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ROBERT A. GAMBILL (¥)

Stability criteria for linear differential systems

with periodic coefficients. (*¥)

Introduction. In this paper we shall discuss questions of boundedness and
stability for differential systems of the form

1) Yt ohy, A, ety =0 (=1, 2., n).
1

These systems, which contain the MATHIEU equation [see, e.g., 9, 10, 13, 14] (")

2) ji - (0* + Aecos 2ty =0,

as a particular case, have been studied by L. Cesarr [2], J. K. HALE [5],
W. Haacke [4). Asin [2], we will suppose that (A) oy, ..., o, are distinet
positive numbers, (B) 2 is a real parameter, (C) p;(f) ave real functmns, pe-

+oo

riodic of period 7= 2njw, J(p,-h( ) At = 0, @t Z, et !, and z e | < C

0
G, h=1,..,n), (D) mowsto;,o, (§,h=1,..,n; m=1,2,..). Condlmon (D)
says that there iz no resonance between the small periodie restoring forces

Zzh%h(t)g/h and the harmonic bsceillations of the differential equations
1

Y; -+ 0%; =0, as noted in [2] Using a variant of the POINCARE method of
casting out the secular terms in the solution of (1) by successive approximations,
L. Cesart [2] has proved that if (A), (B), (C), (D) are satisfied and either
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(@) @alt) = @ul—1), (j, h=1,...,n), or (B) @anlt) = pus(t) (7, h =1, ...,n), then
all solutions of (1) are bounded in (— oo, +co) for 1 sufficiently small in
absolute value.

In the present paper (§ 8), we will give a sufficient condition for the boun-
dedness of the solutions of system (1), for || sufficiently small, which extends
both («) and (£). We will also discuss (§ 3), systems in which small periodic
damping is present. In § 4 we will show that the solution [y,=0 (j=1, ey 1),
with 1 ==0, is parametrically stable whenever the solutions of (1) are bounded.
In § 5, we shall discuss systems of equations (1) with o® replaced by o3 (),
and @;,(?) replaced by @, (t, 4), and we shall see that the condition that the
functions ,,(¢, 2) have mean value zero can be relaxed so as to include es-
sentially the cases considered by L. Crsari and W. HAACKE (see remark at
the end of § 5).

The material given in the next two sections will be used also in two later
papers.

§ 1. Preliminary remarks.

Consider the system of differential equations
N
(1.1) ¥ = 05Y; + A Zh 1/)a'h(t)']/h (= 1,2, ‘N)’
1

where g1, @, ..., gy ave distinct complex numbers, 1 is a complex parameter,
and z/),,,(t) are penodle comple\ valued functlons of period T=2mw, And such

that f Pul(t) At = 0, pu(t) = zk'y,h,e” wt 2;«/,,,,,< c, (j, h=1, ..., N), and sup-
L]

pose that o;5% 0, (mod wi), js£h, (f, h=1,..., N). A number z is said to be
a characteristic exponent provided there exists a solution y, of system (1.1)
such that y,(t + I) = ¢*y,(?) [3, 6], and it is known that there are N cha-
racteristic exponents 7y, ..., Ty, not necessarily distinct, of (1.1), which co-
incide with g, ., ..., gy respectively when A= 0. Since the characteristic
exponents are continuous functions of 4, and since p;z£0, (mod wi), js£h,
(j, h=1,..., N), then for || sufficiently small, we have: 7;% 7, (mod wi),
js=hy (j, h=1,.., N) [2, 5]. In this case, there is a fundamental system of
solutions of (1.1) of the form (&) [yu(t, 1) = e Py, 4) (j =1,..., N)],
h=1,.., N, where each P;(, 1) is a periodic function of #, of period 7.
Furthermore, (') the functions P,,(t, A) are uniformly bounded in (— oo, -+ co)
for all [A| sufficiently small, and ()') det | P;,(0, 2)|> € >0 for an absolute
constant C and the same values of A [2]. These results have been obtained
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by a variant of PoiNCART’s method of casting out the secular terms, studied
by L. Cmsar: [2]. For lack of space, we cannot give an account here of the
method, and we shall refer to [2], or to the recent paper of J. K. HaLE [5],
where a summary of the method is given. We shall add here some more needed
information, referring again to [2], or {5]. The characteristic exponents z;
can be obtained as usual by the FroqueT equation as soon as a fundamental
system of solutions of (1.1) is known. However, for |i| sufficiently small,
and under the conditions stated above, L. Cmsari [2], has shown that the
characteristic exponents 7; are given by the following system of equations

Ty A Ay (Tyy Toy ooy Ty A)

)
S

Ty— A do(Tyy Tay gore Tyy A) ==

o
s

Tp— A dy(Tyy Tay ey Tay 4) = Qu

where an explicit expression for the functions d; is given below. Each

’ -(Ij =d; (11, vy Ty, A) 1S 2 holomorphlc function of 1. The complex variables T
are supposed to belong to certain small neighborhoods C; of g, (j=1, ..., N).
For g;5% 0, (mod wi) and 2] sufficiently small, system (1.2) has a unique
solution 7y, ..., 7y with 7,€C; and 7,2 7, (mod wi), j=h, (jh=1, .., N).
This solution can be obtained by the standard method of successive approxi-
mations: T, —7}111;-5 V=05, T3 V=0, A1, T, e Ty A) (=0, 1,...3
j=1,.., N)[2] Then we have t,=g9,+ Afo1,.c, 0, 4) (G=1,..., N),
where the f; are holomorphic functions of A. The function d; is given by the

following formula: d;= [nn d™, where
n—>u
m—2
(m) (m—1) (m—p)
{1.3) ;" =1 27,) Zl LA A?kﬁ— it Vitg Vg, o Vigrakoo iy Vegaite,
{["‘ Ty, + ks 4 .o F ko + 1 ][— Ty, T ik 4 oo A Bppo + 1] -

. ...[}‘—T,WH =+ ’L']{-]w:-g(') -+ Tj]}“l .

and 1(0) d(l) —_ 0

The numbers ., are the FOURIER coefficients of the functions w;(f) and
Y= A" if h =74, k=0; Y% =y, if k0. Finally, in (1.3) the con-
vention is made that those summands for which the denominator vanishes
are excluded.

Since the periodic functions y,,(f) have mean value zero, the characteristic
exponents 7; are related to the characteristic roots ¢, by the formula

Ty A e Ty =01 + ... + 05 [2]



172 R. A. GAMBILL

An explicit expression for a fundamental system of solutions of (1.1) is

given in [2] in the following form: y;,/t) = lim y$;°(t), where
= S L3 00

m N -} 0O
A M) 8 rhf e z an 2 Z (1) {(m -1 {1~ 2 2) .
(] 4) Ym™ = (377'0 ! v A | PURES PSR y’”r’"iy'ltzkz o yt'p—:tp‘:kpﬂytp—~1"kv
1 1 —C

i

pltures ket nltl oo ik, o - ko -+ T ) LT R S S T e

. . ! -1
v Ty ik, - Tz.]} :

The symbols ¢4 are defined above and the convention is made in (1.4) that
o y;}hk

those summands for which the denominators vanish are excluded.

§ 2. — Notations.

Lietus write system (1) of the Introduction in the form
(2.1) V4o dY +10Y =0,

where Y = col (y1,..., y.): A = diag (d, ..., 0}), @ =|gu(t)], and sappose that
conditions (A), (B), (C), (D) are satisfied. Since in the following, we shall
“consider systems (2.1) with different matrices @, say @,, D, ..., then often,
in order to simplify the notation, we shall refer to them as systems (2.1) rela-
tive to the matrices @,, D, ....

If we make the transformation

™

5

=
|

|

H

|
&
]

-
R

I

!

1
&
&
i
IEQ
<

Il
=

=

then (2.1) becomes

. ) Mo )
’ Rpjmy == V0 Bajy + %0 h‘PM(t)Lzzhﬂ -~ 321:]
i g
(2.3) i (j==1, ..., n),
. . X3 )
l Bypj == — 107 &y; — 20, g’i @nB) 2 -+ 221 ]

which is a system of the form (1.1) with N= 2n, where g, = ioy, g, = — 10,,
weey O2p—y = 104, 02, =—t0,. The corresponding system of equations (1.2) for
the determination of the characteristic exponents is then a system of N=2n
equations in N= 2n unknowns. Since we want to prove that for certain ma-
trices @, the characteristic exponents of system (2.1) relative to @ are purely
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imaginary and two by two complex conjugate, it is convenient to replace
Ty, Tay oy Ton it (1.3) by new variables ity, e ATy y oery 3Ty, — 4Ty, Where the z;
are real and belong to certain small neighborhoods ¢; of o; (j = 1, ..., n) [2].
To do this, we shall make in (2.3) and (1.3) the substitutions

(2.4) je=2§—24u, h=20"—2+wv, (,M=1.,n; u,v=1,2).

It follows from (1.1) with N==2n and (2.3) that

i

(2.5) » Yar = (— 1)1 20, Cimepe -
If we put
(2.6) d;";) = e ‘)?o-,«d‘"”~ s (15,";) 2ic; d‘"'), G =1,..,n),
and

[ dmm=—d,  w—o=1, W=7, k=0,
(2.7) % c“f,’l’ = ) u=v=2, =74, k=

l (yu}: == G Est0 ,
then
¢ L oy 1. L
(2‘8) ’}/ahl ( )u 20_ - C; PR .

With the above notations, (1.3) with N=2xn can be reduced to the con-
venient forms [ef. 2]

m-2{"\p 0 2
(o (m) 1\t ety - -1 {2220, M 1)
(2.9) « 7 =3 Z (,, z, o %7;14._4_4-757,“ lzul,.‘.,uﬂ.,,1 (—1) » Cit 10t 140,

(12458 foge10 112 D)

e O PN SR I a,w[(— 7, A (ks + .. —I—‘ ki) -+ 1]
L1, + (ks + . k)0 - .Tj] (1) “ﬂ“v: b Bprato + 7]
(j==1,2,..,0),
pn 2

) -
{2 (m) it TN R TR T | (2yy2iq, M —1)
(2.10) 4y, P 20: (7) Ztl, st Z.,+ +r»H_Eul, ,u,,,,( —1)" vt CirgeCrcte oo

o ditrem e Loy o [ 1)

i (T ., .
tptpiikpta 1”‘};*" e (]"2 +o 4+ ]"JH-Z)Q)M Ti]

i3

'[(”"1)%'512‘{‘ By ... + 76,,+2)a) — 7] ... [(— 1)"’"+’Ttﬂ+l + kpra — 7, ]}

(1 =1, 2,...,m)
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with the convention in (2.9), (2.10) that those summands for which the de-
nominators vanish are excluded. The system (1.2) with N = 2n then takes
the form

. . 23 . . . .
T, = oy - o Ay (3T 4Ty, ey 3T, — 9T, A)
1
— it = — oy — o~ o (371, — ATy ooy 1Ty — Ty, A)
~V1
(2.11)
. , M . . . )
1= 10, -+ 9 Ay ,n(0Ty ) — ATy oy 1Ty, — 0Ty A)
i
. . ;v’i . . N .
— Ty = — 10y — 5 Ay n(0T1, — Ty eony Ty —4T4, A),
“Yn

where cI,,,j:Jil)ll dfl’,"j’ (w=1,2; j=1,.,n). It is proved by CEsarr [2] that
= (—igﬂ- {j=1,...,m), for every differential system (2.1) which satisfies
conditions (A), (B), (C), (D). Thus, if the functions di; (j=1,.., n), are
real for all real numbers 7€ C; (j=1,..., n) and all real A sufficiently small
in absolute value, then &, ; =d,; (j=1,...,n) and the equations (2.11) are
congistant and reduce to » equations in the » unknowns 7, .-y To. BY putting
A (Try ooy Ty A) = dy 0Ty y — U1, ey TnTny —4Tay ), Wwe have thus for the de-

termination of the characteristic exponents ir,, —ity,..., ir,, — 47,, the
system

A ,
(2.12) : T; = 0; - ‘2;’_(1). (Tey oy Tuy A) (=1, 2,...,n).

As shown by CmsAri [2], whenever the functions dy 5, with 7€ 05, and ||
sufficiently small, are real, then system (2.12) has a unique real solution 7,
wey Tny With 7,€ C;, and the numbers iz,, — iy, ..., i7,, — i1, are the cha-
racteristic exponents of (2.1). Since 7, ..., 7, are continuous functions of 1,
it follows from D that 7; 4 = mw (j,h=1,..,n; m=1,2,..) and thus
the 2n characteristic exponents are incongruent mod wi. As a consequence,
both systems (2.3) and (2.1) have a fundamental system of bounded solutions.
- We conclude that whenever the functions d, ; are real, then all solutions of
(2.1) are bounded in (—oo, +oo) for 1 sufficiently small in absolute value.
In particular, in the case () or (f) of the Introduction, the functions d, ; are
real [2].

Remark. Tt has been proved recently by J. K. HALE [5] that the con-
dition of absolute convergence of the FOURIER series of g,(¢) can be replaced
by the condition that each @,(f) is L-integrable in (0, 7).
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§ 3. — Sufficient conditions for stability.

3.1. — Coupling of systems. Iet {®} be the class of all n-n matrices
D =|ay ]| of the form @& = @, + ¥, where @, = diag (D,, D, ..., D) is the
direct sum of n;-n; matrices @; with «,-+...-+n,=mn, and the elements oy of
the matrix ¥ which are on or above [on or below] @, are all zero. Thus,
=0 if 0y 4+ oo+ 0y FIZ i 0y + o 0y, 0+ o 1SR, [0+
Ly RISy e Ry, Ry F1ISE], =10k n,=0).
The elements e, of the matrix @ are assumed real. It is well known that {P}
is a group.

Lemma I. If the system
(3.1.1) Y+ AY 4+ 20Y =0

satisfies_conditions (A), (B), (C), (D) and if @ {B}, then the functions d,;
(i=1, 2, ..., n), relative to (3.1.1) are identical to the functions d, ;, (+ =1, 2,..., n),
relative to the system

(3.1.2) Y+ AY 4+ 20, Y =0.

Proof. Consider the function d{") relative to (3.1.1) and assume that
g+ o ;10 0y 4o Sy In order that Cir, 0, we must
have 1= ¢, < 0, + ... + ns;. Then in order that ¢ffyi™~ l’aﬁ 0, (1, u.=1, 2),
we must have 1<t <%y + ... =%, ete.. Therefore, 1=, 1, vy bp =
< 7y - ... - n;4;. On the other hand, in order that ¢, b ipts # 0, we must
have ny + ... +n; -1=<1t,;. Then in order that c‘“ﬂpg;”:i £ 0, (Uyy Upp=

=1, 2), we must have ny + ... +-n; +1=1,, ebe.. It follows that #n, + ... +
+nj+1§t17t27---7 t)>+1__.nl+ +’na+1'

Hence
- \ Ty dee 54y 2
d(m) 2_ Z 7 Z (,.._ 1)u,+...+up+1——27-— 10 ) c(ul,uz,m -1) .
9 Bisees Tppn Lokt ot Rty Lty ety Tty tytake e
() Nyt ., Ry +1 1

(u,,,u,,,+1, m —pi

[ t«;;+uf’7v'g;+:{"'} :

But this is the function &} of system (3.1.2) relative to the matrix D; of Dy,
and since the above dlseussmn is independent of m, the proof is completed.
From Lemma I, it follows as a corollary,

Theorem I. In the conditions of Lemma 1, if each matriz @; (i=1, 2,..., k)
of B, satisfies either of the conditions () the clements of @; are even, B) D;is a
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symmetric matriz, then all solutions of (3.1.1) are bounded in (— oo, -+ oo) for A
sufficiently small in absolute value.

Proof. By Lemma I, the functions ¢, , relative to (3.1.1) are the same

as the functions d, ; relative to (3.1.2), (i=1, ..., »). But d,, relative to (3.1.2)
is real, hence d,; relative to (3.1.1) is veal. Thereby Theorem T is proved.

3.2. — Systems with small damping. Consider the differential system
(3.2.1) - Y4+ AY £ 20Y +20%V =0,

where conditions (A), (B), (C), (D) of the Introduction ave satisfied, and let @*
& ; &0 x .o .
also satisfy (C), i.e. @nt) = 3, i, e™, 3 |ck < C, ¢F periodic of period

T== 2afw, ¢h=0 (j, h=1,..., n).

Theorem IL If ) = B(—1), and P*i) =—B*—1), then for [2]

snfficiently small, all solutions of (3.2.1) are bounded in (— co, o).

Proof. Using the transformation (2.2), the system (3.2.1) is reduced to
the following system, of 2n first order ditferential equations,

. . M2 . . )
l Zyjmy == 1021 T S zh[(%n ~+ 1owp; ) 20— + (ps ""'w'n%;,)zzhj
(3.2.2) 1 T

. i < . s
Roy T ARy 5. Z}L[((pjh -+ 71(77»‘77j}z)~321«~1 -+ ((PM 10/:(]7;;1)221&
“0; 7
J=1,..,n),

which is analogous to (2.3). This system is of the form (1.1) with N= 2n,
and g; = 0y, @2 =101, ..., Qen—1 = 10y, Q2n = — i0,. Here too, as in § 2, the
corresponding system (1.2) for the determination of the characteristic exponents
is a system of N= 2n equations in ¥N=2n unknowns. In order to prove
that the characteristic exponents of system (8.2.1) are purely imaginary and two
by two complex conjugate, let us first replace, as in § 2, the 2n unknowns 1z,
Ty .oy Tay i System (1.2) by i1y, — 47y, ..., iT,, — 97,, Where the new variables
T1y Tay -y Tm, are supposed to be real, and where 7; belongs to a convenient
small neighborhood ¢; of ¢;, (j=1,...,,n). Using the substitutions (2.4), it
follows from (1.1) with N= 2n, and (3.2.2), that

1

(3.2.3) Ve = (— 1)1 2o {4 (— 1)”—17"0'7:’0;%'1:} .
%0
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To simplify the notation, put
~ 1 b ES
(3‘2.4) cj’h’kv = ci’h’k - ('_“ 1)L 1 7’Gh' Oj'h'lc .
, i) . {m) qem) . () o, m) {m
It we put ;") — 2oy dyy_y,  dyy o= 20 dyy)  and eSon — "
fu=v=1 h=j k=0; ¢u"=—d&7 if u=v=1, h=74, k=0;
G =Ty it K %0, then
)
~ tmy __ g -1 mr,m)
(3.2.5) Vi = (—1)" 5 Cike
popiy
With the above notation, (1.3) with N=2x is reduced to the forms
; - / nn 2 ¢
D) (m) — I RS R SIS e By g, m 1)
(3.2.6) dl,j 3 ? 5 z st g"’l‘*"““"l"wﬂ‘: %‘u”._.ﬂ‘p_H (1) p Cityeye, € i takate, .
Ut gy M —D) o 1\ A (A ] .
¢ tﬂit)p“lﬁk;r+z1‘w+l tm—l’i’kw-bz:l{gix . th%—l[( ]) 1’5'1 —+ (]'2 4 ]"77+‘-’)w - T:i]
[(—1)y=r L o (ks o l‘p+1 + 7] [ 1y, + by + 7,171,
o /" - D n 2
DA Jim - . Uttty —-p-1 75 Qg 1)
3.2.7) 4y = 3 :02 3 211, . z Kyt g ;uvw"pﬂ( 1) » sty Oyt v

E("ﬂ’ul)'*'l"m - o {(7

tplptdbpattpey ~Eppy 4l Fpter?

— )%y, + (ks + ..

with the convention in (3.2.
denominators vanish are excluded.

We will show now that d{" =
certainly true for m=0,1,
AP, = 4 for m = 0,1,

for

(3.2.8)

6‘ (u,tym)

Indeed, if w=wv, h =14, k=0, then (3.2.8) is reduced to ay, = d®
it k0, then ¢, ,,=c¢

which iz assumed true:
(—1)3 1’~]ZO'),CJM - (’]hlx,
In 3.2.7), replace %, ks, ...,

L

The result is d)’}. Hence d{™ =

—i* b,,.;.o) ) — T]:I

6) and (3.2

Fyhe =Ry T

kw+2 by —_ 7‘71:

In the so obtained formula, replace everywhere 3 — u, by u, (s=1, 2, ..
l(m)

G*’,,;.,[('— l)u"’fil + (ks + ... +
L1y,

Pt

kpro)oo —1,]

+ kz)‘}-‘lw - Ti]}_l ?

7) that those summands for which the

am o o(m=0,1,2,...; j=1, .oy #). This is
I‘I‘Z’j = dy, = dy; = dP; = 0. Assume that

..y m—1, and let us prove that

. (3w, 3—2,m)

Jsh k3 v

3 —2t,7 (’lt:l, 2)7

- &
Yok —k <__ )1 llo‘l«cj,h, kT
— ky+p and use (3.2.8).

5 pF1).
and the induction is completed. Since

— Koy very

the elements of @(f) are even and the clements of @*(t) arve odd, it follows

¢ 18 real and ¢}, is purely imaginary,

Hence by (3.2.4), ¢,
TjECj (jzl’ cos

. is real.

Jsh==1, .., n; b=-— oo, ...,

+ oo,

Therefore, d\") is real for every m, for all real
’ 1,7 Y )
»m), and for all real A sufficiently small in absolute value.

Hence d,; is real, and thereby Theorem IT is proved.

12, — Riviste di Matemalica.
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§ 4. — Stability of the solutions of (2.1).

Detfinition. Given is a differential system

dir;
(4.1) dtl = ful@ys ooy @0y 1, /7“) (¢ = 1, ., )
containing a parameter 1, and a solution X, = [y (t, L), ..., Zoull, 49)] of (4.1)
for A=12,. We say that X, is parametrically stable provided (a) X, exists
infp<t<< +oo or (—oo<<t=1t), (b) given ¢ > 0, there exists a ¢ > 0, such
that for all 2 with [A— 2,/<< 8, the solution X, =[x, 1), ..., ,(t, 1)]
with [@,(ly, 1) — @e,lte, 4) << 0, (=1,..., m), exists for all t>1, (01 =g AR
() |milty &) — w08, A) |< &, (1==1,2,..,n), for all 1>1, (or t <1). If the re-
lations above are satisfied both for ¢ > 1, and ¢ <{, then we say that l is
parametrically stable in both directions.

Let us observe that parametric stability implies st‘lblhtv in Lho sense of

" IaapoUNOFF for the system with A= 1, constant [7]. ‘
Concerning systems of the form (2.1) and (3.2.1), the following statement
holds. TUnder the conditions of Theorem I or IT, the solution [¥,=0, (i==1,..., #)]
with A=0, of system (2.1) or (3.2.1) is parametrically stable in both directions.
Since the systems in question are linear, conditions (a), (b) are obviously
satisfied. Condition (e) is a consequence of the existence of the fundamental
system of solutions (a), for every || sufficiently small, satisfying () and ().

§ 5. - Some generalizations.

W. Haacke [4], has discussed differential systems of the form

@

(5.1) iy oys A DA Eh @inr(l) Y= 0 (=1,..n),

1]
under the conditions that the functions g, are even, continuous in (—oo, + o),
@
periodie of period 27/w, and that the series >, A'g;, converges absolutely for
< ,
|21 sufficiently small, and @, w real. HAACKE has proved that if oy, ..., o, ave
positive numbers and if mw £0; 40, {J, h=1,..,n; m=1,2,...), then for
| 2] sufficiently small, (4 real), all solutions of (5.1) are bounded in (— oo, +o0).
Cases where the functions @, are not necessarily even but satisfy conditions
like (B) of the introduction are not considered by W. Haacxs. We shall
consider below (II) systems somewhat more general than (5.1).
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I. Consider thé differential system
(52) :I./f + Q}(}“) 7/.7 _1"_ )‘ Zh ll/)jh(ti ;*) ;I/h == O (} == 17 2: ey ]»V)y
1

where each g;(4) is a continuous complex valued function of the complex para-

meter A for [1] sufficiently small, and ¢,(0) = o} with o?=£ o (mod wi), j 5= &,

¢
(J, h=1,...; N), each y;(t, ) is a periodic function of ¢ of period 27/w, with
+ @ . + o ) .
Palty A) = Dy, vao(A) =0, D.lyas(d)|< € (Cindependent of 1), for
all |A] sufficiently small. With the above conditions, the results which IL.
Cesarr [2] has obtained for systems of the form (1.1) may be obtained for
systems of the form (5.2) by replacing everywhere g; by o;(1), and y,,. by
viae(4). In particular, consider the system

B3 G g A S ) =0 (=1, ),

where (A') each o,(4) is a positive continuous function of the real parameter 1,
for |1] sufficiently small, and ¢,(0) = ¢} with ¢} 4+ o0 == mw, (G, h =1, ..., n;
m =1, 2,...), and (B') each g,(t, /'t) is a real valued functions of t Ay peuochc
in ¢ of period 7= 2zjw, (i, A) En Cin( ), ‘(pm(t A)dt =10, z, [eamn(A) |<<C

(C independent of 4), for || suﬁ‘iuently snm]l We can now state a boun-
dedness theorem for systems (5.3) corresponding to Theorem I of § 3.

Theorem ITL. Consider the differential system (5.3) which satisfies con-
ditions (A'), (B'). If D(t, 1) =|pult, D€ (D}, and if each block D; of D,
satisfies cither (o) D;(t, A) is even in 1, or (f) @,, A) is a symmetric matriz,
then for | 1] sufficiently small, all solutions of (5.3) are bounded in (— oo, -+-o0).

II. Consider the differential system

7

(5.4) Yi+ oy +2 Z,L @anlty ) Y =0 (G=1,..,n),
1

where (A") oy, ..., 0, are distinct positive numbers, (B”) A is a real parameter,
(C") each g@u(t, 4) is a 16‘11 function of i, 2 ,continuous in 1, periodic in ¢ of
period 2mjw, @, 1) = ZI (), Z {c,,,,(l){< ¢ (C independent of 1), for

|2] sufficiently small, (D”) o, oy F=mw, (Hhbh=1,..,n; m=1,2,...). We
have not assumed here that the functions g; have mean value zero. Let us
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write system (5.4) in the form

(5.5) Wi+ U? Y+ A zh Cino(A) Yo - 2 ZJP?Z(% ANy=10 (7 =1,...,n),
1 1

where gi(l, A) = @u(t, ) — ¢mo(4). Hence the functions ¢j(f, 4) have mean
value zero. Consider the equation

s . 1, j=I
(5.6) A(p, A) = det|(c— 0) O -+ Acnol D=0 (O j=1,..,n), = {O ; '
’ /“

A(p, 0) = 0 has the n distinct positive roots o; = %, (j=1, ..., n). Henec for
|4 sufficiently small, 4(g,2)=0 has = distinct positive 100ts 0; = o (4)
(j=1,..,n) [8] Let A, represent the matrix whose determinant has the
elements of A(0, 2). Since the characteristic roots of 4, are distinct, 4, is
similiar to a diagonal matrix B = diag (6{°(3), ..., 6 (2)), i.e. there exists a

non-singular real matrix P = P(4), which can be constructed so that

det|P(2) ]—1 £ 0(A), such that P*AP=RB. If we put Y= (Y1, ..., ¥n)»
Z = (1, ey %), @, A, and Y= PZ, then (5.5) becomes

(6.7) 7 4+ BZ 4 1P\Q*PZ = 0 .

System (5.7) satisfies conditions (A'), (B') imposed on system (5.3). Ifin (5.4),
@ity 2) = @al—1, ), then P1@*({, HP=P~1P*(—1, AP. Ifin (5.4), gult, )=
= gui(t, A), then 4, is symmetric, and it is orthogonally similiar to B. In this
case, P-1@*P is also symmetric since @* is symmetric [11]. We can now
state the following theorem:

Theorem IV. Consider the differential system (5.4) which satisfies con-
ditions (A”), (B"), (C"), (D"). If cither («) @ulty A) = @am(—1, 4), (j, b =1, ..., n),
or (B) @alt, A) = @ity 1)y (G, h=1, ..., n), then for |A] sufficiently small, all
solutions of (5.4) are bounded in (— oo, +o0).

Proof. System (5.7) satisfies the conditions of Theorem III in the special
case when @, consists of one n-n block. Hence all solutions of (5.7) are
bounded in (— oo, +o0) for |1] sufficiently small. Since Y= PZ satisfles
(5.4), and each element of P is bounded for |1| sufficiently small, it follows
that all solutions of (5.4) are bounded in (— oo, +-co) for | 4| sufficiently small.

Remark. The condition in II, that the functions g, ) have abso-
lutely convergent FOURIER series, is not essential. It is only necessary to
assume that each (4, A) is L-integrable in [0, T], and that |@(f, ) |< M(t),
for all |2| sufficiently small, M (¢) L-integrable in [0, T]. In this case, system
(5.4) includes the system (5.1) considered by W. HAACKE [4]
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