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Jack K. HAaLs (%)

On boundedness of the solutions of linear differential

systems with periodic coeflicients. (*¥)

Introduction. In the present paper, we consider linear differential systems
of the form

1) Vi = Dl + dpa@lyn, (=12, 0; =d/da),
h=1 B

where the a, are constants, 4 is a «small » parameter, and the functions g,,(z)
are periodic functions of period T'= 27/w. Notice that system (1) contains,
as important particular cases, the MATHIEU equation

Y - (o - Acos 2z)y = 0,
and the HILL-MEISSNER equation
¥+ (0 + Ap@) =0,

where gplo) =1, if 0 <o <<a, =—1, if <2< 27 For a discussion of the
MATHIEU equation see [15] (1), [20], and of the HILL-MEISSNER equation,
see [17]. General systems (1) have been studied by L. CESART [4]. A more
general system of the type (1) with n = 2 is discussed by L. CeSARI and
J. K. HALg [5].

Let us suppose that the characteristic roots g, ..., g, of the matrix |a,
are distinet and incongruent modulo wi. According to FLOQUET [ 8], a number 7
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is said to be a characteristic exponent of (1) provided that there exists a so-
lution [y:(), (¢ =1, 2,..., n)] of (1) such that y,(@+7T) = ¢y (=), (i =1, 2, ey 1),
and it is known that there are n characteristic exponents 7, ..., 7,,, not neces-
sarily distinet, that coincide with g,, ..., g, respectively when A = 0. Since
the characteristic exponents are continuous functions of A, we have that
Tiy -y Tn are incongruent modulo wi for |A| sufficiently small. In this case,
there is a fundamental system of solutions of (1) of the form [Yal®) = epu(2),
(4 h =1, 2, ..., n)], where each function p,(») is periodic of period 7. Thus,
in this case, if one wishes to study the boundedness of the solutions of (1), it
is sufficient to determine the characteristic exponents 7, ..., 7,. If a funda-
mental system of solutions of (1) is known, then the characteristic exponents
may be determined by using FLoQUETs algebraic equations. )

L. CmsArz [4] has studied systems of the type (1) with the functions ¢, (%)
possessing absolutely convergent FOURIER series. In the quoted paper, CESARI
has studied a variant of PoINCARE’s method of casting out the secular terms
in the solutions of (1) by successive approximations and has obtained a system

of ‘equations(different from the equations of FroQuer) for the determination

“of the characteristic exponents T, ..y Tn: By showing that these equations
have a solution 7,, ..., 7, which is purely imaginary, he proved the following

Theorem. Consider the system
) Yt 0, + A T @)y, =0, (n=1,2,.., n),
pe=1

where oy, ..., 0, are distinct, real, positive numbers, A is a real parameter, the
functions ¢, (#) ave real functions, periodi(; of period T'= 27w, possessing

absolutely convergent FOURIER series and f (@) de = 0. If either ¢, (v) =
)

=@u(—2), (yr=1,2,..,0), or, @,(x)= ®u(®);, (v =1,2,.., n), and if
mw =0, 0,, (Wv=1,2,..,n; m=1,2,..), then, for |1] sufficiently small,
the solutions of (2) are bounded.

It is to be noted that the MATHIBEU equation is.a particular case of (2),
but the HILL-MEISSNER equation is not, since the FOURIER series of wp(z) is
not absolutely convergent.

Using the method of FroqQuer, W. Haacki [9] has proved the above
theorem under the condition that the functions qp' are even. He has also con-
sidered a slightly more general case in which equations (2) may have higher
order terms in . The case where the functions ¢ are not necessarily even but
satisfy the relation ¢, (z) = ®,,(%) is not considered in the paper of W. HAACKE.
Other references are given in the book of R. BrrLLMAw [1]. ‘

In the present paper, the same systems (1), (2) are discussed when the
requirements that the funetions @ possess absolutely convergent FOURIER
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series is replaced by the much weaker condition that the functions ¢ be
L-integrable in [0, T]. In such a way, the HILL-MEISSNER equation is con-
tained in the discussion, and even differential systems of the above type
where the coefficients are unbounded functions whose integral in a period
is finite. In the discussion of such a general system, we shall consider only
the solutions which are absolutely continuous in every finite interval (AC
solutions) and satisfy system (1) almost everywhere (a.e.).

In § 1, the system is transformed into an integral system and the pre-
viously mentioned method of successive approximations studied by L. CESART
is described. In the same section, a new proof of the convergence of the method
is given under the new conditions on the functions @. In this proof, the results
of a previous paper by the author [10] ave used e\tenswely In § 2, the
following theorem is proved.

Theorem. Consider the system

@)y, +oy,+2 EqD,,,, Y, =0, 2.6, —oco< < o0,

e
pe=1

(e =1,2,..,mn),

where oy, ..., 6, are distinct, real, positive numbers, A is « real parameter, the
functions @, (@) avre real functions, periodic of period T = 2w, L-integrable
in [0, T] end J(pw, Gr = 0. If cither @, (2) =@, (— ), (v =1,2, ..., n),
ory @, () = ‘Pvu(‘ )y (v =1,2,...,m), and if mw #0, -0, (u,v=1,2,.,n;
m =1, 2,...), then, for |A] sufficiently small, the AC solutions of (3) are bounded.

In § 3, the preceding theorem is extended to the case where the functions
9,.,(®) and also ¢, contain the parameter 4, ;e @) = @,,(®; 4), 0, = g,(4).

Finally, it is shown in § 3 that the condition J(pm x)doe = 0 in the theorem above

can be completely omitied.

§ 1. — Casting out method of approximation.

Solutions to a system of differential equations are usually obtained by
means of successive approximations. If the solutions are functions of the
independent variable @, then an important problem in applications is to deter-
mine the behavior of the solutions as x approaches oo.

In defining a method of successive approximations, it may happen that
certain terms are introduced which behave badly for large values of z, and
at the same time these terms do not portray the true character of the solutions
to the system of differential equations. For instance, when the solutions are
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expected to be periodic, it is desirable that all the successive approximations
are also periodic, but it happens that terms are obtained which are not of
this type. These are the terms which are generally called «secular» terms
and various methods have been devised in order to climinate or avoid these
terms. These methods are called «casting out» methods of approximation
(LINDSTEDT [14], PoiNcarE [19], DUFFING [7]; see also N. MINORSKY [117,
p. 136]). -

In the following, we shall let O, denote the family of all functions which
are finite sums of functions of the form f(e) == (), — oo << w << + oo,
where o is any complex number and g(z) is any complex-valued function of
the real variable @, periodic of period I' = 2zjw, L-integrable in [0, 77]. If plx)
has a FOURIBR series,

P~ 3 e,

N= — 0

then we shall denote the series

f(.l) — Cﬁx(p((l)) A z c1la(inw—.~a)x
as the series associated with f(z). Moreover, we shall denote by mean value
m[f] of f(x) the number m[f] =0 if inw -+ az=0 for all n, m[f] =e¢, if
inw +a =0 for some n. We shall also make use of the following

Theorem. If f(z)eC, and m[f] =0, then there is one and only one
primitive of f(z), say F(z), which belongs to C, and such that m[F] = 0. More-
over, this primitive F(z) is obtained by formal integration of the series associated
with f(x). ‘

For a proof of this Theorem, essentially known, see J. K. HaLk [10].

The following pages will be devoted to a description of a variant to the
above mentioned casting out methods due to L. Cmsarr [4, (a)].

1.1. ~ Description of the method. Consider the differential equation
(1.1.1) Y'=AY + 107, (‘= d/da),

where A is a constant n-n matrix, 1 is a real parameter, Y is a n-n matrix
with elements y,(x), and @ is an n-n matrix whose elements ®,.(%) are
complex-valued ' functions, periodic of period 7T == 27w/w, and mean value
nf,,@)] =0, (u,v=1,2, .., n).

By considering an auxiliary equation

(1.1.2) . Y'=BY L ADY
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and applying a convenient modification of LIoUVILLE’s method of successive
approximations to an integral equation, we will show that one obtains a non-
singular matrix of solutions for a new system

(1.1.3) Y'= (B— AD)Y -+ A0Y ,

where D is a constant matrix which depends on B, @, i. Then, by determining
B such that

(1.1.4) B—AD =4,

the non-singular matrix of solutions of (1.1.3) becomes a non-singular matrix
of solutions of (1.1.1).
Throughout section (1.1), we shall suppose that the functions ¢, (2) have

+ oo )
FOURIER series which are absolutely convergent, g, (@) ~ X ¢,,¢""

(s v =1,2, ..., n). Also, let A = diag (gy, ..., ga), Where
LAY h CorEE e mod wi) s Yy Ty =12, 00 Ry
W <y N Il H

Put

{1.1.6) 8= min |p, —o,l|; 0= min |iko—(¢0,— 0,)|;

nr=1,..,7 #uy=1..n
n#Ey k=0,1,..
v} +h#0

0 < 6< 6y, and if 0<C £<C 1/2 is any number, let us consider, in the complex
g-plane, n circles €y, C,, ..., C, with radius 6 and centers gy, ..., g., respectively.
Moreover, let 7,, To, ..., T, De % points lying in the interior of the boundary
_of these circles, i.e., 7,€C,, (u=1,2,..,n). All of these points 7, are thus
distinet, and since
min |
wy=1,.,n

k=0,1,...
l—vi+kF#0

iko — (1,—7,)|> 60— 260 = 6(1—2¢) >0,

we have

{(1.1.7) 7, %7, (modwi) (o #=v; uyv=12,..,n).
Put B = diag (1y, ..., 7.) and consider the equation

(1.1.8) Y'= BY+ 20Y .

If we let Z(z) = diag (¢"% ..., €7°), we see that a matrix Y (x) satisfying the
equation

(1.1.9) Y=2+ ,1Zfz—1rpyaa
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for any =® arbitrary constants (one for each element of the matrix) also
satisfies (1.1.8).
Let us put D, =0, ¥,=Z, and consider

| P11 €= T 67e" e €O T |

e~ T, 601 Pas e €T, 6T
NoyO| e 7=1 r o —1(h7 . 2 22 an |
= 2-0Y, = 2707 = | |
|
L e TP, €0 e T, 70" e Pun EI

Each element of this matrix is contained in the class ¢, and since
7,57, (mod wi), (1s£v; u,v=1,2, .., n), ecach element of this matrix has
mean value zero. Therefore, from the theorem stated at the beginning of this
section, there is one and only one matrix

Nall= [20) ) Yo(w) do = [ Z74o) D) Z () dex
whose elements are contained in C, and have mean value zero. Moreover, by
this same theorem,

+ oo e

qm — f (}"Tr“(p ([x) e's® dop = z s T riloTIn
s T .
’ : 1w — T, il + T,

150

Put D=0, Y, =2 + 27 J‘Z—%DY ode, where we will take the n? particular
primitives of mean value zero. Moreover, let us consider the matrix

Ip®|= 21 0Y,= 7107 + ZZ“I(T)ZJ‘Z_IQ)Z,d“’

rs |

2)
rs

where p,2 has the associated series

n
p:i) P e—rracq?rsersm _{___ 2 z e—rra:(’_prh erha:f G—rhzxq)hserszx dot =
h=1

n

+ o
Crnt. Cus ;
(1 Ry Yhsl, (=T, 3+t + w41 e
=P +AY X RN e,
h=1 ylp=~c0 " Th T ilo + Ts

LF0,LF0
Then, by definition, we have m[pZ'] = 0, if » s s,

Crnty Chrt,

M-

m{p] =2

)

he==1 ly4ly=0"""Tn + :Ll2w -+ Tr

and, thus, m[p;?] may be different from zero. These terms where the mean
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valuc is different from zero lead to secular terms. Put D, = m[Z'@Y,],
D, =[d2], & = m[p].
The matrix D, is diagonal and, 1he1ef01e, Z=Y, Z, D, commute. As a con-
sequence, we may write

1B = 2D — D.]Y, = 27 @Y, — Z7'Dy(% + 12 [ 27 PZ dor) =
= Z-'QY, — D,— LD [Z—lqﬁ/da,

and, therefore, since m[Y]= > m[ ], we have

m{ |77

1= m[Z7 DY, — D,]— D[ [ Z7PZ ds] =
= m[ZDT,] — Dy— IDym[||¢V]] =0 .
Thus, there exists one and only one matrix

@)

‘ M»,

JZ“ () Do) — D, ¥y (ex) dex

whose elements are functions of mean value zero. With this convention, put
Y. = Z +1Z fZ—l((])—*Dz)Yldoc. We have thus defined Y, in such a way
that the secular terms are omitted, but it should be observed that in doing
so, we have added some new terms. The reason for doing this is to obtain a
solution of an equation of the form (1.1.3).

Suppose that we have repeated the above process (m-—1) times, i.e., we
can calculate successively the matrices

Dy = m[ZDY,], Y, =% 1% fz—l (®— DY, do,

—Dm—l = ”b[zﬂ:l@ym—z] s 171117—1 = + )Aféq @ Dm 1)1 m~2 de ’

where D, ..., D,—; are diagonal matrices and we shall show that the process
may be continued once more.
The integrals in Y, (k=1,2,...,m—1) are

qull = J‘Z—1((_D_ DY, dx,

n
wy [ — T (k) y, (B~ 1)
Qs _‘ Z e T ((prl, - (lrtl)Jt s doc .

fh=1

Let us assume that ¢® (k=1,2, ..., m— i) has the form

(1.1.10) . qy;)_(/( Tp T z ')’U) zlwm

rsi
L= -0
170 il r=5§
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and observe that this is true for ¢. We then have

) = ZDY,,y = Z-1DZ + )/']([)d 2D — Dypy) Yo de,
? 3

n n -0
-7 (m—1 [¢H} 1 =1 (=Tt S ot T e

PP = 4 23 g =g 1SS Cpa Vi, €T 0T

R A=l 1 ly= ~ o

10
and, by deﬁnition, since rﬂ # 1, (mod wi), p = v, we have m[p™] == O if r s2s.
The matrix D,, = lp‘"”ﬂ] =m[Z'®PY, ] is therefore a diagonal
matrix. ‘
Put

Hp(m)” = A'_I((L““ m) Y"’”l =
= ZDY oy — LD T AL DN [ Z D= D,y ) Yy ot =
= Z7-1QY m-— —Dm*/"D’l"J z ((])_.[),, 1) Voo der

Moreover, we have

J::"-l)—“ (S 073 + )(/, P g(mal) 5r;-0 »{ /(;rs z y(m—l) zlwa:’

rsl
l==—
40 §f re=35

or,

(1.1.11) ij—l)... (}TS"—'P(’"_D

H

where P;'™" is periodic of period T = 2mjw, m[y® "] = 0. Consequently,
using (1.1.10) and (1.1.11), we see that

(1.1.12) p:‘l’l) T () 1?(m)

where @) is periodic of period 7. Therefore, p“’”eC and since, by as-
sumption, m [ f Z YD — D, Y, da]: 0, we have

(1.1.13) mp] =0 (rys=1,2,..,n).
Thus, there exists one and only one matrix
lal =2 — D) Voo, = [P0 der,

whose elements are functions contained in €, and of mean value zero, and
the elements are of the type
-
{m) lm) (wr +zlm+z)z
G = 2y

I=—c0
1501 7==5
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We can, therefore, put Y, =2 -- 1Z f Z- (D — D,)Y,-1de, and, in general,
define the infinite algorithm as follows:

[ D, = Y, =2,
(1.1.14) { Dy = m[Z27DY, ], ,
| Yo=2+22[24(0—D,)Y, . dx, (m=1,2,..).

1.2. — Conditions on the functions ¢. In the previous number, we have
supposed, for the sake of simplicity, that the FOURIER series of the functions
@, ave absolutely convergent. This is also the hypotheses under which the
method is discussed in the quoted paper by L. CisARrI [4, (a)]. In the next few
pages, we shall show that the method is also valid if we assume only that
the ¢, ear L-integrable functions.

In the following, we shall denote functions. which are absolutely continuous
in each finite interval by AC functions. We shall need the following theorems.

"Theorem (1.2.i‘). Consider the equation o
(1.2.1) Y= AY+1DY a.e.,

where A is a constant n-n matriz, Y is an n-n matriz, and O is an n-n matriz
whose elements are periodic of period T, L-integrable in [0, T'). The AC solutions
of (1.2.1) coincide with the solutions of the integral equation

(1.2.2) Y(z) = Z(«)K + AZ(x )J ~Yor) Plor) Y (o) dot

0

where K is a constant n-n matriz aend Z(x) is a non-singular solution of the
equation Z'= AZ.

Prootf. (The following proof is similar to a proof given in LEFSCHETZ
[12, p. 62].) Differentiating (1.2.2), we get a.e.

Y (%) = Z'(x)K + f Z(o) (o) Y () Ao + AZ(@) 2 () D(w) Y (@) =

= AZK + AZ f Z-Va) D(er) Y (o) dor -+ ADY = AY + ADY .
0

Conversely, let ¥ be any AC solution of (1.2.1) and choose K such that
Y(0) = Z(0)K, where Z(x) is a non-singular solution of Z'= 4Z. If we set
Z = C,Z-', where C, is a constant non-singular matrix, then

0= AZD)|dw = Z'Z - ZZL'=Z'Z + ZAZ = (Z'+ ZA)Z,

10 - Rivista @i Malematica.
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or, Z'=-—27Z4. Then,

MZY)|dw = Z'Y + ZY'= — ZAY + Z(AY + 1DY) = 1ZDY ,

or,

Y =24 | £0Yax + 2K = 240, f CZ-1 DY da +

L 407K = ZK + 3% | Z-0Yda,

[}
and Y satisfies (1.2.2). Therefore, the theorem is proved.

Theorem (1.2.ii). The solution to the system of inilegral equalions

[

Y (J> ==Y I ] @Yy oemy Y3 1) AT (1==1,2,.., n)
is unique p;uzu((’(l that

n
Z!U‘z‘(?/u’ vors Yrns @) — Qi(Yary eoey Yous @) | < M (2 211/1 - ’/'z‘
i=1 i
where M (x) is a summable function.

Proof. This theorem is given in C. CaARaTHEODORY {3, p. 674], but for
completeness we give a proof here. Choose the closed interval [0, 2] so small

that f M(t) dt<<1. Then, if y,(2), ..., ¥.(¥) is some other solution with ¥,(0) =y,

0 n
(1=1,2,..,n), we have > |y(z)—-y.(»)| is a continuous function on [0, ]
=1
and, therefore, attains a maximum N at some point z,, 0 <x, <2 Thus,

if N >0, we have
N = Zl?f ) — Y (o) | =
= 2 | f [@iy ooos Yus ) — @Yy ey Y3 1) AT} <

’ z E Jl) .3 .I/n; t) - al‘(?]l? cer? yn; t)idt \<

n

<,roM(t)E lyo— . dt < AT[ MHydt< N,

0 i=1 [

which is impossible, therefore, unless N= 0, i.g., Y () =y, () (fi:]l, 2y iy ).
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From the preceding uniqueness theorem, it follows that if ¥, is an AC
non-singular solution of (1.2.1), then, as it is well known, every other AC
solution ¥{x) of (1.2.1) is given by Y(z) = Y (v)K, i.e.,, Y, is a fundamental
matrix of AC solutions.

Now, suppose that we wish to find a non-singular matrix Y, of AC so-
lutions to the equation

(1.2.3) Y'=AY + 0Y  a.e.,

where @ = |lp, (@), ¢,(@) periodic of period T = 2mjw, L-integrable in
vy

[0, 1], fwlll,(w)da::(), and A = diag (01, ..., 0.), 0,550, (mod wi), w v
o

(i, =1, 2, .., n) .
We begin our problem with the auxiliary integral equation

where Z(z) = diag (¢"%, ¢™*, ..., ¢»"), and the numbers 1;, 7, ..., 7, are chosen
as in section (1.1). Moreover, in the integrations, we may choose any n?
particular primitives, since there are n? arbitrary constants (one for each
element of the matrix). We apply the algorithm defined by (1.1.14) to
equation (1.2.4) above and, if we can show the convergence of the procedure,
we will have a solution to the equation '

Lo

(1.2.5) Y () = Z(x) + 2%(x) [ Z-(2)[®(e) — D] () o,

where D is a constant diagonal matrix. Moveover, we shall show that the
columns of the matrix Y(v) satisfying (1.2.5) are linearly independent and,

thus, Y (z) is a non-singular AC solution of (1.2.3). Then, differentiating (1.2.5),
we get

Y'(z) = (B— AD)Y(2) + AD@)Y(x) a.e.,
where B = diag (ry, ..., 7,) and, if we can choose the numbers 7,, 7., ..., 7, in
such a way that B— AD=.4, then Y(x) becomes a non-singular AC solution
of (1.2.3).
In the next few sections, we shall prove that under the new hypotheses
the method described in (1.1) is convergent and produces a fundamental system
of AC solutions of the given system (1.2.3).
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1.3. — Preliminary considerations for the proof of convergence. Let us try
to get more convenient expressions for the D,, and Y,(2). In order to do this,
we will introduce the notation

[ ®171 :“q)(nl) H = @ ‘DMI b

ny

(1.3.1)
( (P:,T)() = (ppy(' )— 1;::” s (v =1, 2, ..., n),

and d;’:f’ =0 if u s=v. Then the algorithm defined by relation (1.1.14) becomes

[ D,=0, Yo=12,
(1.3.2) % D, = m[Z7DY, ],
| Yo=2+ 2] 270,%, ,dz, (m=1,2,..),

where the integrations are always performed so as to get the primitive of
mean. value. zero. . We_have_already seen that this primitive is unique.
We can also write (1.3.2) in the following form

D, = m[ ZDY,,_,] = m[ZDZ] + Im[ 27 DZ f 7P, Fypn dod| =
e lm[Z—l@ZfZ“l@m_l Ypodo]= ... =
= [ Z7PL [Py Z Aoty + AL DZ [27 @,y Z e, [272 Py oty
+ e - Am2Z10Z | Z-l@,,,,_lz oty [... [Z271PZ dar, ]

Yu@) = Z + 27 (27 Py Yy dee = ... =
=7 + 17 (27D Z Aoy + 1% f 7219, 7 do, f 721D, Z Ao, +
+ e+ A2 [ 271D, 2 Ay f f Z-\PZ de,] ,

where the integrations are always performed so as to get the primitive of mean
value zero.
In the following, we shall

(—rt,+r,; Yo (m—1) - (€3]
(1.3.3) AL NP §:L 1,_1( ),
o — Yo qim—b __ D
[ e T ‘mdm ol 71,‘ hh((x) .

Then, from (1.3.1), we have

(].3.4) (1) . glm) (€3}

P A/ AT

If we write the above formulas for D, = ||d;"], ¥ = = [ly™], in terms of



ON BOUNDEDNESS OF THE SOLUTIONS OF LINEAR DIFFERENTIAL ETC. 149

the elements of the matrices, we have

n -3 n .
Hm) . 19, —T. Ty 2 -, (m—1) 1: &2
AW =Im[I» Y T, o Tut gl Ve doy
D=0 bty =1

. i’ —T;, &ptn, (=D~ 1) T4 —
(1.3.5) | A T e dotyys | =
me-2 n .
— (m) {1) {p+1)
=Im[S W 3 EW[ED da, [ f gy detyis |,

D=0 t,,...,t,‘,\ﬂml

i3 ﬂ
(m) A (0} (1) {(p—1}
(1.3.6) @) =3 3 [ de [ &L do [ [ &0 da,,
PO fhoty, =1 g

where the integrals arve to be interpreted as stated below. From (1.3.2) above,
we have

D, = m[Z1®Y,,]|= Im[2®Z [ 271D, Vo der] ,
and from formula “(1.1.']‘2),‘ we have that each of the elements of the matrix
Ipo == Z"' D)y Yoy = IRt

is contained in €, and, from (1.1.13), m[Z~ 1P, Y] = 0. Therefme, if we
malke use of the results of a paper by the author [10], we know that the unique
primitive of Z-'®,,_,¥,_, may be obtained as a definite integral or as a sum
of definite integrals according to Lemmas (6.1) and (6.ii) of [10], provided
that m[@"~"]= 0. The range of integration of all these integrals is contained
in the interval [0, T]. If m[Q"~ ] = ¢{"~V3£ 0, then we may write @y V=
= QY L") where m[@" "] =0. Then

‘ G(—-rr+r Jx Q(m—l) dO’ . f e -7 +Ts)oc Qrm—l) dOC c(m—l) ( 6(—1,—{-13)x dOC ,

and the first integral may be interpreted as in Lemmas (6.i) and (6.ii) of [10]
and the second may be interpreted as in [10, formula (8.1)].

Now, with these integrals being interpreted as a sum of integrals whose
ranges of integration arve determined by the function 2@, ,Y, ., We may
substitute for Y., its expression in (1.3.2), and apply the same reasoning
as above to f Z‘ldi,,,_gYm_a»dx and see that each of these integrals has the
same type of interpretation. The same type of reasoning holds for all the
other integrals in (1.3.5) and (1.3.6). Thus, we see that each of the integrals
must be interpreted as a sum of integrals whose ranges of integration are
defined as in Lemmas (6.1) and (6.ii) of [10].
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Furthermore, from (1.1.11), we see that for each r, s=1, 2,..., n; m=1, 2,
we have 3™ = ¢ P™(z). Also since D, = im [Z-®Z f 7Py ¥on de], we
have '

(m) , 2T, (m—1), {(m~—2)
= Jm[ E T, [Ty 0 o]

=1

and from (1.1.12), we have

n
- (m—1) , (m—2) — pl=Ty e tm~1)y .,
2 { o P, Yior doc == ¢ 7Tu™Tr Q () ,

where Q"""(x) is periodic of period 7. Consequently,

T n
d(m) — 7'm[z (pﬂl()(m—l) o Z,/T fz(prtl Z(M—])d’li
ty==1 0 =1
and we have the result that
T n
(L3.7) = T) [ 3 e g et e g 2 A
0 ty,ty==1

1.4. — Proof of the convergence of the functions d'™. If we remember
from (1.3.4) that &7 =& if rs£s, =&™ — 9@ if r =35, then the general
term in expression (1.3.5) can be transformed as follows:

(m) f (1) dO'“ J §(y+1)do, —

Tty tfy "p 42

(m) g (m) (m) [ (1) [ (m)
ril tlf,.d f f§ » ot — Srtl I"? dO’oJ... 5 d“p«!-z_

(1.4.1) .
et fEman [ ] 70D dotyre + £ [ 9D, doaf 7 ] .
o [ ED Aoy 4 (—1rE [ do [ 7Y oy

Then, using (1.3.7), we have

m

n 1 7
g (1.4. 1)] =7 J { z n [ E™ dor, f [ 52’;;,.da,,+2 —

tseestpn = =1 t, ’tﬂ+1 1

n
(m) (l) {m)
- 3 5”1 ] ,dozy f f %.Llrdoc],n;.gm... -+

t1seer t7,+1 =1
t

1=y
(1.4.2) "
g [ () r ( (m) o
+ 2 & f Mok, da‘,‘[ Ny dotg | oo | &7 L detypy + o
tiren byt =1
h=t=1;

4 (— 1) E 5:72)f 77(,»!) % f 77(:: D dg } dz,
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where each of the integrals is to be interpreted as in section (1.3), i.e.,
each integral is a sum of integrals with definite ranges of integration lying
in the interval [0, 7], the number of integrals being determined by Lemmas (6.i)
and (6.1i) of [10]. Each of the signs l may represent as many as six definite
integrals.

Bach integral in (1.4.1), (1.4.2) is one of the forms

(1.4.3) [Emam = [ ¢t g dn, [ 7® az = f ¢TI MR g

where ¢, (), d;y ™" are defined as above, — 7, - 7,5 0 (mod wi), » s s, and
sign f is interpreted as above. Since 7,, 7, range over a finite set of values,
and since each integral is of the same type as in Lemmas (6.i) and (6.ii) of [10],
we see from [10, Lemma (8.), Remark 2], that

a
| e asi=| e puinl < ¥ [ ipuioas,

(]

(d.44)

. . ,) ) dm] _ . c(_7r+13)m (1(711_7)(1/1,[ < NT d('r:-—k) ,
5 i J r | T

TS

where N is a constant independent of 7., 7, and the specific value of the
mumber N is given in the proof of the quoted Lemma (8.i).

rd
Let ¢ = max|R(r,—7,)], (r,s=1,2,..,%), and M= max f | 9 | Az,
il

(yr=1,2,..., n). We wish to show by induction that
(1.4.5) [ | < oK(NT), K= ¢"-MN,
provided that
(1.4.6) A< o/[(0 + 1) NM + oK)], 0<p<1,
and N is the same constant as before.

Since each of the integrals in (1.4.2) is one of the forms in (1.4.3) whose
evaluations are given by (1.4.4), we have

r =
@< (14])T) [ S e mtng, |- | fe(—nﬁrmagq;tlrdagldév <
(i}

ty=1

< (|A|JT)N M Mn = {K[(NT)}| 2| nMN < oK/(NT)

by (1.4.6). Thus, (1.4.5) is true for m = 2. Assume (1.4.5) true for 2, 3, ...,
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m— 1. Then, from (1.4.2), we have

: -m‘ > (1.4-.1)} < (e M|T) [0t (N M)P+1 -
i =1 i .
(1.4.7) + (YN M K) + o + (1) (0K )PH] =

P+ 1

= (¢THT)N M -+ oK )yr+1.

Therefore, since m[ > ]= > m[ ], we have

m—2

L < |4

M+ oK)+t =
=[] (M| TN I + oK)(1[[1—| 2| (nN M + oK)]) <
< (e"M|T)| 2| (N M + oK)(o + 1)< o(¢"M|T) = oK[(NT),

which completes. the.induction. ...
Let

(1'4'8) d:-’;-l): dmo + dnll + v + dmp + ARAd + dm’m——Z 7‘

where -d,,, denotes the terms in & with a coefficient containing Ar+. Then

(1'19) d:rrn)_‘ dgj:‘l-—l) = (Zm,m—-z—!’_ (dmo m 1,0 ) + + (dm,m 3 —d

717.—-1,171—3) .
From (1.4.7), we have

(1.4.10)  |ad

<) A e T MIT) N M + oK)=t =
— {E/(NT)} [N M + gK)|A|]".

mym—2

Moreover, using (1.3.5), we may write

n
d’nm— (lm—~1,p = A"tm [ z S(r?i) ' { ‘ 'S(tnt d“" fgu) do‘? f Sm+1) Xptp —

sty =1

— [ & o [ £8, do [ [ £ Aoy }] =

T

=paim] 3 i"Zf{{ (65, — &2 )dacqf... f E‘t’::r’ dotys +

Liseentpp, =1

B e [ (£8, — &8 )dar [ [ E Doy + oo
+J §<t°)t doc,f f Em+1) §(n+“) doty e }]
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Again, the integrals are to be interpreted as before, and these integrals may
be evaluated by use of (1.4.4).

If we remember that &P — D = 0, if rsts, =, — 77‘,‘“’, if r=s,
we get
n
: () 1) k1)
oy =y _y = Il z e J(;; -—77t1 )doc,f f gfm.ﬂ‘ dot, s -+
tres by =1
=t
n
( ) {2) 1) { 2)
R D » f&,,doc . [(77“ )7,1’“" )docmL, .
fireat gy =
’1)41*"

But, each sum in this expression is of the same type as that in (1.4.7) except
here we have only p running indices. Therefore, if we write

O0n/(NT) = max |d?—dy ] (m=1,2,..),
and use (1.4.4), we get

|y s | < AP I TY 0N M 4K By 4O+

m=p-1 ):

(1.4.11)
e Oy O o 0 - (B[N T (0N M oK) |2 (nN M o K) I+,

Combining (1.4.9), (1.4.10) and (1;4;11), we have
|y — i | \\<{K /(N T)} (WNM oK) A+ K[ NT(nNM+oK)] -

(1.4.12) {Bpa | 2] (0N I 4-0TC) + By O |4 (0N M+ I)J oo +

A Oy A Ons -+ oo+ O)[| A (N M 40K ]2
We shall prove by induction that
(1.4‘.13) - ()m < I{(gh)m«l y

where h=|A|-mWNM+oK), g=1-+ K[(nNM-+oK)1— h)] (m=2,3,...).
Formula (1.4.13) certainly holds for m = 2, since we have already ob-

served that |d2 |<{K/(NT)}|AlnNM, and, thus, 0, <|A[nNMEK. Assume that

(1.4.13) holds for 2, 3, ..., m—1. Then, using (1.4.12) and remembering that
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0, = NT max|d;® — i "], we have

O < KW=t + K)NM + oK),y + 520,y -+ 0,) -+
e F ROy A 0n) )<
< Kbt + K|aNM + oK){hEK (gh)™=2 <+ h2K[ (gh)"=* -+ (gh)"~5] -
+ e A R (gh)2 L ()] =
= K= {1 + K|/aNM + oK)[g"* + (hg™* + gm=3) -+ ... +
+ (=rgn=2 L by 4 g)] b=
= K1+ K/aNM + oK)g + g*(1 +h) + ¢*(1L +h +h?) + ... +
’ + g;"‘g(l e Y e | B
< KWL A BN M A oF) [gf1— DI+ +¢* + o 49"} =

J— me1 | AN M -,i(/,(gj,”i‘:_jjl*)_“ —
— Kh {1 LSV + o) M

= I{hm-—l{l + gm—l__ g}< K(gh)m_l

since 1— g is negative. Therefore, relation (1.4.13) holds for all m. But, from
(1.4.6), we have

K 1
h — e % e 4 N W
g {1 TN oK T (2| NI ¥ QKJ AN+ oll) <

<lp oy fletrb ] I oK) — T Lo
Consequently, if |A|<<1/(nNM-+20K+K), the series > 0; will converge and

this implies the following limit exists and
lim D, = D.
M—» 0
1.5. —~ Completion of the proof of convergence. In a manner similar to

the above, we prove y;’ approaches a limit as m — co. From expression
(1.3.6), we have

Y@y =2 3 60 [E), doy ... [E0 0 e, .
: =1
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Moreover, we may write
0] ) e —1) —
Jsr,‘ der, J J§%~IS do, ==

= J j’,’:)d% f’"ffim_)xs do:],—“ f77’(‘(;) (10:1 f .[E(Y:nils dG{D_

(1.5.1) ‘
f 5""’(10(1 f nf’ 2da, - f e doy Joy‘,”t da2 JE;”)’_’)S dog, -+ ...
4 (—1) I’Jn“”doclf f?}“’ Dde, .
Therefore,
n |
> s §< [no(N M) + () o=t (NMp-YoK) + ... + () (oK)]=
ety =1
= N M + oK),
and
| 2 @) | 3 2] SN g1y <
(1.5.2) =

<L R —| A (nN M + pK)] < ge R < eREP™

In a procedure similar to the above, we find that |y — y& =P |< R (gh)m
and if |A|<1/(nNM -+ 29K + K), then the following limit exists and

lim ¥, (2) = Y(z).

M- 00

Moreover, the convergence is uniform in each finite interval and, consequently,
the functions ¥,.(x) are continuous in every finite interval.
From relation (1.1.14) we have, for 4 5£0,

J‘ ZY D D) Yy e = (.1//1)[Z—1Y,,, — 1]
and, therefore,

@

[Z7HD — D) Yoy Qe = [Z-HD — D) Yoy Aoz + (1/A)[ Z7H0) Y (0) — I].
)
The second member converges as m — oo to

f Y@ — D)Y dor + (1)A)[Z-1(0)X(0)— I],

and, thus, the limit of the integral in the first member also exists and we have
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a particular integral which we shall indicate by f Z~Y D — D)Y d«. There-
fore if we take the limit as m — co in expression (1.1.14), we have

y:z+¢zﬂq@mmym.

Thus, the elements ¥,,(x) of the matrix Y(x) are AC functions in every
finite interval and

Y'=(B—2D)Y + QY a.e., —oo<<ax< - co.

It remains to show that the columns of the matrix Y arve linearly inde-
pendent. Observe that if m — oo in formula (1.4.15), we have

[Lllrs('fv)””’“ (3”gfr$|< 0 6%(1’,):':< Ggeu,)x’

and, at =0, |#,(0)— d,,|]<<1, or y.(0) 0. Consequently, at least one
function in each column is not identically zero. Moreover, from (1.1.11), taking
the limit as m — co, we have . e .

?/rs(w) = ¢"" prs(a")

-and p.(z) is periodic of period 7. Therefore, since 7,z£7, (mod wi), and
Pr-(x) is not identically zero, we have, by [10, Lemma (2.1)], that the columns
of Y are linearly independent.

1.6. — Determination of the characteristic exponents. It remains only fo
. show that we can choose the numbers ,, 7,,..., 7, such that B— AD = 4,
or, since .D = diag (d,, d., ..., d,), we must show that the equations

(1.6.1) Feltis ey Ty A) =t — Adp(ty, ooy Toy A)— 01, =0 (k= 1, 2,..., n),

have a unique solution 7,, ..., 7, as functions of the numbers g;, 0z, ..., 0u, 4
and, also, for | 1| small enough, each 7, € €, with center g,, where C,, Cs, ..., C,
are the circles described in section (1.1).

We know that fi(o:, 02y ey 005 0) =0, (k=1, 2, ..., n), and, morevoer, the
Jacobian 9(f,, f2, ..oy fa)/0(T1, T2y -ovy Ta), taken in the complex field, is equal
to 1 for A =0, 7, ==, (k=1,2,...,, n). Thus, by the theorem for implicit
functions in the complex field [18, p. 267], for || sufficiently small, there
exists a solution of the system of equations (1.6.1) of the form

li

(1.6.2) Ti= 0+ D @ A (i=1,2,..,n),

h=1



-
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where a;; are functions of g, 0s, ...y On, and the series are convergent in a
sufficiently small neighborhood of 2 = 0. Moreover, we see from (1.6.2) that,
if |2] is sufficiently small, |z;— g.|< &6, where ¢, d are given as in section (1.1),
i.e., Ty, Tey..., Tn lie in the circles O, Cs, ..., O, respectively. We summarize
in the next few lines the conclusions of the present § 1. '

1.7. —~ Theorem. Consider the system of equations

n
1
Y =04, + 2 0.@ y.l@) ae, —oco<lal oo

r=1

(w=1,2,..,m),

where 0y, ..., 0 are distinct complex numbers, 7 is a complex paranceter, the
functions @, (x) are complex-valued functions of the real variable x, periodic of
Vi
period T = 2xjw, L-integrable in [0, T] and f p@)dz=0. If g, 55 g, (mod wt),
[
==, then, for | 1| sufficiently small, the functions d, given by (1.1.14) approach
a limit d, as m — oco. Moreover, the solutions T, , ..., Tn of the system of equations

Ty 2, (Tyy ooy Tas A) = 0, (p=1,2,..,n)

are the characteristic exponents of the above system of differential equations.

§ 2. — A theorem on boundedness.
2.1. - Theorem. Consider the system of differential equations

(2.1.1) v+ oty AT p,@y,=0, ae, —oo<a< 4 oo

g

(e=1,2,..,n),
where oy, Guy ..., On arve real, distinct, positive nwmbers, L is a real parameter,
the functions v () are real functions, periodic of period T= 27w, L-integrable
‘T
in [0, T and f Y, (@) de = 0. If either
Q
a) Y,ul®) = 9, (— ) (tyr =1,2, .., n),
or

b) Pul®) = p,,(®) (4, v =1, 2, .., n),

and if mo %o, 40, (u,v=1,2,..,n; m=1,2,..), then, for |4} sufficiently
small, the AC solutions of system (2.1.1) are bounded. '
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2.2, — Preliminary formulas for the proof of the Theorem. The following
considerations follow closely those of CESARI. If we put

:’/‘u = (1/2)(Z2;1—1 —+ Z,_,'u) H I//L - (] /Z U O‘MZQ,:L) H

"[1-«1

. ; . '
Z&/(—l = .?/,u -+ (’2//0'”).7/'" ? Z2;L = :I/ﬂ - (7'/0/4‘):1//: ’

then (2.1.1) becomes

Z:l,u—l = ia,uzz;t—l -}_ {21’/(2014)} z [ll/),leL’v—l + wlwz:lxv]
pe=]
(2.2.1)

!
Zz,u " r"/t f/“?'/()o- }Z [ ‘uv "v~1 l /wé"v]

=1

(u=1,2,..,n).

Let us write system (2.2.1) in the form
) on
2, =02, 1 sz,n. (=1, 2,..., 2n),

F13
=1

where g, 0z, ..., 0, ave written in place of ig,, — 107, 10y, — 10y, ...y 46, — Gy,
respectively.

Designate by 7,, 7, ..., T., complex numbers such that Ty = 1Ty, Ty = — i1y,
vy Ton—1 == 1Ty, Ty = — 17y, and 7, T, ..., 7, are real numbers satisfying only
the condition that iv,, —it,, ..., iz,, — iz, lie in the circles C1, Osy oty Copy,
Can, of radius €0 [see (1.1)] and centers at the points 10y, — 407, oy 4Gy, — 107,
Let us apply the preceding algorithm to the auxiliary equations

—
o
Lo
o

=

"

2n
Z, =W+ 1y e;nxfe"’u“‘ Pup(0) Z, () dex (=1, 2, .., 2n).
r=1

From expression (1.3.3), we see that

- m—2 2n )
(my 9, e ~Tgx T4 [ o Tgd (M —1) 75 3
AP =dm| 3> 3 T, du [ e7Ta g Ve oy ...
=0 i,,A..,tp’Hml ~

) J.c_rtp_ﬂc\-:l%,,(p(tm—-Jn—l)(}'r\[)_L d“p+2

17‘1
But, from a known theorem on FoURIER series [11, p. 582], we may caleu-
late each of the above integrals by substitutinff the FoURIER series for ¢,,(2)

and mtegrltmo term by term. If ¢, (@) zyw,,v e Y e =0, (1, v=1, 2, .., 2n),

R — o0
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we obtain

m—2 2n ; P41
O« {m) ___ Pl z z H .
(2.2.3) A =32 Vou, .
P=0 bty =L Kebably =0 1=0

[

where we put ¢, = 1,5, =7 and we understand in this formula that the first
term in the product is y,,,, and also, ) = —do? if r =3, k=0, = y,q4,
otherwise. Moreover, we must exclude from the sum all combinations of the
indices ¢y, ..., tyuyy Kyy ..y k3o which make any of the denominators zero.
These expres%ions are contained in the paper by CESARI [4, (a)].

_}_ 7’ 7‘”~r1 T + k‘}ri-‘l)a) + :L'-r]~17

- ik Y _ . A T v . Dol
Put vy, (@) zcﬂ,kc s Cup =0, and put r=20"—2 +u, s=2" —

— 2+, (rys= 1, 2, ey 2y ¥, 8'=1,2,..., n; w,v=1,2), and identify the
y's with the ¢'s, we get y.q = (— 1)* 1 i¢upr(20.)Y %, = (— 1)t-i7,,. Let

us put

¢ {(m) . () ) ‘ =y gin)
(2.24) dlrr )Ur/l‘)dev =201 d"rr T ;(2’0'7/;7’)‘1'2r, 2r.3.
and
{m) 3 Py S T Fr—— g
[ 7, i wu=rv=1, r=s¢, k=0,
Jee,m) J (m}) : e gy e § g — o e
Cron ] Aoy M wu=90=2, r=¢, k=0,
l ¢y, Obtherwise.
Then y{ = (— J*=1-§(2¢,)"c"5™ | and, from (2.2.3), we get
me-2 n 2 »+1
99 (m) __ DAV -1,
(2:2.5) iy =2 (A2 3 2 > IIe=nm
p=10 By =1 Fyb kg =0 Uity =1 h=1
P+1

A SR

* 1_:[ C{ul'ul/ﬂ’m—”g; 1["" (“’ 1)1![*1111 + (kH—l ‘;— wer _{“ k‘p+2)0) + 771*]“1 b

l=0
m—2 n P41
(2.2.6) a&w =3 (22 3 > S TT(—1m
p=0 Bty =1 1.‘1+.,.+I: f2 =0 Ry, =1 Rl
»4+1
s ‘“a,l T (=17, 4 (ke + e F Fpra)o — 7,17
L=9 o

where the first term in the second product of both (2.2.5) and (2.2.6) is ¢, .
‘We shall prove that, in all cases,

(2.2.7) = .

1rr arr
Relation (2.2.7) is trme for m = 0, m = 1. Assume that it has been

shown true for 0, 1,..., m—1. Then

(2.2.8) I — G oA (p=1,2.., m—1);

T8, —k rsk
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for, if k5£0, r=13y, or r =5, this is just a property of the FOURIER coei-

ficients of y,(w). Fma-lly, it r=3s, k=0, u=wv, then 4" =—d,
¢l = —d” ., and these quantities are assumed complex conjugate.

Therefore, if in (2.2.5) we replace ky, ..., kpo by — ki, — ks, ooy — kg, put
Uy ==B— Uy ey Uppy = 3— 20,1, and make use of (2.2.8), we get di). Con-
sequently, (2.2.7) holds for all m.
In order to prove theorem (2.1), it is only necessary to show that the
equations
T A d,(Try ey Ton; A) =0

9, (lu»': 1,2,.., 2n)
have a purely imaginary solution 7, ..., T2,. By (2.2.7) and the definitions

of the g, and 7,, this means that the equations
8Ty~ My (11, — 0Ty 5 oey 1Ty, — 1Ta; A) = 10y, (u=1,2,..,m)

must have a real solution z,; or, d,,—, must be purely imaginary. Finally,

from (2.2.4), this implies that the limit of di}) as m — co must be real.

2.3. = Proof of a). If 9, (@) = y,(— ), then

o

@
)‘m )N z a’,uvk cos ko
k=1

1rr

and ¢,
r=1,2,...,n; m=1,2,.., as was to be shown.

= 27%a,,,, is veal for k= +1, 42,... Therefore, dj;) is real for

2.4. - Proof of b). We assume that u,(z) = y,@), (4,»=1,2, .., %)
By replacing %> by their corresponding expressions, we may write (2.2.5)

in the following form

»+1

aw="Soppn{ 3 3 5 5 ame

p=0 Lyseis ¢, =1 Ky 4. +I.p1 =0 Uy ey upJ_‘——l h=1

P+l
. l—I -1 -1 . - -1
=0 Ctzll+1kl+1 611, [ ( 1)"l le , (kH'l boeee 7\'17-{»2)6() i TT]

it oz 2 I 2 p+1 .
(o —j Z H a1,
- z z z dus z z ] ( 1)
i=1 s§=1 v=1 frntn =1 Ry o "‘I”a)—r» 0 wpatpy =1 h=1 .
ty=1tj, =8 "1™ 0 u)“":,;‘”
-1 = c . ! -1 .
0O ["’ (_ 1)1 tr, + (7”:i+1 + e+ 7\'p+2)w - T,]
P+l . . )
- = ! . | ! N -
AT es, oy, o0 [— (=177, + (hiey + oo + Epro)o 7]+
[AE RN E 51 1 13
l=0
1]
P+l : . - , n 2
m—3; m—-Ja z z Z
z z z dz,e,e, dq,..sqqg cen -
Jipdz=1 81y8g=1 vpvy=1 tontp =1 ’l'x-l‘...-;-kpq;.gﬁ() Uprtlyy =1
71 <73 ti =ty =5t Ej4a=0 Uy =y 1 T

15, = g ™ S, Egprr =0 gy = U170,
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Thus, we have

m—2 P41 n
4w =3 0 S 33
p=0 .

Je==1 8§=1 p=1

Pl n

(m—ﬂ,) (m—;«) o
+ Z Z z du 818 lus..sn /pvwzsls,ilig

Fade=1 $5,8=1 vyu.=1
i <dg

("1

where the y's are constants independent of 4.

We shall show by induction that din’ has coefficients in 2, 22, ..., A»—! real

for every m. We shall first prove that
(2.4.2) (1(1:-)1* = dy, , d(zzr)r = dgy, (r=1,2,..,n).

‘We have

1 1
4> = (/2 G G G —
1rr / ) 7;21 " *%ﬁo iy Phrke TR gy 7020) -+ 7, Ty 4 ke 4 7,
If we use the fact that ¢, = Crs—x; then use the fact that %k, + k, =0,
Crore = Corryy We get dP = d® | or, d® is real, and, from (2.2.7), we have ae
is real.
Next, we shall show that, in (2.4.1), we have

(2.4.3) Vivr = Vipr -

From (2.4.1), we know that

n P+1
) _ u;—-l .
Yir = 2 2 E I =1
1y ,tpHul kit kﬂ?+z=0 Ugseunsthy, —«1 h==1
2+l

. H Cortratnn o’{ll[}— (— 17 7, A (B 4 e+ Epr)o - 7,]

If in this expression for y ., we make use of the fact that G, . = Cps,—z DA
replace ki, ..., kyro DY —kyy .oy — kpre, We have

n

')_/lx:r — z z i ('_ l)uhwl :

Uty 1 7.‘1+.‘.+ka7_:_2‘==0 Ugprustlyy =1 B=1

w8
+
Y

p+1

. -1 -1 2 . -
1T Coyty, iy, Oty [’* (— 1)y Ty, = By + oo+ Eppo) 0 + Tr] L.

But, sinece k&, + ...+ k,4, =0, we have — (7cl+1 + oot ) =k e Ky
If we make this substitution, and replace ¢, DY fp—ire, % DY Upirs, kg DY

11 -~ Rivisia di Malematica.
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bpitey, I==0,1,..., p+1), and let §=p—1 41, and use the fact that ¢,; =
= ¢y, then we have the result that

n 2 p+1
- -1
Vipr = Z z z 1__[ (—1)uh ’
L7 tp_H:l k1+...+kv+,_,=0 Ugarensl Lp_H:l h=1
p+1
. -1 ug—1 A X -
015t5+1 k511 Utﬁ [—"‘ (_1) s Tits + (7"5"5-1 + vae + 7"1)+2)w + Tr] D }/mr »
6=0
as was to be shown.
Next, we shall show that
Vovsi = Vovs,p—is1 s
(2.4.4) : ] Vovgvesysgiiy T Vivy0ss s0p -y +1p -y 41 7

Exactly as in the preceding proof, we obtain

n 2 P+l
Yo = 2, 2 > et [— (=1 +
|79 tpH-—*l 7:1+..‘+k”+2=0 Uy penes "m-1=1 h=1
ty=ty, =S Ejpq=0 UGTUG =
D41
+ (B + ot B)o +1 ] T Cotronty, Ot [— (=1 g, 4 (et B)o 7, ]
=0
1#5

Again, if we replace t; bY tpira, %1 DY Uposte, Eirg Y kyrre, (155 75 1=0,1,
vy pH1), and let 6 =p —1 -1, and use the fact that ¢.q = ¢ur, We have

n P+1

71)1)3:' = z z ’ Z H (— 1)1‘1'—1 N

Bisener tm_l:l k1+...+kz,+._,=0 Uppoieslhpyy =1 R=1
tp_ji1= bpjra=S  Fpogpe=0 Uy gy, Ty .=
-1 - —
c o7 [ — (=1 A+ (Bpsie e Bpr)o 4+ 7] 72
P41
-1 -1 A -1
) ]-_-[ Gt&’é-i-l E5e1 615 [— (_"1)“6 Tt(s + (7054—1 + e b 7"1)+2)w + Tr] te== Vovs, p—i+1 »
d=n
O5tp—i+1

as was to be shown. The other identities in (2.4.4) follow by a similar reasoning.
The proof of the above properties is in CESARI’s paper [4, (a)].

In the following, the notation f(A) = 0(4?) shall mean that f(1) is a power
series in A which begins with a term of the power at least A7. Now, from re-
lation (1.4.13), we have

0n/(NT) = max [da? — a0 | = 0(Am)

=21,
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and, thus, d =42 " (mod Am'). Therefore, we have

. . . . 7 1
(2.4.5) 1
dm-THY = g (mod Ami) if j> B [&;_] ,

where I[«] is the integer part of .
Furthermore, using (2.4.3) and (2.4.4), we may write

m -2 I p+1 n 2 .
= 3 5 Fim — ) (. — i—1)
d;?:? - d(]';lr) = 2 (2/2)1)4—1 1 - Z z z (dv:t P dvss o ) Vovss +
p=0 T i=1 s=1 p=1
+1 n 2
(2'4'6) g " = 5,) Tm —7,)
-}_ z (d»vlsl:;:1 d‘uzsﬂsz' -
Fpdfa=1 Spsa=1 wpve=1
(m—p+7y ~1) Jm—p+i,—1) 1
- d7’15'131 ! dvgsgsg ) yﬂv;vgslszj1j2 + I *

We know that d, is real for every u, s. Assume 4 has coefficient in 2,

“uss

A% ..., A% real for every  and s and for k=1, 2,..., m—1. We wish to show
that this is also true for k = m. Under this assumption, we then have from
(2.4.5) that d5n7” and d72*~" coincide up to terms in either Am—7 or Am—»+i-1

v88

1
----- »—4] Consequently, we may

1
depending on whether j> E[p _f; J or i< B

write (2.4.6) in the form

T — a2 =S 42 =3 S s O —
1

irr
p=0 f=1 s=1 v==

M2 { E[%ﬂ] n 2

»+1

- z z z VousO (A7) +
1

i=1<:[?z;’—1]+1 S=1 p=

- p+1] » 2
: 1&[‘ 2 Z z 0(12(7)1—-41) BN A ) +
+ z yﬂv:‘”zsxsziti"z )
e S
iy <is
P+1 n 2 1

H 2m—j;—7,
s z Z Z yﬂv,vgslsy‘ljgo(}‘ ' ) 'Jl‘ aee j .

iy <iy

Therefore, dyy — din’ is at least O(A™). Thus, d\™ has coefficient in 4, 2, ..., An—1

real, and the induction is completed. Moreover, we know that the limit of @™
as m —> oo exists and, as a consequence, the term in A» approaches zero as
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m — co. Finally, we have the limit of dijY as m — oo is real, and the
Theorem is proved.

Note. TFor other research in which previous statements concerning
differential systems have been extended in such a way to require only
L-integrability of the coefficients instead of continuity, see D. Cavrico [2],
L. CesArI [4, (b); 5] and C. Taam [21].

§ 3. - Remarks.

I. — The discussion in § 1 and § 2 may be extended to systems of a much
more general type. In fact, consider a system of the form

(3.1) ¥, = 0,(N Y, + A2 pu@; A Yn, ae, —oo<w<I 00
. h=1 .

where 1 is a small parameter, each g;(1) is a continuous functionin A at =0 with
0i0FE oo (mod wi), (§ 7= 0; §,h=1,2,.., n), where g;, = p;(0), and each func-
tion @ (z; A) is periodic in # of period T'= 27/w, L-integrable with respect

T
to « in [0, 7'}, continuous in 4 at A =0, f(p]-h(w; Adz=0 and |gu(z; A)|<

0
< n(x) for all |1]< A, 4 >0, where 7(z) is L-integrable in [0, T]. Then, we
necessarily have .

N : i
(3.2) J‘)%h(x; lde< M (G, h =1, 2, ..., n),

0

for |A|< o, A >0, and M is independent of A. The algorithm in § 1 may

be defined in exactly the same way by replacing the g;(1) by 7; and the functions

pa(@) in § 1 by the functions @;(z; A) above. Since we have made the as-

sumption (3.2), the proof of the convergence will be exactly the same.
Moreover, if we write the FOURIER series of g (z; A) as

pala; D)~ 3 (e (y h=1,2y..., m),

= — o

then we see that the functions d7” in § 2 have exadtly the same form except
with ¢ replaced by ¢ja(A). The proof to Theorem (2.1) can be extended
in an obvious manner to the following theorem.
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Theorem (3.1). Consider the system

(3.3) Y +ou MYt A2 @@ Ay,=0, ae, —ocolal+oo
y=1
(L=1,2,..,n),

where A is a real parameler, cach o,(2) is a positive, continuous function in Aat A=0

for |A1<< Aoy 29> 0, with 0,(0) = a,,, the functions @, (z; A) are real functions, pe-

riodic in @ of period T= 2xjw, L-integrable in [0, T'], continuous in L at 1 = 0,
r

J"(p,w(w; Adx =0, and |@,,(@; ) |<n@) for all [A|< 1y and n(@) is L-integrable

1]

n [0, T]. If cither @, (z; 4) =@, (—2; 4), (wv=1,2,.,n), or @,(x; A) =
=@, (@A), (v =1,2,...,n), and if mw 70, £0,, (H?= 1,2, .., n; m=
=0, 1,2,...), then, for |A] sufficiently small, the AC solutions of (3.3) are bounded.

T
"IL. — Suppose, in Theorem (3.1), that Jﬂ(p‘m(w; 2)dw = m,,,(A) is not mneces-
0
sarily zero for all u, ». By our assumptions on the functions ¢, (x; 1), we
necessarily have.m,,(1) is continuous at = 0. If we let A= 0, ()0, + A, (A,
(v =1,2,..., n), D*a; ) =|gn@; V]| =|@.le; 2)—m,(A)], then system (3.3)
is transformed into the matrix equation

(3.4) Y4+ ADY + 209¥x; )Y =0, a.e., —oola< oo,

r
where f @(@; A)dz =0 for all [1|<4,. Since o}, ..., o) are distinct, positive
fun(:tio%s of A, the characteristic roots 6j(4), ..., 0;(1) of the matrix A(4) are
continuous functions of 1 at A = 0, and are positive and distinet for every 4,
|A] sufficiently small. Thus, there is a non-singular matrix P(4), det P(4) >
>¢> 0 for all |2 sufficiently small, such that P-1AP = B(1) = diag (63(4),
.oy 0p(4)). Therefore, if we let Y= PZ, then the above system (3.4) becomes

(3.5) 2"+ B(A) Z 4+ P-(A)D*a; AP(A) £ = 0.

If the AC solutions Z of this equation are bounded, for |A| sufficiently
small, then, since P(1) is continuous at 1 = 0, we have Y= PZ is also bounded
for |1| sufficiently small. Also; if @* is even, then P-'@*P is even. If
Puw(@; ) =g, (x; 4), then P(1) is an orthogonal matrix and, thus, P-@*P
is symmetric. Finally, since (3.5) is a special case of a system satisfying
theorem (3.1), we may state the following theorem.
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Theorem (3.2). The preceding Theorem (3.1) is true even if we do not
K

assume that f Pul@; M)A =0 for all A< A and all u,v=1,2,..., n.
0

For a more detailed discussion of the proof of this Theorem, see the paper
of R. A. GAMBILL: « Stability criteria for linear differential systems with periodic
coefficients, Rivista Mat. Univ. Parma 5, 169-181 (1954) ».
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