-linear character of the bi-vectors .J.

It is for problem A with these further stipulations concerning the boundary
and the precise interpretation of surface integration that we propose to show
that the principle of minimum implies the homology principle.

We shall assume familiarity with [6] and reference should also be made
to the first part of [7] in regard to the principle of minimum for generalized
surfaces. On the other hand we do not use here the very complete and extens-
ive form of the theory, given in [8], of generalized surfaces of finite topological
types: it no longer applies now that we make no restriction as to topological
type, even though it includes as special cases or corollaries, most of the previous
variational existence theorems for parametric surfaces. To a large extent the
present Note is a sequel to [6].

2. — Notation. We take over the notations and definitions of [6], with the
_following alterations and additions... ...

(i) We term toroid of radius @ the Cartesian product of the sets |z]|<a
and |J|=1. The functions f(z, J) which occur will not always be continuous,
nor even everywhere defined; however it will be understood that each f is
homogeneous in J, ie. that for >0 the relation f(w, tJ) = tf(w, J) holds
whenever f is defined at (, J); it will be supposed further that f is bounded
on each toroid for the set of (x, J) for which it is defined; finally it will be
assumed that, whenever a(u, v) is linear in (u, v) and has a constant Jacobian
J 0, the composite function f{a(u, v), J] is measurable in (u, ») and coincides
with the derivative of its LEBESGUE integral in (u, v) wherever this derivative
exists [in particular fla(u, v), J] is then defined for almost all (u, v)].

(i) We say polyhedron over the reals instead of polyhedron over R;
otherwise the term polyhedron has its usual meaning. We term o-polyhedron,
a countable sum of polyhedra over the reals, situated in a bounded portion
of the space of z, and for which the sum of the areas converges. We say ge-
neralized surface, instead of generalized parametric surface, for a non-negative
linear functional of the continuous f.

(i) If L is a generalized surface, its restriction to f of the form
f(@, J) = P(z)-J of a scalar product of P(x) and J, where P(z) is a sum of
continuous bi-vectors, is termed track of L. For such f, the expression (L, f) is
a functional of P of the form f P(x) J(x)dy, where p is a measure vanishing
outside some sphere, and where J(x) is a sum of bi-vectors subject to |J(z)|=1,
defined almost everywhere with respect to u; the quantities u and J(z) are
unique.

17 — Rivista di Matematica.
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We write
[track L, f] = [ fla, J(2)]du

for any function f for which this integral exists. We term intersection of
the BOREL set B with the track J(z), u, or subtrack of I determined by B,
the track J(z), u* derived from the track J(z), u of L by writing u*=u for
subsets of B, and p*=0 for subsets of the complement. By a Lipschitzian
track, we shall mean a subtrack of a classical parvametric surface I with a
Lipschitzian representation x(u, v) on the unit square.

(iv) If o is a measure (!) in the space of generalized surface I and o«
vanishes outside a given class of these L, we say that a generalized surface I’
possesses in terms of the given class the resolution defined by «, if it has
the form

decx.

“In particular if the given class consists of basic closed I, we speak of a basic-

closed resolution; if the given class consists of micro-surfaces (2), we speak of
a micro-resolution; if the given class consists of generalized surfaces whose
tracks are Lipschitzian, we speak of a Lipschitzian resolution. The resolution
is termed countable if  vanishes outside a countable set of L, unitary if the
total measure defined by « is unity.

(v) A g-boundary 2 will be termed polyhedrally approximable if there
is a bounded sequence {1,} of g-boundaries- of polyhedra over the reals, such
that |4, — 4] = 0; we recall that || 4] is the infimum of the areas of generalized
surfaces with the g-boundary A. We denote by A the space formed by the
polyhedrally approximable A with the norm |4, when we remove from the
class of convergent sequences those not situated in bounded sets of 2. We
observe that Aed if and only if there exists a o-polyhedron whose
g-boundary A. Evidently / is a space whose elements include all admissible
g-boundaries in the terminology of [6].

3. — Functions homologous to 0 and elements of the conjugate space to /.
The function f will be termed homologous to 0 if [track L, f] = 0 for every
closed polyhedron Lj; it is not assumed that f is continuous, in which case the

(*) The measure o is understood to be svch that w* open sets are measurable.
(*) A micro-surface is a generalized surface situated in a set consisting of a single
point.
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condition states that f is exact. The function f, is termed homologous to the
function f, if the difference f; —f, is homologous to 0.

(3.1) Given any f(x, J) homologous to 0, there is a linear functional g(i) on A
such that g(1) = [track L, f] for every o-polyhedron L with the g-boundary Ae A.
Conversely, given any linear functional g(2) on A, there is an f(z, J) homologous
to O such that g(l) = [track L, f] for every o-polyhedron L with the g-boundary
re . ‘

A corresponding, but slightly different, theorem for generalized surfaces
(4.2) instead of o-polyhedra, will be given in the next §. We shall also give a
similarly modified version (4.1) of the following corollary:

(8.2) If f is homologous to a continuous function and the o-polyhedron L s
translated through a wector &, then the quantity [track L, f] varies continuwously
with &.

Proof of (3.1). We remark in the first place that, given an f homo-

logous to 0, the ‘q‘uantity [traek L, f] clearly takes the same value for any
two polyhedra L with the same polygonal boundary 2, and therefore defines
a function ¢g*(2) of a polygonal boundary i; and that, conversely, given the
linear functional g(4) on /1, the equation

(%) g*(A) = [track L, f]

will likewise be satisfied for every polyhedron L with A as its polygonal boundary,
if w2 choose ¢g*(1) = g(4) for polygonal boundaries 1 and if we define f by
making f(z, J), in each plane parallel to J, coincide for almost all # of that
plane with the derivative of the function of intervals in that plane, obtained
from g(A) by selecting for A the boundary of a variable oriented square of
that plane. We note that the equation (x)implies both that ¢*() is additive
and that f is homologous to 0.

The definition of g*(1) and the validity of (*) can now be extended to
the case in which A is the boundary of a polyhedron L over the reals. It is
again sufficient to verify that the right hand side of (#) depends only on 1,
or what amounts to the same, that this right hand side vanishes when 4 =0,
a fact which can be deduced at once from Lemma (3.3) of [6]. In its new range,
the functional g*(1) is again additive on account of (*); it is also uniformly
continuous in the metric defined by the norm |{4| since f is bounded on each
toroid. .

The definition of g*(A) and the validity of (*) now extend by uniform eon-
tinuity to the case in which e A and L is any o-polyhedron with 1 as its
g-boundary. From the validity of (=) it follows that g*(A) is a linear functional
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and that the latter is uniquely determined by its restriction to polygonal
boundaries . From its existence and from its unicity, respectively, it follows
that we may set g*(1) = ¢(4) in the two. parts of our theorem, and this comp-
letes the proof.

Proof of (3.2). We may clearly suppose that Z is situated in the sphere
|| <1 and that f satisfies the inequality [f|<1 in the toroid of radius 2
moreover, we shall limit ourselves to translations by vectors & such that
|&]<1 and we shall write [track L, f]* for the value taken by [track L, f] after
L has been translated through & We choose ¢ > 0 and we have to show that
for small &,

{[track L, f]* — [track L, f]l|<< e.

If L is a polygon over the reals, the assertion is verified at once. In the
general cagse, we write L = L'+ L", where L’ is a polygon over the reals and
where L” is a o-polygon of area << ¢/3. When L is replaced by L’ the dif-

ference to be estimated will, for small &, be < ¢/3; when L is replaced by L'

the difference concerns two terms each of which is < /3 and is in consequence
< 2¢/3. By combining the inequalities for L' and L’, we obtain the desired
inequality for L and this completes the proof.

4. — Surface integration. Let I be a generalized surface whose g-boun-
dary 2 belongs to <, and let f be homologous to a continuous function. Let
f(z, J) denote the mean value in of fle+h&, J), where h > 0, the mean value
being taken over the unit cube of centre 0 of the vector & Evidently f is
continuous in o and linear in J, and hence continuous in (z, J). We define

(L, f) = lim (L, F) -

(4.1) (i) The quantity (L, f) exists whenever L is a generalized surface whose
g-boundary belongs to < and f is homologous to a continuous function. (i) If I
s translated through a vector &, (L, f) varies continuously with £.

(4.2) Given any f homologous to 0, there is a linear functional g(A) on A
suech that g(A) = (L, f) for every generalized surface L with the g-boundary Ae A.
Conversely, given any Unear functional g(1) on A, there is an f homologous to 0,
such that g(A) = (L, f) for every generalized surface L with the g-boundary Ae A.

(4.3) If f is homologous to 0 and L' is a a-polyhedron with the same g-boundary
as the generalized surface L then

(L, f) = [track L', f].
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Proofs. Since (4.1) evidently holds for a continuous integrand, we
may suppose in it that f is homologous to 0. We denote by L’ a o-polyhedron
with the same g-boundary as L, and we note that our hypotheses are now
the same as in (4.3). We observe further that for each %> 0 the function f
Is exact, and hence that (I, f) = (L', J) = [track L', f] — [track L/, f] as
h —0 by (3.2). This proves (4.1) (i) and (4.3); (4.1) (ii) and (4.2) now follow
from (3.2} and (3.1). ‘

5. — The Algorithm. We now prove:

(3.1) Let f, be homologous to a continuous junction and let Aed Sup-
pose further that L, is a generaliced swrface with g-boundary 21, such that
Loy fo) < (Ly fo) for all gemeralized surfaces L with the same g-boundary 2,.
Then there exists a non-negative f, homologous to f,, such that (L, f,) = 0.

Proof. Let ¢(4) denote the infimum of (I, f,) for all those L whose
—g-boundary-is-A-€ - From our-hypotheses-it ‘clearly follows that ¢(0) = 0.
As in [6], p. 466, we find that ¢(4) is convex and homogeneous and that there
exists a linear g(1) <gq(2) such that g(i,) = ¢(4,) = (Lgy fo). By (4.2) there
exists an f homologous to 0 such that g(1) = (L, f) for every L with g-boundary
led. Wiiting f; = f,—f we deduce that fi is homologous to f,, that
(Loy f1) = q(Zo) — g(4,) = 0, and that (L, f,) > q(2) —g(1) >0 for every L with
g-boundary Ae . Choosing for L any square, we have by (4.3), [track L, f,]>0.
Thus the double integral of f,(z, J) on every square in a plane parallel to J
is non-negative, and so f; is non-negative. This completes the proof.

6. — An extension of (4.3). It is of some importance, particularly with
regard to the derivation of local conditions for a minimum from our algorithm,
to eliminate the reference to o-polyhedra from the definition of 4 and from
(4.3) as follows:

(6.1) In order that A'e A it is necessary and sufficient that X' be the g-boun-
dary of a generalized surface L' which possesses a Lipschitzian resolution |Lde.
Moreover, if L' has such a resolution, and if f is homologous to 0, we then have

(r,f) = f[traek L, flde.

There are strong reasons for believing that the first part of (6.1) can be
strengthened, and that in order that a generalized surface L’ possess a g-boun-
dary Aed it is necessary (as well as sufficient) that L’ be the sum of a sin-
gular generalized surface and a Lipschitzian resolution [Ld«. We shall doubt-
less return to this important question in the future.
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‘We shall derive (6.1) from the Appendix and from the first of the following
~ lemmas, which will be derived in its twrn from the second.

(6.2) Let A be the g-boundary of a generalized swrface I whose track is
Lipschitzian, and let f be homologous t0 0. Then Le A and (L, f) = [track L, f].

(6.3) Let w(u, v) be a Lipschitzian parametric representation with Jacobian
J(u, v), let A denote a variable parallelogram in the (u, v)-square of definition,
and let 14 be the rectifiable g-boundary defined by restricting x(u, v) to the oriented
perimeter of A. Fuyther let | be homologous to 0 and let g(1) be the associated
linear functional on A in accordance with (3.1). Then g(A ) 18 absolutely con-
tinuous in A and has in A the derivative flu(u, v), J(u, )] (V) for almost all
(u, v) (%).

Reduction of (6.1) to (6.2). The condition in (6.1) is neecessary, since
every o-polyhedron possesses a Lipschitzian resolution; its sufficiency is clearly
implied by (6.2) together with (A, 3) of the Appendix.

- Reduction of (6.2) to (6.3). We shall verify successively that (6.3)
implies the conclusion of (6.2) in each of the following cases:

(i) L is a Lipschitzian parametric surface; its g-boundary is then recti-
fiable and so belongs to /; moreover by (4.2), (L, f) is the value of g(1,) when
A is the (u, v)-square of definition, and (6.2) implies that this value coincides
with the integral of fla(u, v), J(u, v)] and therefore with [track L, 7] by (B, 4)
of the Appendix.

(i) L has the same track as a Lipschitzian parametric surface L’; then
its g-boundary A, and therefore also the value of (I, f), are unaltered by
replacing L by L'; this requires A€ A and (L, f) = [track L', f] = [track L, fl.

(i) The track of L is the intersection of a set B with the track of a
Lipschitzian parametric surface w(u,v), where F is the image under x(u, v)
of a finite sum of (w, v) intervals; in this case our conclusions clearly follow
by addition from those of the preceding case.

(iv) Here and in the remaining cases the hypotheses are as in case (iii)
except those concerning F; we now suppose ¥ to be an open set; in this
case, the open set of (u, v) for which 2(u, v) lies in % can be approximated by
a finite sum of (u, v) intervals, and our conclusions follow by passage to the
limit from those of case (iii).

(1) The- derivative in this statement is taken for regular sequences of .

(3) What is remarkable is that, according to (6.3), the funetion f(z,J) originally
defined for almost every z of each plane parallel to J, is now found to have been
defined for almost every pair z==(u, v), J=J(u, v) on each Lipschitzian surface.
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(v) E is now a closed set; this case is dealt with by passing to the
complement.

(vi) E is a countable sum of closed sets; this case is dealt with by pas-
sage to the limit from case (v).

- (vil) E is a BOREL set; this is the general case and reduces at once to
case (vi) by removing from ¥ a subset whose-measure is 0.

Proof of (6.3). Since 1, is the rectifiable g-boundary of a Lipschitzian
parametric surface of area f f alJ(u, v)|dudo, there exists a o-polyhedron
with at most double this area, whose g-boundary is A,; this imph‘es that
Lg( AA)}<2M” |J (u, v)|du dv, where M is the supremum of |f(z, J)| in some
fixed toroid, and therefore that ¢g(4,) is absolutely continuous 4 and that its
derivative is 0 at almost all the points (%, ») at which J(u, v) = 0.

To complete the proof, it suffices to show that, at every (u,, v,) for which
o (thgyg) 70, for. which further a(u, »).is differentiable, and for which. g(Z,) has
‘a derivative D(uy, v,), the latter has the value f[a(us, ¥o), J (%, vo)]-

We write a*(u, v) for the linear function which agrees with =z(u,v) at
(144, o) and has the same partial derivatives at that point, and we note that

(%) ¥, 0) — a(u, v) < s0,

where g is the distance of (u, v) from (u,, v,) and ¢ -0 as ¢ — 0. We write
A for the g-boundary of the parallelogram described by @*(u, v) on A. From (=)
it follows that A% — A, is the g-boundary of a parametric surface of area
< 2Ke|4], where K is a constfmt exceeding the relevant values of |w,| and
|@,|. By continuity g[(A] — 2,)/|4]|] therefore tends to 0 with the area |4[;
by linearity of ¢ this implies that the derivative of g(A¥)—g(1,) is 0 and
therefore that at (g, v,) ¢(A5) has the derivative .D(uy, ).

However, now that we know that the derivative of g(A}) exists, we can
caleulate it in a different way by choosing A so that A} is the perimeter of
a square, and by observing that |A%[|=d4|-|J(u, ). We thus find that
the value of this derivative is

IJ(“m Vo) | -lim .(/()*2)/”}'_4“ ’
which may be written simply |J(u,, o) | *f(g, Jo), Where @, i8 (1, V) imdv Jo

is the bi-vector of wunit length parallel to J(ug,v,). Hence D(u, v) =
=|J (%o, V)| *f(#o, Jo), which reduces to fl 2o, J {1y, v,)] by homogenuity of f.
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Appendix ().

Part A. — Consider the space whose elements are differences £ of gene-
ralized surfaces with the w* topology, and define the g-boundary of £ and
the symbol (2, f) as differences of corresponding expressions. We write #
and R, respectively, for the sets of £ whose g-boundaries satisfy 1e A and
2] < a, where a > 0. We write further G for the closed set consisting of the 2
which are generalized surfaces.

(A, 1) R, F are Borel sets.

Proof. Denote by {£,} the sequence of differences of a countable dense
subset of the set of closed generalized surfaces, by f, the function folz, Jy=|J|
and by {f.} a dense sequence of continuous f. Further let ,,, denote, for
positive integers p, ¢, », the empty set of £ unless 2,., is a difference of gene-

ralized surfaces of arveas << » situated in the sphere -|@|<C#;~inwhich case it

is the open set of £ for which
(2 + Loy, f)<a-+1/p and (£ Loigs ) >—1/p for 1< n<ryr.

We find that #, =211,%,E,,, which is a BOREL set.

Again, denote by I, the sequence of the polyhedra over the reals whose
vertices and coefficients are rational, and write B,, for the BOREL set, obtained
by the translation L, of #, for a = 1/g. We find that R = 11,2, F,,, which
is a BOREL set.

(A, 2)  Given &> 0, there esists an expression of the set RG as a countable
sum of disjoint Borel sets @, such that [2"— 2| < & whenever Vs A" are
g-boundaries of two elements of a same G,.

Proof. Let {1,} be a dense sequence in 4 consisting of g-boundaries of
polyhedra L, over the reals, whose vertices and eoefficients are rational. We
choose a = £/2 and write %, for the translation by L, of R,; the sets G, de-
fined by writing G, = E\Xg, @, = B,RG— G,_, then satisfy our requirements.

(A,3) Let L' be a generalized surface possessing a resolution [Lde in terms
of generalized surfaces L whose g-boundaries belong to A. Then (i), the g-boundary
A" of L' belongs to A. Moreover (ii), if f 28 homologous to « continuous function,

(L', 1) = [(Z, ) e

(") This Appendix deals with auxiliary material depending unavoidedly on routine
considerations of measurability and the like, some of which are not short.
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Proof. We may suppose (by completeness of A) that o« is finite and
hence (by multiplying by a suitable constant) that o« < 1. Given &> 0, we
define G, as in (A, 2) and we select an element A€ @,; we observe, more-
over, that if A" is the sum of a sufficiently large number of terms of the series
2 Ane(@,), we have |2 — X< 2e. Clearly A"e A; it follows by making &->0
that A'e/d as asserted in (i).

Again, with the meaning attached to f in § 4, we have (L', f) = lim, (L', f) =
= lim, f (L, f)de. Further, since L has g-boundary in A, the relation (L, f) -~(L, f)
holds by definition of (L, f); moreover, if M= Sup [f(z, J) )| in a suitable toroid,
we find that (L, f)|< M-(L, f,) where fy(z, J }J[, so that |(L,f)| ve-
mains below a quantity independent of % wh]eh is integrable in «. We may
therefore take hmlts in h under the integral sign for a sequence of R, and
this gives (L', f fhmh (L, f)do = f (L, f)de, which estabhshes (ii), and so
completes the plOOf

Part B. - The following propositions state;in-effect,that-a - Tipschitzian
surface has almost no non-tangential intersections with itgelf, with another
Lipschitzian surface, and with a surface which possesses a Lipschitzian re-
solution,

(B, 1) Let (u, v) be Lipschitzian, let J(u, v) denote its J. acobian, and let I
be the set of (w, v) such that there exists (w', v') distinet from (u, ) for which

() (!, ') = alu, v),

Jw, v) 4 SO (or else one side at least is undefined).

@ [J(u, w)] ~ — |J@, »")]

I

Then
” [ (u, v)|dudy =0 .
£

(B, 2) Let w(u,v), x*(u, v) be Lipschitzian and let J(u, v), J*(u, v) be their
Jacobians. Let B be the set of (u,v) such that there exists (u*, v*) for which

1) @, v¥) = a(u, v),

J(u, v) - 4 JHu*, v¥)

el —_— : e side at least i defined).
T )] 7 = [T, 09| (or else one side at least is undefined)

(ii)
Then
’ ff[J(u,v){dudv:().
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(B,3) Let J(x), pu be a Lipschitzian track and let J (), p be the track of «
generalized swrface which possesses a Lipschitzian resolution. Then the sei of
for which J(x) # + J'(x) is the sum of a set of p-measure 0 and a set of u'-
measure 0. ‘

The following is a COroHary of (B, 1):

(B, 4) Let L be a parametric surface with « Lipschitzian representation
x(u, v) whose Jacobian is J(u;v). Then

[track L, f] = f ff[a;(u,, ), J (1, v)]dudo

for every f subject to f(a,—J) = — f(a, J) for which the double mtegral on the
right hand side ewists. '

Proof of (B,1). Since the area of the Lipschitzian swrface defined by
@(u, v) coincides with its BANACH area [9], the set of points « at which the
multiplicity is infinite, occupies two-dimensional measure 0. Hence there is a
BorEL subset Z, of E, on whose complement ( f [J(u, v)|dude = 0, such
that for each (u, v) of the set B, there are at most a finite number of (u'y v')
for which @(u, v) = @(«’, v') and each such (w', v') belongs to E,. From the
theory of Analytic sets [10], it follows that X, is the sum of a countable
system of disjoint BorEL sets E, on each of which (1, v) never takes a value
twice. Without loss of generality, we may suppose that, in each F,, z(u, v)
is differentiable and J(u, v) does not vanish. This amounts to excluding coun-
tably many sets whose @-images are of two-dimensional measure 0, and over
which therefore f { |J(u, v)|dudv=0. To establish (B, 1) it suffices to show
that each #, has plane measure 0; since the order of the sets B, is immaterial,
it suffices to show that E, has measure 0; further it clearly suffices to show
that a BOREL subset ¥, of B, in which the values of z(u, v) are assumed also
at points (', v') of B,, has measure 0, and we need only prove this for n=2.

Let A; be the set %,,, let A be the set of values assumed in it by a(u, v),
and let 4, be the subset of ¥, at which a(u, v) takes values in 4. Then A
and 4, are likewise BOREL sets. It follows easily in two stages, that there
exists for each ¢> 0 a closed subset B of 4, which is the z-image of a closed
subset B; of 4; and also that of a closed subset B, od 4,, such that 4 — B
has two-dimensional measure << ¢. We denote by C, the set of points of den-
sity of By, by C, the set of points of density of B,, and by CF, CF the sets of
values of z(u, v) for (u,v)e C; and (u, v) € C, respectively.

If 2, and (u,v) is the corresponding point of C,, J(u,v) is tangent
to B at #. Consequently the corresponding point of B, cannot be a point of
density. Thus O] and 0 are disjoint. Hence B is the set of values of z(u, v)
in the sets B, — €, and B, — €, which are of measure 0, and is thus of two-
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dimensional measure 0. Consequently A has two-dimensional measure < ¢,
where ¢ is at our disposal, and therefore two-dimensional measure 0. This
requires f f |J(u, v)|dudv to vanish in 4,, and therefore A, to have measure 0
since J(u, v) 5= 0 in 4;, which completes the proof.

Proof of (B, 2). Since those intersections of the two surfaces which are
at the same time non-tangential multiple self-intersections for one of them,
are dealt with in (B, 1), the proof is now an easy adapmmon of the relevant
parts of the same argument.

Proof of (B, 3). We write for brevity j, j"for J(x), J'(x). By hypo-
thesis, the track of L is a subtrack of a parametric surface with a Lipschitzian
representation x(u, v) and this subtrack is determined by intersection with a ‘
BorEeL set ¢ in a-space. We may suppose that @ is contained in the set of
values of @(%, v). Since the complement of @ has u-measure 0, we need only
prove that the subset of ) in which we do not have j = + §’ has u'-measure 0,
and thls will be the case if

o f[71~~—77 ylaw'=0.

To establish this relation, let L= f L*de be our Lipschitzian resolution, and
let j*, u* define the track of L*, where §* is written for J*(z). From the
resolution of I’ we derive that '

(IT) : fP J(x) de’ —ldocfP(a Yo ¥y dpe*

for continuous bi-vectors P(z), and hence also for P(z) bounded and measu-
rable (B), and in particular for the sum of bi-vectors

Plr) = j*'— (35 in @,

a subset of p*-measure 0. Hence in @, except in a subset of u*-measure 0,
we have

P(w)d #(x) = - P(x)J (@) = *+ [53('7) — (4§")j*] = 0
so that by (II) [‘P(m)J () dge'= 0, which is (I). This completes the proof.

Proof of (B, 4). From (B, 1) and from the theory of Analytic sets [10],
it follows that there is a countable decomposition of the (u, v) interval into
disjoint BorerL sets {W,} and a set W, such that f j |J(u, v)|dudv vanishes
- on W, and that, in each W,, x(u, v) has a Jacobian J(%, v) =0 and takes
different values at different points, that further, in > W,, x(u,v) takes a
same value at most a finite set of (u,v), and that finally the relations
(u,v)e> W,, (w,v)e> W, and @(u, v) = a(u', v') together imply J(u,v)=
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=dJ(u,v'). Writing @, for the a-image of W, and Ja(x) for the unit bi-vector
parallel to J(u, v) when (u,v)e W, and o = x(u, v), we have
[t o), I, v)] dudo = 3] f{a, 7,)] v,

On
where » denotes two-dimensional measure.

Now by (B, 1) the various J(z) defined at a same point z reduce to two
which we may write 0,J (z), where 0, =1 for N, values of » and 6,=—1
for N, values of #n. We may suppose the notation such that N, > ., and
this specifies J(x) in 3 Q,; we define further g = J f (Ny — Ny)dv in > @, and
1 =10 elsewhere, so that J(z) is defined except in u-measure 0. Writing Q, ()
for the characteristic function of Q., we find that

3 [[fla T aw = 3 [[ 2, 7@)]0,Qu00) dr =
Qﬂ n
= f_(f[-’l?, J(‘E)]{ z O,IQ,,(LU) }dv =

I = [[1[e, J@)] & — Moy v =[x, T(@)] ae
and therefore that

fff[az(u, é), J(u, v)] dudo = ff[m, J(x)]dw .

This last formula shows incidéntally, by restricting f to be linear in J and
continuous, that J(x), u is the track of L, and therefore that the right hand
side is [track L, f]. This completes the proof.
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