Rivista Mat. Univ. P:u_'ma 5, 99-123 (1954)

MARIAN A, MOORE (%)

Approximations of ?-integrals by Riemann
and Darboux sums, and other contributions to the theory

of P-integrals in general spaces. (*¥)

Introduction.

This article is based directly upon a portion of the work on set functions
by H. Haux and A. ROSENTHAL (1). Consequently constant reference will
“be made to this work. The symbol HR will be used to denote such reference.

As in HR, § 12.1, let % be a general space, without particular metric or
topological structure. Let @ be a totally additive set function defined in a
o-field M of subsets of X, such that M is complete for @. Denote by @+, @-,
and @ the positive-function, negative- -funetion, and absolute-function of D,
respectively (2).

Let A€k, and denote by 9 the o-field of the subsets of A that are con-
tained in M. Let f be a point function @P-measurable on 4. The function f
is said to be D-integrable on A if for every M 9 there exists a seb function
A(H) possessing the following properties (®):

1) A(M) is totally additive in 9.

2) It MeU and if, for ve M, ¢< f(x) < ¢, then
c DM MM - DOM) it P-(M) = 0 (*),
- PA)= AM)< e -DM) it OHM) =0 (5.

(*) Address: 2302 Walter Avenue, Northbrook, Illinois, U.S.A..

(**) Received May 20, 1954. Condensed from a Thesis with same title (Purdue
University, Jannary, 1953) which was prepared under the direetion of Professor A.
ROSENTHAL.

(*) H. Haux and A. RoOSENTHAL, Sel Functions (Albuquerque, The University of
New Mexico Press, 1948).

(*) HR, § 3.4

¢) HR, § 12.1.

(*) That is, @ is monotone increasing on M.

(°) That is, @ is monotone decreasing on .
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If here ¢ = - oo (or ¢'= -+ oo) and P(HM) = 0, then it must be assumed that
¢ @(M) =0 (or ¢ -P(M)=0).

Since it can be proved readily () that if A(4) exists its value is uniquely
determined by the conditions 1) and 2), the value of A(4) is called the @D-integral
of f on 4, denoted (°) by A(4) = (4) [ fad.

In case P(A) is finite, the integral (A4) [ fd® is said to be proper. (It is
to be noted that herein the case of infinite f is included). If @D(A) is infinite,
however, the integral (4) { fdd is said to be improper. The improper integral
is here, as in HR, restricted to the case in which A4==SA4,, where the A.s
arve disjoint and every ®(4,) is finite. ‘ A

The theory of the proper P-integral has been extensively developed in HR
Chapter IV. In HR, §12.7, a number of theorems have been extended to the
improper case. Furthermore, P. T. MIELKE, in his Thesis on improper in-
tegrals (7), has extended to the improper case many other theorems of HR,
§ 12, and in particular has discussed thoroughly the approximation of the
improper @-integral by means of LEBESGUE suIns.

1t is the purpose of the present article further to-develop the-theory-of-- o

the improper @-integral.

Tn Chapter I the approximation of the ®-integral by means of RIEMANN
and DARBOUX sums will be discussed. In considering RIEMANN Sums, the
theorems of HR, §§ 13.2 and 13.3, will be examined and, wherever possible,
extended to the case of infinite ®(4). It will be seen, however, that important
theorems concerning approximation of the @-integral by a sequence of RIEMANN
sums cannot be extended directly. Nevertheless, valid extensions will be
produced by the introduction of certain additional restrictions, namely, that
all RIEMANN sums be finite and all bounded ®-measurable sets be of finite
@-measure, or in another case that all decompositions of 4 be subdivisions of
a fixed decomposition.

In considering DARBOUX sums (%), the discussion will consist of three parts:
the first concerning the extension of the theory to the case of infinite D(4)
with monotone increasing @; the second extending the theory to the case
where @ is general (non-monotone) but ®(A) is finite; and the third considering
the case of a general @ and an infinite @(4). In the first and third cases, certain

restrictions must be introduced.

¢) HR, § 12.1 and § 12.7.

() P. T. MreLgE, Improper integrals in abstract spaces, Thesis, Purdue University,
-1951. .

(®) K. KRrICKEBERG: Math. Nachr. 9, 86128 (1953); Arch. Math. 6, 432-436 (1953).
recently used the DaArRBOUX sums to define upper and lower integrals and, if both are
equal, the integral. His results hold even without the above assumption that the
set A of integration is the sum of countably many sets A, with finite @(4,).
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In Chapter IT a concept will be discussed which is not based so directly
upon HR as the rest of this paper. This concept denoted by ( J *fdd, is

a limit, namely lim (B;) J fd®, where B; = b A;. However, if no restrictions
were placed upon the space E and on tlm decompositions 4 = SA“ then

(A) [*fd®d, in the finite case or even under gsomewhat wider condmons, would
not ‘be different from (4) J fd®. In order, therefore, to produce an integral
(4) [#*fd® which is essentially more general than the corresponding integral
(4) [fd®D, a metric will be imposed upon the space I, and the decompositions
A =84, will be obtained by means of concentric spheres; furthermore, @
will be assumed to be finite for bounded @-measurable sets.

Chapter ITI will be a direct generalization of HR, § 14, which concerns
mean value theorems and inequalities. Here, as in the case of the DARBOUX
sums; since most of the theory already developed is for monotone increasing
@ only, the theorems will be generalized first for the case of monotone increas-
ing @ with @(4)= + oo, next for the case of general (i.e., non-monotone) P
—with @(4) finite, and finally for the case of general @ with D(A)=-k oo. The
generalized definition of the polar metric A(g) (®) will have to be modified
somewhat in order to yield a satisfactory theory.

In Chapter IV, the theory of integration of sequences of functions, as de-
veloped in HR, § 15, will be generalized directly. In extending HR, § 15.2,
however, difficulties arise with respect to the definition of complete P-integra-
bility. To clear up these difficulties, a modified (but quite natural) extension
of the original definition will be presented, and the theory of HR, § 15.2, finally
re-developed on the basis of this modification.

Cuaprer I. — Approximation of the improper &-integral.

1. - Riemann sums.

Throughout this article, unless otherwise stated, it will be assumed that 4
is a set of infinite @-measure, and further that 4 = SA,;, where the 4/s are

disjoint and @-measurable, and D(4,) is finite for i =1, 2, 3, ....

Definition. Tet 4= 84, denote a decomposition D of A into counta-
bly many subsets. A; as indicated above. Let f(x) be @-defined on 4, and

©) HR, § 14.(4.2).
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let z,ed,. Then S{f, ®, D z]‘ N D(A;), provided this sum has meaning,

is called a Riemann sum ‘,\.ssoc,mted with the decomposition D (2).

Definition. Assume 4 to be a point set of a metric space E. The
decomposition 4 = SA is said to have the norm g if for all 4, the diameters
d(4d) =< 0. If p, >() and D, is a decomposition ot A into ®@-measurable sub-

9
sets of finite measure of norm g, then {D,} is said to be a distinguished sequence
of decompositions of 4 (*). In every case where the notion of distinguished
sequences is used, it must be assumed that F is a metric space.

The theorems HR, 13.2.1, 13.2.3 and 13.3.1, and their proofs can be ex-

tended immediately. We state hele only the last of these three theorems:

“Theorem 1.1. In order that there be a distinguished sequence of decom-
positions of A, it is necessary and, if the open sets are D-measurable, also sufficient
that A be separable.

On the other hand, theorems HR, 13.2.2, 13.2.21, 13.2.4 and 13.3.2, are
not extendable. Counter- -examples can be constructed easily. Hence essential
modifications of these theorems are formed in the following discussion. Some
lemmas are needed for this purpose.

Lemma I. If fis bounded and ®-continuous on A, if the open sets are
®-measurable, and if for all decompositions of A4 all associated RIEMANN sums
are finite, then 1) all sums of the form E;f J)D(4,;) are RIEMANN sums, i.e.,

have meaning, 2) (4) f fdD exists, and 3) jfd(f) is finite.

Proof. 1) Let &(4)=--co. Assume there exists a sum 8=8(f,D, D)=
= zf JP(A;) which is meaningless. S can be separated into two sums, S,

and S, producing a separation of 4 into two disjoint non-empty subsets,
4; and A,, such that 8,(f, @, D(4,))= + oo, and S,(f, P, D(4,)) =— oo,
where it can be assumed that all terms of S; are positive; of S,, negative.
D divides 4, into denumerably many disjoint subsets 4, ; and A4, into de-
numerably many disjoint subsets 4, .. One may neglect the terms of §; for
which @(4,,) <0, and the terms of S8, for which ®(4,,)< 0, since their
respective sums either are-finite or converge absolutely, and hence do not affect
the behavior of §; and 8,. Denote these remaining sums by Si and S,.
By the help of these sums an infinite RIEMANN sum on A can be formed,
contrary to the hypothesis. A similar argument holds if @(4) = — oo.

(1) HR, § 13.2.
@) HR, § 13.3.
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2) Assume (A)[fd® does not exist. Then (A+A’+ A-A") j'fd([): + oo
and (A+A4" - A“A’)ff AP = — oo (3). Hence (A+A’'+ A-A")can be divided into
denumerably many disjoint subsets M,, (i==1, 2, 3,...), such that () ffd(b>1
and (A+4"-4 A-A’) can be divided into denumerably many disjoint subsets 2 ,,
(i=1, 2, 3,...), such that (3, ]fd(f)<——1 By HR, 13.3.2, decompositions
and corresponding RIEMANN sums exist such that, for all ¢ and for 0<<e<C1,

) (M) ];fd(ﬁ—— S(f, @, D, (M) |<e,
(1) (L) [1a0 — 8(¢, @, Do (TL))|<e

Defining a decomposition of 4 by the totality of the decompositions in (I)
and (II), one may obtain a meaningless sum of the form zf ND(Q),

contrary to part 1) of the lemma.

3) By part 2), (4) ffd@ exists. Assume (4) ‘fd(f)~~ - oo. Then by the
help of HR, 13.3. 2, an infinite RIEMANN sum can be constructed, contrary

" to the hypothesis. A similar argument holds in case (A‘)J‘}‘d@:-«oo. o

Lemma II. If @(4) is finite, if f is bounded and @-continuous on A,
it {D,} is a given distinguished sequence of decompositions of 4, and if M
is any P-measurable subset of A4, then for &> 0 there exists v(g), inde-
pendent of M, such that for » >» and for all associated RIEMANN sums,
| 8(f, @, D (M))— (M) J‘f d®|<e, where D (M) denotes the decomposition of M
induced by the decomposition D, of 4.

Proof. The sequence {D,) is adapted (*) to the function f (%). Then
for > 0 there exists a sequence of positive constants 7, — 0 such that for
any RIEMANN sum associated with D, |S8(f, @, D,) — (4) J ]‘cl([)[< 0 D(A) +
-+ 2By,, where B denotes sup|f(z)|. Choose & so that J-P(4)<e/2. For

e d
» > we have 2Bn, < ¢/2 and hence |S(f, @, D,)— (4) J fd®i<e. Further-
move, there is a sequence of positive constants &, Wlth £, = 1,, such L]mt for
p >y, and for any RIEMANN sum associated with D (M),

|8(f, @, D(M)) — (M) [fAP| < b- B(M) + 2BE, < 0-D(4) + 2By, < €.

() For every ®-measurable set 4 there exists a decomposition A=4'+ A" where
A" and A" are disjoint and where @~(4’)=0 and O*(4")=0 (HR, 3.4.71).
At=Aff(x) = 0] and A~-==A[f(x) < 0] (HR, p. 156).

(") A sequence {D,} of decompositions is said to he adapted fo the function f if for
every 0 > O the sum B, of all those A, ; on which sup f(x) —inf f(x) > § satisties the
condition G(B,)— 0 (HR, § 13.2). xEdy,; o wEdy

(?) See the proof of HR, 13.3.2.
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Lemma III. If f is @-summable on A and if @(A) is finite, there exists
ze 4 such that

|f)- (A) < (A)[|f]ad ().

Proot. Let I be inf|f|. If f assumes the value ! at a’c A, then
xCAd

@) D)= (1) | BA)= (4) [|§]dB.  Otherwise 1-B(4) < (4)[1f]a®; ie.,
(4) J mdf]r——l ®(A) + R where R> 0. From the definition of {, there exists
a’e 4 such that 1<<|f(a") |<1 -+ R/P(4). Hence |f(z")D(4)| =< [f@") | D(A) <
<ID(A) 4 R = (A)j}f]d@.

Lemma IV. If fis @-summable on A and if @(4) is finite, there exists
a RIEMaANN sum S{f, @, D) on 4 such that (A)ffd(bg S(f, @, D).

Proof. Set (4) de(b (A’)J'fd(l) -+ (A”)ffd@. Let L designate sulz ().
xEd"

It may be that &(4') = 0. Then (A ffd([i 0 = fa")D(A') for all Em’e A
~Ot;hemx%c D(A") 5 0. If f attains - thevalue L at—apoint 7'e A’ then

ffd@_..<: f(&)P(A"). Otherwise (A’)J' fAO < L-P(A"). We may assume
L<+oo; and then (4’) J'fd(D L-D(4"y— R where R>0 From the defi-
nition of L, there exists 2'e A’ such that L — R/B(A") < f(a')< L. Hence
(4’ )de@ L-D(A") — R < f(«')P(A’'). Thus in every case there exists z'c A’
such that

(I) (A) [fad = fla")P(A") .

Analogously, using inf f(z) instead of sup f(z), it can be proved that there
zEA” zEA"
exists #’eA” such that

(IT) A”)degb< fla")D(A") .
The conclusion follows upon combining (I) and (II).
The following theorem is a modified extension of HR, 13.3.21.

Theorem 1.2. If f is bounded and @-continuous on A, if the open sets
are D-measurable, if all bounded D-measurable sets are of finite measure, and if
all Riemann sums are finite (%), then for every distinguwished sequence of
decompositions of A and all associated Riemann sums, lim 8(f, @, D,) =

= (4)[1ao.

(®) By HR, 12.3.21, (A)[|f|d® is finite.
(") See Lemma I, part 1).
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Proof. By Lemma I, part. 3), fis @-summable. Assume the theorem
does not hold. Then there exists a distingnished segquence {D,} of decom-
positions of A4 and an &> 0 such that for denumerably many v’s (v, where
k=1,2,3,...) there are RIEMANN sums having the property:

1) 4) ffd@ — S(f, @, D, )> 2¢, or, for denumerably many »’s;

2) 8(f, @, D,)— (4)[{AD > 2.

Assume situation 1) exists. We replace the notation D, by Dy, since the
sequence {Drk} is also distinguished. For k fixed, there exists a set B, (%),
with @(B,) finite, such that

(I) (B) [4® — S(f, P, Di(By) > ¢ .

_Set, B¥*= A}?,B;,. Define a_new sequence {M;} as follows: Let M, =DB5,. It =

may be that there exists a k,>1 with the following property: B*— M,
contains so many parts of B, , determined by D, , that, if M, denotes the
sum of these parts, there is a RIEMANN sum satisfying the relation
(M) [1dD — 8(f, P, D (M) > /2. Tf s0, M, is defined. Continue this process;
i.e., assume that 3, has been defined. If there exists a decomposition ij
with index higher than any already used, and a subset M; of the set
B*— (M, + M, + ... + M,,) where M, consists of parts of Bkj, determined
by J)k]_, with a RIEMANN sum satisfying the relation

an (M) [1aD— 87, @, D, (M) > &J2,

then J3; is defined.

Either this process terminates or it does not. In the former case, let
M= 8M,. Since M is bounded, ®(M) is finite. Let M*2 M be the set con-
M . '

sisting of all points z of A such that there are points m of M with am < d,
where d = max g, (°). By (I) and (II), for every decomposition D, there is a

@-measurable subset M," of M* and an associated RIEMANN sum such that

(I1IT) (MF)] AP — S(f, D, Du(MF)) = ¢/2.

() By =58 Ay ;.
i=1

(°) Here p, denotes the norm of the decomposition D, .
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For let D, be any decomposition of our distinguished sequence. If §4, .
>4,

represents the sum of parts of D, contained in B*-— M, the relation
(§A,__,,..)j AP — 8(f, D, Dy(§ 4, 1)) = ¢/2
holds, and consequently, by (I),
(Br— §, (fd(bm S{f, D, D(B— S A, ) > gf2,

where B,— 8.4, . consists of parts of D, lying wholly within M and parts
Iying partly ;Vithin M and partly within B,— M. But B,— § A, .- lies wholly
within M’*;\ in particular it is the above-mentioned M. But (III) contra-
dicts Lemma II.

Assume, on the other hand, that the process of forming M,’s does not
terminate. Again let M==8 M;. On M construct a RIEMANN sum as follows:
Consider the RiEpaxx sur;s on M;, (j=:1,2,3,...) existing according to (II),
such.that (J[-)ffd([)—— S(fy D, Dy (I})) > /2. Tt follows that }: (M) ";fd(I)-wr

- Z S(f, @, D, (ﬂ[ })=-co provided the indicated sums have meamno The
sunx Z (M) [' fd® has meaning and also has a finite \'ﬂlue as a result of the

o- sumnnblhtv of f on 4. Since for all j, (M) [ ]‘d@> 8{f, @, D, M), the
sum ES f, @, Dy () )) has meaning. Hence ES fy @, Dy (M )) = — co. But

this sum is a RIEMANN sum on M. By the help of Lemma IIT and the
@-summability of f on 4, a RimMANN sum of finite value can be constructed
on (A~ M). Combining these RIEMANN sums on M and on (4 — M), one
obtains a RIEMANN sum on 4 with S(f, @, D) = — oo, contrary to the hypo-
thesis.

The case in which there exist denumerably many decompositions of A
having the property that S(f, @, D, J— (4 ['fdfl)>‘>s can be proved ana-
logously. In this case Lemma IV must be used instead of Lemma IIT.

While Theorem 1.2 refers to a @-summable f, we should consider also the
case where (4) { fd® = -}-co. One then obtains the following theorem, whose
proof is not presented here, but is contained in the author’s Thesis, pp. 18-20.

Theorem 1.3. If f bounded and D-continuous on A, if the open sets are
D-measurable, if (A)ffd(f): -+ oo, and if all sums of the form Zf(mi)(l)(Ai)

have meaning, then for every (liétinguished sequence {D.} of decompo.stitions of A
such that D, (v=2, 3, 4,...) is a subdivision of D, ,, and for all associated
Riemann sums, S(f, ®, D)) — (A)ffdcb.

A modified extension of HR, 13.3.21, namely Theorem 1.4, will next be
proved. A lemma is necessary, whose proof is rather obvious.
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Lemma V. If for every distinguished sequence {D,} of decompositions
of A there exists a finite lim S(f, @, D,), however the RIEMANN sums are
» :
chosen, such a limit also exists for every ®P-measurable subset M of A.

Theorem 1.4. If A is separable, if the open sets are D-measurable, if f
is bounded on A, and if all bounded D-measurable sets are of finite measure, then
in order that for every distingwished sequence {D,} of decompositions of A ihere
ewists the finite im S(f, @, D,), however the Riemann sums may be chosen, i
is mecessary that | be D-continuous.

Proof. Assume f is not @-continuous on 4. Then there exists a @P-mea-
surable subset M of A such that @(M)> 0, $(M)s+oo, on which f is not
®-continuous. Because of Lemma V, this contradicts HR, 13.3.21.

Two meodified extensions of HR, 13.3.22, can be proved:

Theorem 1.5. If @ is content-like (*°), if f is D-summable on A and if
{D,} is a distinguished sequence of decompositions such that D, (»r==2, 3, 4,...)

is—a-subdivision-of - Dy, them-there-are-associated-Riem anv—sums--such—-that—

lim 8(f, @, D,) = (4) [{d®.
Proof. Let D, be the decomposition 4 = §4,, defined in the usual

manner. Let zAj = B,, and define R, by A= B, + R;. Since f is D-sum-

mable and heixc}e \f| is @-summable on A, for &> 0 there exists 4,(e)
such that for >, (R,—)J‘]f[dfﬁ< e. Therefore for i> i, }(R,»)f]‘d@ <
< (R,-)f[f} d® < ¢. Choose a fixed 7 > i,. Let {D,} be a distinguished sequence
of decompositions which are subdivisions of D,. By HR, 13.3.22, on B, there
exist RimManx sums such that |S(f, @, D (B,) — (B.) f fad|< ¢ for » > v,(e);
while as a result of Lemma III, on R,, for all », there exist RIBMANN sums
such that |S(f, @, D(R.))|< e. Hence for v >, (¢ fixed > 14), [8(f, P, D,)—
—(4) [fd@|=|8(f, , D,(B:)— (B) [{a®| +|8(f, P, D,(E:) | +] (R;) [faD[<3e,
that is, S(f, @, D,) — (A)ffdﬁf).

Theorem 1.6. If @ is content-like, if every bounded D-measurable set is
of finite d-measure, if f is D-summable on A, and if {D,} is « distinguished se-
quence of decompositions, then there ewist associated Riemann swms such that

111}1 S(f, @, D,) = (A)f.‘quj-
Proof. Consider a system of concentric open spheres {S, .} centered
at a fixed point a, with radius g, (0 < ¢ < o0). By hypothesis each sphere is

(3%) If E is metrie, if @77 contains all open sets, and if to every M eqn there is a
Gy-set B2 M with (E(B):(D(M ), then @ is called content-like (HR, § 4).
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of finite @-measure. Designate by R, , the surface of the sphere 8. o
(i.e., the set of points & for which %@, = p). It is easy to show that there exist
only countably many e’s for which 5(]13%, o) > 0. Hence there exists a mono-
tone sequence {g;} With g, — co and P(R, o) = 0. Designate by S, the cor-
responding open spheres S, o Now set B, = 8;4,; then 4 = ]ili‘ll B;. More-
over set 4, =DB,, 4;,=B,—B,., (i>1), and R, = A— B,.

By arguments analogous to those in the procf of Theorem 1.5, one obtains
RizmaNN sums such that for fixed ¢ (i > i),

(I Hm [8(f, @, D,(B.) + S(f, B, D(R.))] = (4)[fad,

where D (B;) and D (R,) denote the decompositions of B, and R, respectively
induced by the decomposition D, of A.

It remains to be shown that for any distinguished sequence {D,} there
exist sequences of RimMaNN sums, {S(f, d, D,)}, {8(f, @, D,(B))}, and
{8(f, &, D,(R))} such that

(1I) im [(8(7, @, D(B)) + 8(f, D, D(R) — 8(f, &, D,)] = 0.
To any S(f, @, D,), there exist RIEMANN sums S(f, @, D,(B,)) and S(f, D, D (R,))
such that their sum differs from 8(f, @, D ) at most on a set M .»y CODsisting
of those parts of D, which contain points of both B, and R,. That
5(Mm) -0 as ¥y — oo, ¢ being fixed, is shown as follows:

Define ¢, to be the set of all « € 4 such that there exists an # € B, with
za<d,, where d, = max(4,,9,,,,0,,,,..) and hence d,—0 monotonically.
By the triangle inequality @,, is bounded; hence @(Qiﬂ,) is finite. The
sequence {@), } is monotone decreasing, and every )., is open. Hence
DQ,,= B, and im &(Q,,) = ®(B,). But H(B,—B)= H(R, ,)=0; and
hence @(B,) = &(B;). Thus lim &(Q,,— B,) = 0.

Designate by @, the set of all a € 4 such that there exists an ze A4,
with @< d,. Since @, is bounded, ®(QJ)) is finite. D QF, = Ay, implies
Hm Q7)) = B(Ay,). But DAy — Au,) = D(R,,.. + R,,)=0. Hence
P(Ai;) = P(Aiyy). Thus lim (QF,— 4,,) = 0. Now consider the seb
QLF = Q,,°9QF,. TFor d,< (04, — 0:), the set M,, is contained in QFF.
Moreover, Q7FC(Q,,~— B -- (@, — Au,). Hence D(Q}F)< (Q,,— B.) +
+ DQF,— Auy) and H(Q**) -0 as v — co. Thus D(M,,) 0.

Since f if ®-summable, for &> 0 there exists »,(¢) such that for » > v,
(M, ) f |/]d® < &. Hence by Lemma II1, for any decomposition D, of
M,, (v>w) there exists a RIEMANN sum S(f, @, DM, ) such that
S(f, @, D(M,,)) < e Thus relation (IT) holds, and from (I) and (IT) the
Theorem follows.

Q> 0;

PRy
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2. — Darboux sums.

~ A) @ monotone increasing and $(4) = -+ oo.

Definition. Let @= 0. Let P(A)==-+oco. Let A=8 A, where the 4,s
arve disjoint and @(4,) is finite for i=1, 2, 3, .... Let f be @-defined but not

necessarily @-measurable on 4. Let ¢, = supf and h; = inf f(w), and
I ‘ b

form the sums S{f, @, D) zq,@(Ai) and S(f, @, D) zh

If they have meaning, cqll them the Darbouax sums (1) associated with
_the decomposition Dj; in particular, call the first the upper sum and the second

the lower sum.
By HR, 12.7.2, and HR, § 12.5, (if the sums under consideration have

~meaning),-
) ) LS’(fa D, Dy (4 '.fd@< de([)< AS(]‘, Q) (2).

Theorem 1.7. If (A)ffd(D>——oo [or (4 [fd(ﬁ 4+ o], then all sums
S(f, @, D) [or 8(f, D, D)] have meaning.

This theorem, a direct extension of HR, 13.4.1, holds by the proof of
that theorem.

Lemma VI. If (A)ffd‘(])< 4 oo, and if ¢ is any @-measurable subset
of 4, then (0) J'fd§D< 4+ co. This lemma follows directly from the extension
of HR, 12.5.211. Similarly one obtains the following:

Lemma VII. If (4) J',fd(D>—— co and if € is any @-measurable subset
of A, then (C)f fa®>-—oo.

Theorem 1.8. If (A)| fdP > — oo [or (4) ffd¢< oo, then there is a
sequence {D,} of decompositions of A such that S(f, D, D,) = (4 f y{fd@ [or
8(, @, D,) — (4)] fdP1.

This theorem is a direct extension of HR, 13.4.2.

Proof. Case I: (A)J—'f d® is finite. By Lemma VIIL, (Ai)ifd@>—oo

(1) HR, § 13.4.
¢2) HR, § 13.(4.1).
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for i=1, 2, 3,.... Thus by HR, 13.4.2, one can form the decompositions D, ;
of 4, (i=1,2,3,...) such that !S {f, D, D) — (4, )ded)[< 1/2% Tt follows
that IZ S(f, @, D, ;) — Z (4;) ‘fd(])[< 1 since the sum Z 4,) [fd® has meaning
and is ﬁmte as a result ot the extension of HR, 110..;1.1. This inequality can
be rewritten in the form |S(f, @, D,)— (4) ]—fd(b[ <1, where D, denotes the
decomposition of 4 generated by th(, J)1 8 (1=1,2,3,..). Similarly there
exist decompositions D, of 4 (wm.J, 3,...) such that IS (f. D, D) — (A)f_f dd|<
< 1[v. Hence lim S8(f, @, D,) ffd(])

Case II: (4A) f fdD = - co. From relation (I), it follows for all upper
DarBOoUX sums that S(f, @, D)= - oco. Thus the Theorem 1.8 holds.

The following two theorems, direct extensions of HR, 13.4.21 and 13.4.22
respectively, hold as immediate consequences of Theorem 1.8.

Theorem 1.9. If (A)[‘fdgf) >—co [or (4) ]}(1(D< + co], then (A)f}‘dgb:
= inf §(/, @, D) [or (4 lfd(f) = sup 8(f, D, D).

Theorem 1.10. If f is D-summable on A, then (A)ffd@:illl)f S(f, @, D)=
— sup 8(f, @, D

HR, 13.4.3, is not directly extendable. However, a modified extension,
namely Theorem 1.11, can be proved. One needs the following lemmas:

Lemma VIIL. TIf all DARBOUX sums are finite, then all sums of the
form S(f, @, D) = 2 9:P(4,) and S(f, @, D z 7, D(4;) are DARBOUX sums,

, have meaning. This lemma follows as an 1mmednte consequence of re-
lation (I) and Theorem 1.7.

Lemma IX. In order that all DARBOUX sums (both upper and lower)
be bounded, it is necessary and sufficient that all RIEMANN sums be bounded;
farthermore, the sums S(f, @, D) and 8(f, ®, D) have the same upper bound,
while the sums S(f, @, D) and S(f, @, D) have the same lower bound.

Lemma X. If all DArBoUX sums (both upper and lower) are finite, then
all RIBMANN sums are also finite.

The proofs of Lemmas IX and X are straightforward. In both cases
Lemma VIIT is used.

On the other hand, if all RIEMANN sums are finite, it does not follow in
general that all DARBOUX sums are finite. This is shown by the following
example:

Example I. Let A4 =(0,1). Let f(z) = q for x = pjq (reduced), f(z)=0
or irrational x. Let @(M)=1if ‘e M, O(M) =0 if L~ M. _Then all
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RIEMANN sums ave finite, but ‘rhe upper DARBOUX sum is oo, e.g., for the
subdivision (0, %), {4, 2], (

Theorem 1.11. If f is bounded and D-continuous on A, if the open sets
are O-measurable, if all bounded ®-measurable sets of finite D-measwre, and if
the Darbowx sums are finite, then for every distin, Juis"hed scquenoe {D,} of de-
compositions of A, S(f, ®, D,) — (4 J]‘d([) and S(f, @, D (4 ‘]"d@ (13).

y

Proof. (The proof of the first part of the conclusion is presented here.
The proof of the second part is analogous.) Let {D,} be a distinguished sequence
of decompositions of 4. Let {¢} be a monotone null sequence of positive cons-
tants. For all » there exist RIEMANN sums such that 0< S(f, @, D
— 8(f, &, D,) << ¢,. Hence it follows that, for these sums, h‘m S(f, @, Di,) ==
= hm S(f, @, D,) provided at least one of these limits exists. By Lemma X
all Lhe PIE)[A.\N sums are finite. Hence, by Theorem 1.2, hm S, &, D,) =

J‘fd(I) from which lim S(f, @, D,) = (4) 'fd@
Combining the above theorem with Lemma IX one obtams another mo-
~dified extension of HR, 13.4.3, namely Theorem 1.12. o

Theorem 112, If § is bounded and D-continuous on A, if the open sels
are P-measwrable, if all bounded D-measuradle sets are of finite P-measure, and
if the Riecmann swums are bounded, then for every distinguished sequence {D}
of decompositions of A, S(f, @, D,)— (A)ffd(f) and S(f, D, D) — (A)ffd([).

Lemma XI. If for every distinguished sequence {D,} of decompositions
of A there exists the finite lixyn S(f, @, D,), such a limit also exists for every
®d-measurable subset M of A.

The proof of this lemma is rather obvious. We next present a modified
extension of HR, 13.4.32:

Theorem 1.13. If A is separable, if f is bounded and D-measurable on A,
if the open sels are (]5 measurable, and if all bounded D-measurable sets are of
finite @-measure, then in order that for every distinguished sequence {D,} of de-
compositions of A there exist a finite 11?1 S, @, D,) ) [or lan S(f, @, D)) 1, it s

necessary that f be @-continuwous above (or below) on 4.

Proof. Assume f is not @-continuous above on 4. Then there exists
2 bounded @-measurable subset M of A on which f is not @-continuous. In
view of Lemma XTI this contradicts HR, 13.4.32.

That the above condition is not sufficient may be shown readily by an
example.

(*) By Lemma X and Lemma I, (:l)J‘/d(]) exists and is finite.
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B) @ general and &(A) finite.

The subject of DARBOUX sums is next considered under the assumptions
that @ is genmeral (non-monotone) and @(A4) is finite.

Detinition. Let f be a function @-defined but not necessarily @-measura-
ble on A. Let 4 =84, be an arbitrary decomposition D of 4 into disjoint
sets. Form the decomposition [see footnote (*)] A= SAZA - S A A= SA +

- SA': Let ¢; be the sup f(x); let g J, be the inf f( . Let hl be the mf’f(m),
g xEA; 2E Ay zEAdy

let %; be the sup f(z). Form the sums S(f, @, D) — EJ, (4;) +3 gid(4})
2E4; i

and 8(f, @, D) = 3 h,P(A}) + zh" A7). If these sums have meaning, call

t

them the Darboux sums assocmted with the decomposition D, and in par-
ticular call the first one the upper sum and the second the lower sum. ;
~ With this modified extension of the definition of DarBoux sums, which
contains as a special case the original definition as given in HR, § 13.4, all the
theorems of HR, § 13.4, on DARBOUX sums can be generalized rather easily.
Only in HR 13.4.31 and 13.4.32, @-continuity above (below) has to be re-
placed by @-continuity above (below) on A’ and @- -continuity below (above)
on A". The general method of proof of the extension of the theorems of HR,
§ 13.4. is to let A=A4’-+ A" and to apply the original theorems on A’ and A”
separately and finally to combine the results of these applications. These
proofs appear in the author’s Thesis, pp. 37-42.

C) @ general and &(A) infinite.

Finally the topic of DARBOUX sums is considered in the most general case,
namely, under the assumption that @(4) is infinite and @ is general. In this
case the DARBOUX sums are defined as in the case just congidered, where the
decomposition A:;Si’/ii has the usuval meaning. Results obtained here are
analogous to those obtained in the case where @ is monotone and D(A)= + ce,
except that again @-continuity of 7 above (below) on 4 has to be replaced
by ®@-continuity above (below) on A’ and below (above) on A” The details
are presented in the author’s Thesis, pp. 43-46.
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Cuaprer I — A discussion of the Jlim (B) f fad.

In this Chapter the limit of a sequence of integrals will be considered,
namely, lilin (B) f fd®, provided this limit exists and is in a certain sense
independent of the decomposition of 4. If A is in a general space, however,
and if the 4,’s and B,’s are defined as in the previous Chapter without further
restriction, it will be seen from the following discussion that, although
]ii_n (B;) f fd® is somewhat more general than (A)f fdD, yet under a certain
rather natural condition (see Theorem 2.4), this limit exists if and only if
(4) f fd® exists. In any case the limit and the integral have the same value
provided both exist.

Theorem 2.1. If (A)ffd@ ewists, then lim (B,-)ffdgf) also ewists indepen-

dent of the decomposition and furthermore (A) f fdP =lim (B)) ffdf[).
~ This theorem is a direct consequence of HR, 3.2.41. However, lim (B,) ff,d(b -

may exist in cases where (A4) ")‘ d® does not exist, as shown by the following
example: '

Example II. Let 4 =[0, co). Let @ =y, (}). Let f(#) = -+ oo for
0=2=1 and f(¥)=-—1 otherwise. Let 4 =84, be an arbitrary de-
composition of 4. Then there exists a smallest ilndex i such that the inter-
section C; of A7 with the set [0, 1] has the property &(C;)>0. For i= %,
(B)) [fd® = + co. Hence lim (B)) [fd® = + oo, while (4) [a® does not exist.

Theorem 2.2. In order that lilin (B)) f fAD emist, it is necessary that for
any subset M of A such that O(M) is finite, (M)f fAD exist.

Proof. Suppose the theorem does not hold. Then there exists M with
finite @(M) having the property that M = M*-+ M** where M* and M**
are disjoint and where (M*)f}‘d@: -+ oo while (ﬂ[**)f;fdff):~— oo. Let
A4, = M. Then however 4; (i=2,3,4,...) is chosen, B;> M* and B, > M**
(for all %) and hence (B,) ffd(f) does not exist for any 4. Thus hrln (B:) J’fd@
cannot exist.

In case lim (B)) ( fdD is finite, we have the following theorem:

Theorem 2.3. In order that lim (B,) "fdd) exist independent of the de-

composition and be finite it is necessary that, for every subset M of A with D(M)
finite, (M) f AP be also finite.

(!) gy is here used to denote the one-dimensional LEBESGUE measure.

8 —~ Rivisla di Malemalica.
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Proof. BSuppose the theorem does not hold. Then there exists M with
finite @(M) such that (M’)ffdd)z + oo (or — o0), since by Theorem 2.2
this integral exists. Let 4, = M. Then, however A, ({=2,3,4,..) is
chosen, (B;) f fd® = + co (or — co) and hence for such a decomposition,
lilin (Bl-)fjd(]): + co (or — oo).

That this condition is not sufficient even for the existence of lim (B,) ffdd)
is shown by the following example: l

Example TII. Let 4 =[0,00). Let @ =y (3). Let fla) =1 for
xe[2n, 2n--1), and f(x) =-—1 for xe[2n4-1, 2n+2), for n=0,1,2, .... Let
A;=[1—1,14), (i=1,2,3,...). Then lim (B )de(b does not exist.

On the other hand, if lim (B,) J']‘d(b is known to exist we have the fol-
lowing theorem:

Theorem 2.4. If ]im "fd(D exists independent of the decomposition
and_if a finite @(M) mnplws a_finite (M) f fAD, then (A) de(Z) exists_and hence
A)ffdd)._ lim (B,) [fdgf) ;

Proof. Suppose (4) f fd® does not exist. Then A=—=A*4-A%* where A%
and A** are disjoint and ( A”)]fdf’)w—}—oo while (A4%%) ffd(lj-moo By
the use of Theorem 2.3 it is possible to form a decomposition 4 = S A;

with @(A4;) finite, as usual, in the following manner:

Let A,c A5 (4)[fdd > 1.

Lot A,cA%5 (4; + 4y) [fdD < —1.

Let AyC(A*— 4))5 (4, + 4, + 4)[fa > 1.
‘Let A c(A¥¥— 4,)3 (4, - ... + A4)ffd£7)<—1.

-1 2n~1

Lt Auns C (A% — 8§ Aor) 5(8 4, )[fad>1.
§=1

n-

1 2n
Let AuC(A%*— 5 4,)3 (8 4 Nfad<—1.

For this decomposition lim (B;) j fdD does not exist, contrary to the hypo-
thesis. ’

(®) See footnote (*).
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Theorem 2.5, 4 necessary and  sufficient condition that h'gn (B;) J fdo
exist independent of the decomposition and be finite is that f be D-summable on A,

Necessity. Suppose the condition is not neecessary. The eithep
(A)ffd(_b does not exist or (A)ffdgf): oo (or —oo). In ecase it does not
exist, one can form a decomposition A :é’ 4; as in the proof of Theorem 2.4,
forming a sequence of integrals (B,) ffd@ possessing no limit, which is im-
possible. In Case (4) f AP =+ oo (or — oo), by Theorem 2.1 we have
lign (B3) f fddP= +co (or — co), contrary to our assumption.

~Sufficiency. This follows at once from Theorem 2.1.

Equivalent to Theorem 2.5 is the following theorem:

Theorem 2.6. 4 necessary and sufficient condition that lim (B:) J'f a9
exist and be finite is that, for all M c A with D(M) finite, (M) f 14D be bounded.
Thus we see, as indicated previously, that lim (B,) ffd@, if  finite,

or more generally, under the conditions of Theorem 2.4, is not different from . .

(4) fjd@ In order to produce in these cases a lim (B,) ffd@ even when
(4) f fd® does not exist, we modify the conditions by considering monotone
sequences of a special type. For this purpose the space F is now required
to be metric and the sequence of sets {B;} is defined by the help of concentric
spheres, as follows:

Let I be a metric space, and let « € B be a fixed point. Consider the open.
spheres 8, , with center at a and with radius o- Let M be a o-field of subsets
of E, containing the open spheres 8, ,- Let @ be a totally additive set function -
defined in M, such that all bounded ®-measurable sets are of finite measure. -
Let A€M, and let D(4) = + oo or — oo, oL

Let {g;} - co be a monotone increasing sequence of positive constants;
let {8, aa-} be the corresponding sequence of open spheres. Let B, — A-;S’a,ai
for i=1,2,3,..., and set 4, — B, and 4, =RB,— By, (1=2,3,4,..).

Let f be a functions @-measurable on A and having the property that
(4, f fdP exists and is finite for 1=1,2,3,.... If for every sequence {B,;}
defined as above h'lin (B,) f fAD exists, it will be denoted by the symbol
(4) f *fdd. Because of HR, 3.2.41 there follows at once

Theorem 2.7. If f is D-integrable on A, then (4) f *fdD ewists and is
equal to (A)ffd@. ; :

That the existence of (4)*fdD does not imply the existence of
(4) f 49 is shown by the following example:

Example IV. Let fl®) =1/n in the interval [n—1, n—1), and
f(®)=—1/n in the interval [n—3%,n), n=1,2,3,.... Let 4— [0, co).
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Let @ = p,. Fort this function AH(A) = -+ oo, A7(A)= - co (®); from which
it follows by HR, 12.7.2, that (4) ]'fdd) does not exist. But for any g; (n << o;: =
= n 1), we have [(Bf_) f fd®| < 1/(2n). Since g; — - oo, for &> 0 there
exists 1 such that for i> 1, 0, > (1/(2¢))*, where (1/(2¢)) * denotes the first integer

- R 1
greater than 1/(2¢). Hence for i>i, |(B;) [fdP|< 9(1/(2£”;< 9(1/(1_? 5= e. Thus
J = 9 & ~ &

li?l(lii)jjc_lcf) = (A)J‘*qus = 0.

Conditions sufficient for the existence of (A)]'*fdd) are rather easily
obtained, and the author’s Thesis (pp. 51-60). presents a number of such con-
ditions, as well as a condition for the existence and finiteness of the limif

(4)[*fga®.

- Cmavrer II. — Mean value theorems and inequalities.

In this Chapter the material of HR, § 14, in-which @ is-generallyassumed
to be monotone increasing and @(4) finite, will be considered and, wherever
possible, extended. The theory of HR, § 14.1 and § 14.2, concerning the first
and second mean value theorems for integrals, is immediately extendable to
the case of monotone increasing @ with @(4)= + oo; while for general @
[whether @(4) is finite or infinite] all this theory breaks down except HR,
14.1.1, 14.2.1 and 14.2.11, where @ was not originally assumed to be mono-
tone increasing. HR, § 14.3, has a purely algebraic character, while its ap-
plication to ®-integrals is discussed in HR, § 14.4; hence only HR, § 14.4,

"is to be generalized. We shall use again three sets of generalizing hypotheses:
A) @ monotone increasing and P(4)= - oo; B) @ general and D(4) finite;
C) @ general and @(4) infinite.

A) @ monotone increasing and P(4) = + oco.

The basic inequality for integrals (*), namely (4) JQ fg|dP =< sup|g(@)]|-
-(4) J' |f|d®, where it is assumed that f is ®-measurable, g is bounded and
P-measurable and @ is monotone increasing, holds in the extended case by
the argument in HR. The theorem HR, 14.4.1, containing the H lder ine-
quality, may be extended as follows:

(%) Here A+= (A'A+A747) [[d® and A~ = — [(A'A~+A"4%) [JdD (see HR.
p. 162). :
(1) HR, § 14(4).
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Theorem 3.1. If f and g are @-measurable on A and if @ is monotone
inereasing, then for p > 1,

M (A)J‘|f.(/[d(p§ { (A)Hﬂp dd }1/]7.{(A)J']g{y/(p—l) ad }(17—1)/7) X

Proof. Asin HR, 14.4.1, the theorem reduces to the case where f= 0,
g= 0, and the functions f and ¢ assume only finitely many finite values and
no infinite values. Then two cases are distinguishable:

Case I. Both f and ¢ are @-summable. In this case the proof in HR,
14.4.1, holds. '

Case II. Both 7 and g are @-integrable, but at least one of them is not
@-summable. In this case let (4) ffd@::—%—oo. Then also (4) f frdd=+ co.
Again we distinguish two cases:

1) (4 )qu’w—n d® =0. In this case gn/@=1 == 0 (*), from which g = ;0
_and hence fg = ,0. Thus the left side of the inequality (I) vanishes and the
inequality holds (%). '

2) (4) ['gl’/(”*” d® > 0. In this case the right side of (I) is infinite, and
again the inequality holds.

In case p =2 one obtains from inequality (I) the extended Schwarz
inequality, namely: (4)||fg fgla®<V/(4)[f2dD-(4) 2. '

Tn order to obtain an inequality of a more general type, a comprehensive
theory was originated by E. HELLY (*) and further developed by H. HAHN (),
and in HR, pp. 202-204. In this theory a «convex metric» for functions is
introduced by attaching to every ®-measurable function f on A a number
D(f) possessing the following properties:

) ])(f)> 0, and in particular D(f) = 0 if and only if f= ,0.
2) D(ef) =]e| D).
3) D(f, —}—f < D(f,) + D(f.), provided f, + f, is P-defined.
4) D(f) = D(lf]).

5) If f=1 on 4, and if @(A) is finite (%), then D(f) is finite.

(®) f = 40 denotes that f=0 except for a zero-set for P.

(®) See HR, p. 202, footnote 58.

(*) E. Heriy, Monatsh. Math. u. Phys. 31, 60-91 (1921).

(®) H. Haux, Jber. Deutsch. Math. Verein. 30, 94-95 (1921) (italics); Monatsh. Math,
u. Phys. 32, 3-88 (1922). ’

(®) The condition « and if ®(A4) is finite » is not expressly stated in HR, pp. 202-204,
since there only sets 4 with finite @(4) are considered.
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In order to extend this theory to the case of infinite D(A), a new inde-
pendent property 5*) is added.

5*%) Let f; be @-defined on a. @P-measurable subset M of A, with convex
metric Dy(f,). Let M, c M,(eUA), where @(MQWMI)>O. Let f, = ,f; on
My, fo==40 on (M,—~ ;). Then Dy (f2) = Dy ().

That the property 5%) is independent of properties 1)-5) may be shown
by the following example:

Example V. Let D,(f) = @(M)- (M) ‘ |f|d®, where M is any ®-measur-
able subset of 4. It is clear that D,(f) possesses properties 1)-5). That it
does not possess property 5*) may be shown as follows:

Let M, be a ®-measurable subset of A having finite measure. Let / be
®-summable on M, and have the additional property that Dy (f) > 0. Let
M, c M, and let (D(M)mllf )>0. Let f'= ,f on M;let f'= ,0 on (M,— M).
Then Dy (f') = $(M)- (M) [|f'|AP= B(M)- (M) )] ﬂd@>cp M) (M, f |f|d®=
=Dy (f). Hence 5%) does not hold.

As in HR, § 14(4.2), let Ag be defined as iollows f01 every (D metsmable

function g on A4:

A(g) =sup (4)[|fg|a®,
where f runs through all @-measurable functions f on 4 with D(f) = 1, and
let A(g) be called the metric polar to D(f). The properties of A(g) are ana-
logous to properties 1)-4) of D(f). Only the fact that Ag = 0 implies ¢ = 20
[corresponding to a part of 1)] requires a special proof:

Let g ;0 on BC A, where @(B)>0. There exists ¢>0 and CCB,
with 0 < &(0) <+ oo, such that |g|>¢ on €. Let f=1 on €, f = 0 other-
wise. Then 0<CD,(f) < + oo, by 1), 5), and 5*). Let f* = f/D,(f). Then
D (f*)=1, by 2), and ( A)f}f*J]d@ (O’)f}f*g]dfp > & ®(C)/D,(f) > 0. There-
fore A(g) > 0.

The extension of HR, 14.4.2, holds by the argument in HR provided that
in the statement of this theorem property 5%) is added. Thus if D(f) satisfies
the conditions 1)-5) and 5%), the extension of the inequality HR, § 14 (4.21),
holds, namély, (4) f |fg|dD < D(f)- A(g).  The extension of the remaining
theorems of HR, § 14.4, all hold as in HR, except that in the case of HR, 14.4.3,
it is assumed that property 5*) is possessed by D(f).

The examples discussed in HR, § 14.4, are all valid under the assumption
that @(4)= 4 co, namely: ~

_Example 1. D(f) = (A)f[f]d@. If p designates the @-supremum of |g],
then A(g) =p. As in HR, (4) [[79]a® < p-D(f), and hence A(g)<p. To
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prove the opposite inequality one may let {p,} be a monotone increasing se-
quence of numbers such that p, — p, =S A74,=84
and then consider the two cases: 1) there exists ¥ such that for » > 7, D(AF)
is finite, and 2) for all », @(A[) is infinite. (See author’s Thesis, p. 66.)

v

P

2y i 9

Example 2. D(f) = ®-supremum of |f|. Then A(g) = (A)J']g{d@. The
argument is as in HR.
Example 3. D(f) = 1(A){[f[1'd(ﬁ}1/" with p > 1. Then A(g)=
{(4 f )| |g| 70 d@}* ™", In order to prove that D(f) in this example pos-
sesses property 3), one must show that the Minkowski ineguality holds,
namely:

(o) (A [1fs - folra@P < {() [| /i [ a@}” +-{(4) |1, ad}” .

If the right member of the inequa.hty (IT) is finite, all products a,-(D(4.B;))

~and _b;- (P(A;B))) (see HR, p. 205) are finite, and. the inequality holds as. . .

in HR, while if the right side of the inequality is (positively) infinite, the
relation holds trivially. That A(g) has the above form can be proved as
in HR in case (4) ’, g |7 =vdP < -4 co. If this integral is infinite, then it is
easy to give a direct proof for that form of A(g).

B) @ geuneral and @(4) finite.

HR, § 14(4) and 14.4.1, cannot be generalized in this case since for mono-
tone decreasing @ it is possible to reverse the inequalities involved. The re-
maining theorems of HR, § 14.4, can easily be generalized by the use of the
following modification of the definition of A(g). The polar metric A(g) was
defined for monotone increasing @ as follows: Z(g) :DS(%EI(A) f |fg|a®. Here,
for a general @, we replace this definition by: A(g) = Sup (4) f [fg]d®.

Again A(g) possesses properties analogous to 1), 2), 3) and 4). Analogs

"to the previously mentioned Examples 1-3 can be constructed, by genemlly
replacing @ by @ in those examples.

The Minkowski inequality (II) breaks down in case of general @, since
in the case of monotone decreasing @, if p is an odd integer, the inequality
is reversed.

C) @D general and D(A) infinite.

The results of the preceding case (i.e., @ general and @(A) finite) hold
‘here, except that again property 5*) must be added to the properties possessed
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by D(f); in particular, this must be done in the case of HR, 14(4.21) and
14.4.3. Furthermore A4(g) is again defined by: A(g) = sup (4) “f(/ld@

Cuarrer IV. - Theorems on convergence.

1. - Mean convergence.

Definition. Let the functions f and f, (=1, 2,3,...) be ®P-measur-
able on 4, and let p be a positive number. If, for v=1, 2, 3, ..., the function
lf,]” is @-summable on 4 and if (4) f |f,—1]°d® — 0, then the sequence {1+
is said to be convergent in the mean of order p to f.

This definition of mean convergence (HR, § 15.1), when applied to the
_case of infinite $(4), enables us to extend without difficulty most of the theory
~of -HR;-§-15.1. In particular, the extensions of HR; 15:1.1; 15.1:11; 15.1.2;
15.1.21 (Necessity), and 15.1.3 - 15.1.5, hold by the arguments in HR. The
theorem HR, ‘15.1.23, can also be extended directly, but requires a new proof.
Thus we have:

Theorem 4.1. If the f, are D-measurable, if {f} is asymptotically con-

vergent to f ('), and if there is a g such that |g|” is @-summable and |f,|< ,]g]
for all v, then {f} is convergent in the mean of order p to f.

Proof. Let A= § 4, where the 4./s are disjoint and @(4,) is finite for-
i=1,2,3,.... Since |g|” is ®-summable on 4 it is also @- summable on A.

Hence for 5 > 0 there exists ¢ such that for i, > i, > 7 we have Z (4 [lg)"ad=

g zl+1

=( 8 A)[lg]"d® < 7. Therefore if R; denotes the set 4 — SAI, we have

{=i1+1
(R )f}g] dd <. Since |f,|< ,|g| and {f,} is asymptotically convergent to f,
then (R;) f |7,/°d® <7 by the extension of HR, 12.1.7; and by HR,
10.3.33, 10.3.64, and the extension of HR, 12.1.7, we ha,ve (&) [|f]"aP < 9.
By the extension of HR, 15.1.1, and by HR, 10.3.64, for all »,

(R [l —£," 4B = 20+ (R [[]" 4D + 22+ () [ |1, 4B < 27470,

Choose ¢ > 0. Let 27ty = ¢/2. Since the hypotheses of. the theorem hold

on A, they hold on the ®-measurable subset B,= SA Thas by HR,
15.1.23, there exists # such that (B;) flf——f l”d(D< e/2 for »>7, and

(1) For the definition of asymptotic convergence see HR, p. 126.
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(4) f[f»—f,,g"d@ (B [1f — 1, AP + (R;)[|f—1,|"d® < ¢ for v>7. Thus .
the sequence {f} is convergent in the mem of order p to f.

Theorems HR, 15.1.21, (Sufficiency); HR, 15.1.22, 15.1.6 and 15.1.61, are
not extendable. Counter-examples are easy to construct. (See author’s Thesis,
pp- 79-82.) It is to be noted that the original proofs of these theorems make
use of the ®-summability of a @-measurable and @-bounded function on a
set of finite measure. Such a function is not necessarily @-summable in case

D(A) is infinite.

2. — Integrable and completely integrable sequences.

Definition. Let {f,} be a sequence of ®-integrable functions which is
asymptotically convergent to f on A. The sequence {f,} is called @-iniegrable
if f is also (D-ix}tegmble and if (4) J]‘ AP — A)[ fdd. It is also said that
A} -converges in a-D-integrable manner-to-f- (el HRy-§-15.2,-p.-213).

The extension of HR, 15.2.1, holds by the argument in HR.

In the discussion of the extension of the remainder of HR, § 15.2, it is
natural first to use without change the definition of completely @-integrable
sequences of functions, thus producing a direct extension of this portion of
the theory.

A) Direct extension.

Definition. Let {f,} be a sequence of @-integrable funections which is
asymptotically convergent to f on 4. The sequence {f} is called completely
®-integrable it f is also P-integrable and if for every @-measurable subset M
of A the relation (M) J‘f, d® — (M )ffd@ holds. In this case {f,} is said to
converge in a completely D-integrable manner to | ()

With this definition, extensions of HR, 15.2.2 (Sufficiency), 15.2.221 (Ne-
cessity), 15.2.222 (Necessity), part of HR, 15.2.223 (*), and HR, 15.2.31,
15.2.311, 15.2.5 and 15.2.51, all hold by the arguments in HR; while HR,
15.2.22 (Necessity) and 15.2.3, can be extended, but require new proofs (*).
On the other hand, HR, 15.2.21, 15.2.22 (Sufficiency), 15.2.222 (Sufficiency),
15.2.23, 15.2.232 and 15.2.4, cannot be extended (°). Furthermore, two ques-

(?) See HR, p. 412.

(*) The proof that |f| and almost all |f,| are ®-summable helds in the extended
case by thé argument.in HR; the convergence of {|f,|} to |f}| is not known.

(1) See author’s Thesis, pp. 84-86.

() For counter-examples, see author’s Thesis, pp. 84-86.
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tions remain unsettled, namely, the extendibility of HR, 15.2.2 (Necessity),
and the convergence of {71} to [f in HR, 15.2.223. The obstacle that
appears is that, if no restriction is made as to the choice of the @-measurable
subsets M of 4, sequences of functions can be constructed which are diffieult
to classify as to complete D-integrability. '

Hence we introduce a modified (but also quite natural) extension of the
definition of complete O-integrability. This modification has the advantage
that it enables all questions of the extendibility of the theory to be answered
completely and that (in contrast to the above direct extension) most theorems
of HR, § 15.2, now permit extensions.

B) Modified extension.

Definition. Let {f} be a sequence of @-integrable functions which is
asymptotically convergent to f on A. . The.sequence-{f,}-is-called ~completely
P-integrable in a modified manner it f is also @-integrable and if for every
D-measurable subset M of A with finite @-measure, (M) f [, dD — (M) ( fdd ().

Equivalent to this definition is the following:

/

Definition. Let the function / be @-integrable on 4. The sequence
{f,} is said to converge in a modified completely P-integrable manner to fon 4
if it is completely @-integrable () to f on every ®@-measurable subset M of A
with finite @-measure.

With this modification of the notion of complete P-integrability, the
extension of the essential part of the theory of HR, § 15.2, is valid. Certain
minor changes, however, must be made in the extensions of HR, 15.2.223,
15.2.23, 15.2.232 and 15.2.4 (%). Only HR, 15.2.2 (Necessity) (*), cannot be
extended, as seen by the following counter-example, which shows that a se-
quence {f,} of ®-integrable functions which is asymptotically eonvergent to

(°) Cf. HR, § 15.2, p. 214. Note that in the case of an infinite @(4), the property
of complete ®-integrability includes this modified property; but that this modified
property becomes also identical with complete P-integrability in case &(A) is finite.

(*) Complete ®-integrability on M could here be replaced by @-integrability on
A without changing the meaning of the definition.

(®) In HR, 15.2.223, replace «|f| and almost all [f.] are also ®P-summable on 4 »
by «|f| is also ®-summable on 4 »; in HR, 15.2.23 and 15.2.232, omit « f and all §,
are @-summable»; and in HR, 15.2.4, replace «subset I of A » by «subset M of A
with finite  @(A) ».

(°) Professor RoSENTHAL states that the following changes are to-be made in the
proof of HR, 15.2.2 (Necessity): Insertin the third line from the bottom of page 215 (HR),
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a @-summable funet‘ion f may be completely @-integrable in a modified manner
on 4 even if ( [‘fv——vf;d(ﬁ -0 does not hold.

Example VI. Let 4 =[0, co) and @ =y,. Forr=1,2,3,.. set f=1/»
on [2k, 2k-+1), f, = —1/v, on [2k-+1, 2k--2) for all integers L w1th 0 k<<w,
and f,= 0 on[2», co). Let f==0 on 4. In this example for every ®-measurable
set M c A with finite &(M), we have, for all », |[(M) ‘f dp|< 1[)J lf,jad<
= 1fp-P(M) and (M) de(])...o Hence (M) J]‘ d(!> — (B) lfdd) ie., {f} con-
verges to f in a modified completely @-integrable manner. But for all v,
) [lf,—flad =

The general technique used in constructing proofs of the modified extensions
of the theorems of HR, §, 15.2, is the following: If certain hypotheses of a
theorem hold on 4, they hold also on all @-measurable subsets M of 4 with
finite @(M). Hence the conclusion alse holds on M. If this conclusion includes
complete ®-integrability, then the condition of modified complete ®-integra-

bility on 4 is automatically satisfied.

after the definition of B: «If the indices 4, are chosen according to this method, then
not only are 1) and 2) satisfied, but also
la) (B, +By+--+B. ) (B—B,,,) ff,,i‘ 4P| < ¢/8, and
2a) By, o+ By ot B — [B,.l+...+13m]1ffi?d([)| < g/8.»
Replace the first sentence of page 216 by the following: « Moreover, (B)j o d(I)

=] Bz/)ffz d(pl—i Bu+ 1/——) (B— Bf/ ff’ d(f)]—~|(B,/+l i B1/+” R {BMI—B
- B,/]}j]’, 49| and hence by (2) and bv ‘1a) and 2a), B) (s, AP > efd.»
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