Rivista Mat. Univ. Parma 5, 63-81 (1954)

Jack K. HALE (%)

Evaluations concerning products of exponential

and periodic functions. (**)

Introduction. In the present paper, we study the class €, of functions
~ @)y = co<Tw< 4 oo; namely; the class of the functions f(z) which arve finite
sums of products of the type ¢*p(x), where « is any complex number and g(z)
is any single-valued, real or complex, periodic function of period T'= 2zjw,
integrable in the sense of LEBESGUE in [0, T']. For this class of functions, a
concept of mean value m[f] is introduced as a generalization of the ordinary
concept of mean value (or average) for piu‘ely periodic functions. In extension
of a well-known statement for periodic functions, here, it also occurs that a
function fe ¢, has a primitive Fe € if and only if m[f]=0 (§ 5). Functions
f@)e C, are considered in questions of asymptotic behavior of solutions of
ordinary differential equations and the particular primitive F(z) of f(z),
PyeC,, is commonly denoted by f flz)dz (see A. Liapounorr [4] (Y,
5. LErsconeTz [3]; see also L. Cesari [1]). This integral J'f(w) da can be given
as an improper integral ff(a:) dz when R(a) £0; see [3].

A first question is Wiether the particular primitive J’f(ac) dx is the ‘defi-

nite integral of f(x), say F(z)= f f(t) d¢, where & is some point, independent

of @, between 0 and 7. It is known that the answer is affirmative for purely
periodie, real functions f(z). For general functions f(x) = e*p(»), with @(w)
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real, the statement is not true, as we see by examples, but there is a very parti-
cular decomposition f==f, 4/, of  into two functions of the same type,

obtained by means of Faltung integrals, such that j f(:l))da;:f fi@)de +

-+ j f(t) dt, where &, & ave between 0 and 7 and independent of = (§ 6). A

further theorem concerning the evaluations of this primitive states that

T
| fzz“’"’(p(:)ﬁ) dar |<< N(e T)fﬁqv(;r) e, 0Lae T,

[

where N(e, T') is a constant depending only upon the complex constants o, T,
provided m|e™p(x)] =0 (§ 8).

We will use all of these theorems in a paper concerning the asymptotic
behavior of the solutions of systems of linear differential equations with
periodic coefficients. This paper will appear at a later date in this same
journal.

1. —~ The family C, of functions. Let (=C, be the family of all functions
which are finite sums of functions of the form f(z) = ¢*p(x), — co < < + oo,
where o is any complex number and ¢(z) is any complex-valued function of
the real variable #, periodic of period T= 2z/w, L-integrable in [0, 7). Thus,
the functions f(z) = ¢*, « complex, as well as all periodic functions of period
T belong to C. Also, the functions f(z) == ¢, ¢ a complex constant, and, in
particular, the function f(z) = 0 for all # belong to C. The latter will be
called the zero function. We will say f(z) is equivalent to zero if f(z) differs
from zero only on a set of LEBESGUE measure zero. If a function f(x) belongs
to O, we will write briefly fe C.

For each function f(x) of the form f(z) = ¢“p(z), the decomposition ()
is not unique since we have also f(z) = ¢*F™ y(z), where p(x) = ¢~ *“p(x),
(b==0, £1, 42,...). Bach function f(z) of the family € is of the type

fla) = 3 e (@),

J=1

and in virtue of the last remark, we can suppose ;=% o (mod wi) for all
j#k, (J,k=1,2,..,n). Since cach function g¢;x) is periodic of period
T=2m|w and L-integrable in [0, 77, we shall denote by

-+ o

piw) ~ 3 Oy, ' (G=1,2,..,n),

n= —
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the FOURIER series of pid2) and we shall denote the series

n Eages]
(11) f(fL‘) P Z Z lee(ilwi-aj)x

ju=l l==—

as the series associated with f(w) e €, provided that o, =% a, (mod wi) for all
J#k, (, k=1,2,..., n).

2. — Linear dependence. Definition. The functions F1(@), fo2), ooy Ful®),
a=x=b, are linearly dependent on [a, b] if there exist constants C1y Cay
not all zero, such that

weey €y

(@) + Cafo(@) - o+ eyfal) = 0

almost everywhere (a.e.) in [a, b]. Otherwise, the functions are said to be
limearly. independent. on [a, b].

Lemma (2.i). If the functions ¢.(z) (n = 1,2, ..., N) are periodic of
period T'= 2njw, if no g,(z) is equivalent to zero, and if «; = «, (mod wi)
for all § =%k (j, k=1, 2,..., ¥), then the funchions @ (), ...
linearly independent on (— oo, - oco).

, py(x) are

Proof. There is no constant ¢, s« 0 such that €™, (x) = 0 a.e.. Sup-
pose that it has been shown that ¢p,(z), ..., ¢*%p,_ () are linearly inde-
pendent on (— co, + o). Also, suppose there exist constants ¢;, €, ..., ¢,

such that

2.1) 6™y (@) + ..+ e, i, (x) = 0

a.e. in (— oo, + o). Consider in the following only the set of all points 2 for
which (2.1) holds at « as well as at 4T, i.e., a.e.. Then we have

{2.2) e (@ + T) + o e, et g (1 o T =0,
and, also,
2.3) e (1) .. e, e T e g, () = 0,

since g2 + T) = @;(2), for 1=1,2,.... Therefore by subtracting the above

5 — Rivisla di Matematica.
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formulas (2.1) and (2.3) we get

61(1 — 6 7T) ¥, (@) oo+ Gy (1 — €™ 0T) g0y, () = 0.

But, by assumption, ¢*¢,(z), ..., ¢-"p,(z) are linearly independent and,
thus,

e(1— 67Ty = =g, (1 — % %) == .

Since o; 3£ oy, (mod wi), § #k, (j, k=1,2,...), we have %9731 for all
j #k, and, consequently, ¢, = ¢, = ... = ¢, == 0. From (2.1), we then have
¢, = 0. Thus, ¢, (2), ..., ¢*p,(x) are linearly independent. Thereby, the
induction is completed and the lemma has been proved.

Lemma (2.1i). If
m

n
S e fpim) = Y Py (x) a.e. in (— oo, --co),
i=1 k=1

where (), pi(®) ave peri‘odic.‘of period T= 2n/w; (j_—?']_', 2,, 4n;; T= 1, 2,‘.'.,Mm),
if no one of the g,z), w.(x) is equivalent to zero, and if «; 7 &, (mod wi),
jsk, B;FEpr (mod wi), j5=k, (j, k=1,2,...), then :

a) m=n,

b) *Fpia) = i"p(x) a.e. in (— oo, +o0), (j=1,2,..,, n), the tunctions

on the right being numbered conveniently, and
e) a; =pf,; (mod wi), (j=1,2,..., n).

Proof. Though the proof is quite elementary, we give it here for
completeness. Let us order the numbers «;, f; in such a way that «, = B,
oty = flay ooy 0 =f, while the numbers o«;, 7 -+1=j=n, and Br, h4+1=
<k<m are two by two incongruent modwi, 0=h=m,n  Then, if
py(@) = PPy (@), (j=1,2,..., h), we have

3 n n
S e P [ i) — p@)] + D pir) — 2 Py (x) = 0 a.e. in (— oo, +co).
Jj=1 F=h-+1 E=Rh+1
By Lemma (2.i), this can only be possible if qaj(aﬁ)—~<zp;(w) is equivalent to
zero for at least one 4, say j=1, and then we have

m

13 n
Z i) — pi(@)] + X e Fpiw) — 3 Py () = 0 a.e. in (— oo, + oo).

i=h+1 E=h-+41
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From here we deduce that g,(x) — ‘lp;(.’l/‘) is equivalent to zero for at least one j,
say j=2, and so on. By h repetitions of this argument, we obtain that all
functions ga,-(w)»—zp,'.(w) (i=1,2, ..., k) are equivalent to zero and that

2 i) — > Py () = 0 a.e. in (— oo, o).

F=p1 k=fif-1 .
But, by Lemma (2.i), this is possible only if & =n»n and h = m. Thus,
m=n, a;=f;(mod wi) and @;(x) = y,(z) a.e. in (— oo, +00), (j=1,2,..., n),
Le., ¢“p;(@) = /7 y,(w) ace. in (— oo, 4+ o0), (j=1,..., n).

3. — Theorem. For cach f(x)e C,, the associated series is uniquely de-
termined. '

Proof. Suppose f(z) = 3 ¢*"p,(x) = 3 fy,(x) a.e. in (— oo, +oo), where
F=1 i=1

we can suppose that the numbers «; are two by two incongruent mod i and
~the-same-holds for the numbers f;. By the preceding Lemma (2.ii), we have
m=mn and «; =f; (mod wi), *Fp,r)= "y (r) a. e in (—oo, + o),
(j=1,2,.., n). Therefore, it is sufficient to prove that if f(z) = e“p(r) =
= ¢My(x) a.e. in (— oo, -+o0), where ¢(x), p(x) are periodic of period T, then
the series associated with f(z) is uniquely determined. Since « = f (mod wi),
we have f=a—ikw for some integer k. Thus, f(z)= p(w) =P (@) =

= 6" ¢ " y(@) a.e. In (— oo, -+oo), and (&) = " p(x) a.e. in (— oo, +oo).
p ) ’ y 4 )
Therefore, the FOURIER series of () is
+
y)(m) . 61kwa:(p(w)~ Z Crre 611)u)m’
N=m— 0
+ @
where @(z)~ > ¢, ™, and the series associated with f(z) according to the
n=-ao
definition in section 1 is given by
4 4 . 4o
f(.%) — 6[31: ?,D((L')N z Crs 6(z7zw+z,8)a:: E e, 6(mw-rzkw+ﬂ}a:: Z e e(znw+zx).1z ,
Nz — 0 N= — o Nem - .

which is the series associated with e“p(x). Therefore, the series associated
with f(z) is uniquely determined.

4. — Mean value. Definition. For each function f(@) = ¢ p(x) ~
+ o

A~ D e, e we shall denote by mean value m[f] of f(x) the number

0 if dnew 4o =0 for all n,

nlf] = !

[ ¢ if inw +o=0 for some n.
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For each function flw)el,, i.e.,

m

z & 7"’1 Z z Cin e(mw-Hx )1

j=1N= -0

with o;3%50, (modwi) for all js£k (j, k=1, 2,..., m), let

m

m[f] = z'm [e"p;(@)] .

This concept of mean value was studied by L. Cusari [1, p. 649] for functions
f(z) of the form f(x) = ¢™p(v) with « complex and g@(x) periodic of period 7,
L-integrable in [0, 7', and having absolutely convergent FOURIER series.

Remark. If f(z)= ¢“p(»), and if inw + o« =0 for some =, then
T
mf] = e, = (1/T)[ p(w)e™ " da .
0
In p‘utmuLu if =0, then

mf] = mlg] = (1/7)] pla)de

Lemma (4.i). If f@ z e** @i(w), o; =0 (modwi) for every j, k=

=1,2,..., n, @;(x) periodic of penod T=2njw, (j=1,2,..., n), then

n

mf] = > m[e* p,@)].

j= 1

Proof. "Suppose o;— a; = k,wi, k; an integer, j=1,2,..,n, ky=0.
Then

f(w) — ea,xz 6(“"““1)2()9,-((1/‘)

=1
and if ¢, E e 6™, also
he=—
“+
(6 Y, __ kwiz thax
eI () = () ~ D ey,
M= —co
Therefore, by definition,
-+
(Ghow o)
f(x)’\-’z (Zczhk> TR
B=— oo

If ihw +~a, 70 for all h, then thw +«; 50 for all b and j=1,2,...,n
and m[f] =0, m[*"p,@)| =0 (j=1,2,..., n).
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If dhw - o = 0 for some h, then for the same L we have (h— k;)wi--o;=0
and

m

m[f] :Z Cj,h——l:j 3 m [exj)ipi(m)] = Cj,h—kj .
j=1

In any case,

mf] = 3 m{e*p;@)].
i=1
Lemma (4ii). If f(o) = ¢“p(x), @(x) periodic of period 7' and if ¢ is
any complex number, then mjcf] = ¢ m[f].

Proof. It follows directly from the definition.

Theorem (4.1). If fi(x), folx), ..., fal@)e C, amd €1y Cyy ey Cy e complex
constants, then F(x) = z c,,fh ()eC, cmd m[I’] = Z ¢, m[f,,
S ; L e uafiient
mh
Proof. Suppose fi(x) = z M (@), o E o, (Mmod wi) for all .j £k
(y k=1,2,.., my; h=1,2,..., N), and @u(x) periodic of period 7. Then

my, Ed N omy

zchZevh(ph(w > Zeﬂlch(pﬂ, J=3 3

h=1 J=1 h=17Ji=1 h=1 j=1
where @ (2) = o,pu(®) is periodic of period 7'= 2mjw. Thus, by definition,
Fx)eC,. Let f,, Ba, ..., S be all the numbers of the set «,;, (j =1, 2, ..., my;
h=1,2,.., N), which are two by two incongruent, and let o be the
numbers of the set oy (j=1, 2,..., my; =1, 2,..., N), such that & e = = f,
(k =1,..,4,). Then F(x) can be written as

khv, b3

F(z) =3 ", (a),

p=1
where
%5y h,,’ ,)’“
QPu .’I/') 2 b ¥ v' I’th ( )
k=1

M .
. By definition, m[F] = Y m[e” *y,(x)], and by Lemmas (4.i) and (4.ii), we have

v=1 :

. Ay P
m [6’9" xwv (w)] J— 7._21 Oh.v,km [ ¢ Iy, I.Jw’lcz(pjr,kh"k(w)] '
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As a consequence, upon rearranging terms, we get

m 1

N N
w[F] =3¢ 3 m[empua)] = 3 ¢ mlf,] .
h=1 1

J= h=1

' 5. — Primitives of functions of the class C,. We shall need the following
theorems from the theory of FOURIER series.

Theorem (5.1). If the function f(x) is periodic of period 2n and L-inie-
grable in [0, 27], and the function g(x) is of bounded variation in the finite in-
» A
terval (e, f5), then J f(®@) g{w) Az may be evaluated by substituting for f(x) its
Fourier series, and applying term by term imtegration, and the series obtaimed
18 convergent.

Theorem (5.ii). Let f(x), g(@) be periodic functions of period 2m, L-in-
tegrable in [0, 27], and let
- ‘ +
)y~ e gy ~ S dy e,

be their Fourier series. Then

27

1
() h(z) = 2—7;}'7‘(‘77 +1)g(t)dt
0
exists for almost all x and is L-integrable, and
+ o
(b) . (@) ~ 3 e, d_y, eme.

For a proof of Theorem (5.i), see . W. Hosson[2, Vol. II, p. 582], or
L. ToNELLI [3, p. 343]. For a proof of Theorem (5.ii), see A. ZYGMUND
[6, p. 14]. These theorems are proved for real-valued functions of a real
variable, but it is only a formal procedure to show that they also hold true
for complex-valued functions of a real variable.

+
Lemma (5.i). If f(z) = e“p(x), « complex, @) ~ > ¢,¢™*, and if

n= -
m[f] = 0, then there is a primitive of ¢“p(x), say f “‘p(t)dt, which belongs
to C,, and there is one and only one primitive of ¢*p(z) such that
m| f *o(t) dt] = 0. Moreover, this unique primitive of mean value zero is

given by
o _
f e*'p(t) At = “p(x) = ¢ 3 cplinwto)yt e,

Nz= — 00

where y(x) is periodic of periodh T'=2xn[w.
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Proof. Every primitive of’e“’(p(t) is of the form

) = [ prydt + ¢,

0
where O is an arbitrary constant. But, by Theorem (5.i), we may evaluate
this integral by susbtituting for ¢(¢) its FoURIER series and integrating term
by term to get
“+ @

D(x) = Z [cn(inw ) G(i”w%-a)t];-, 10

n==— o

+ oo :
We know 3 ¢, (inw)~'-¢™** converges uniformly [6, p. 27]. Also, since

n=—

the sequence nw(inw o)™ (n = 1,2, ...; trw + a 5% 0), is bounded and
+ @
of bounded variation, we know that the series Y ¢, (inw + o)'-¢™*" con-
== = O
..yerges. uniformly. . [6, p. 3].
Therefore, we may write
+
B(a) = [ 3 ealinw + o)~ Lemet]s 4+ 0 = [e‘” t)]o + O = e™y(x) — p(0) + 0,

where y(x) is periodic of period T= 27jw. Moreover, m[e‘*’”w(m)] = 0, and if
we choose O = y(0), we have m[@]=0, as was to be shown. That there is
only one such primitive of mean value zero is easily shown. For, suppose there
is another, say @*{(x); then @ = @*4 C and, thus, m[C]=0, or ¢ = 0.

Theorem (5.ii). Any function f(x) € C, has a primitive F(x) € C, if and
only if m[f]=0.

Proof. Let f(z zc "p;(z), where each «; is a complex constant and
each’ function ¢;(@) ~ > ¢, £ """ Moreover, suppose ;o -+ o; =0 for some
B — 0O

n; and every j = 1,2, ..., #, that is m [c"‘v”%pj(m)] = G, (j=1, 2, .., n). Then,
the functions

= ¢% [tp €. €] (1=1,2,..,n),
are such that m[g;]=0 (=1, 2,..., n). Moreover, we have

f f@)doe = 2,:: f g;(z) do »{—f (é c,.’nJ) dz

Therefore, from the preceding Lemma (5.i), we know that, there is a primi-
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n

tive of g;(») contained in €, and there will be a primitive of z Gy contained

in €, if and only if Z ;. =0, ie., m{f]=0, by theorem (4.1). If for some

j=1,2,..,n, we have tnw + o 5= 0 for all n, then Lemma (5.i) can be ap-
plied directly to the corresponding term " p,(w).

6. — Integral form of the primitives in the class C,. The following
lemmas will show how these primitives may be obtained as definite integrals.

Lemma (6.i). If @) is a real-valued function, periodic of period
T=2n|w, L-integrable in [0, T], and if m[p] = 0, then there exists a number 5
0 << &< T, such that the function :

= f @(t) dt

is periodic of period 7, continuous in (— oo, --oco) and m[P]= 0.

Proof. Let zp(x = [p) a, O 17| [ pt) dt, and B(@) = (@)L C
0 [ 0
Then

T T

Bl + T) =y + T) + O = [ @) dt +[ p@)dt + C.

0

By the remark after the definition of mean value in section 4, we have
r T

m{p] = 1/T) f @(t)dt, and, thus, m[p] = 0 implies f @(t)dt = 0. Moreover, if
0 [}

we let { = T'--7 in the second integral, then

Dz -+ T) =f<p(T+r)dr+C= f(p(r)dr + C = D),

or, @(x) is periodic of period 7. Moreover, () is continuous in (— oo, -+ oco).
On the other hand,

4 xr @ by @ T &
[o@ae=[do [ pt)at + CT= [ae [ p@)di— [ de [ p@yat =0,
[ 0 0 1] o 0 Q
and, finally, m[®]= 0.
r
Sinee @D(x) is continuous in [0, 7'} and f D(w)yde =0, D(x) has at least

0
one zero & such that 0 << &< T. We, therefore, have

- Sf oL
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since both the first and the second members are primitive functions of ¢(t)
and both are zero at = £&.

Remark 1. If p@) =g (x) -+ ip.(x), where ¢,(z), @.(z) are real-valued
functions, periodic of period 7', L-integrable in [0, T, and if m{p] = 0, then
there exist numbers &, &, 0<C &, &< T, such that the funetion

A J (tdt+%_’gv

is periodic of period T, continuous in (— oo, +o0), and m[P] = 0.

Remark 2. That it is sometimes necessary to take £ 54&, is shown by
the following simple example. Let

Pa) = J(cost Lisint)di = feostdt 44 [sm di = sin t] —1i cos t]

&y . &g

It m[P] =0, we must choose &, & such that sin& =0, cosé& =0 and,
thus, & # &. '

Suppose we are given a function f(x)= ¢*p(x), where o is a complex
number and @(x) is complex-valued and periodic of period 7, L-integrable
in [0, T'} and m[f] = 0. From the last remark, one might suspect that there
exist numbers &, &, 0<C &, & < T, such that the function

Plx) = fe () dt = fgé(e‘”(p(t)) dt 4+ 4 J‘j(e“‘(p(t)) dt
&
is continuous in (— oo, 4-o0), and m[{@] = 0. The following example shows
that the numbers &, & cannot always be chosen such that 0 < &, LT
if we decompose ¢*'p(t) into its real and imaginary parts as above.

Example. Let f@)=e¢*sina, f real, f=1 -+ ¢ & arbitrary > 0.
Try to determine &,, & such that )

D(z fe'ﬂt sin ¢dt == fcos Bt-sin tdt + 4 Jsm ft-sin tdt
&1 &

is continuous in (— oo, +c0) and m{@] = 0. If we integrate this equation,
we get

B(2) = [p) — pE)] + i [n@) —n(E)],
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where
() = — cos (1 — Bt __cos (14 Bt
Y= T ) 21+ p)
() = sin (1 — ) . sin (1 4 B}

2(1— ) 201+ p)

- If we want m{ @] = 0, we must choose &, & such that w(&,) = 0, n(&)=0.
Since =1+ ¢, p(&) =10 implies cos (2 + &)& =[1 + (2/e)] cos &, . But, for
¢ very small, a value of & which satisfies this equation would have to be much
greater than 2n. In fact, for ¢ =.05, & > 9.

Therefore, if we want to be sure that the points are to be always con-
tained in (0, 7), we must decompose ¢p(r) in some other way.

Lemma (6.i). Let f(t) = ¢*"*gp(t), where «, f ave real numbers, (1)
is a real function, periodic of period T'= 2x/w, L-integrable in [0, T, m[¢]=0,
and o + 550 (mod wi). Then, the function (?) can be decomposed into

(6.1) pt) = @:1(t) + i g(t)

where @,(t), @.(t) are L-integrable functions (not necessarily real), periodic of
period 7, and such that

(6.2) { By dt = f'e‘““ﬁ”(pl(t) d¢ - 'L[ ST By (t) df = @ HPe [y(@)+in()],
& &,

0<é&, &<, and w(x), n(xr) are continuous, real-valued functions in
(— o0, +o0), periodic of period T, and m[y] =0, m[n]= 0.

Proof. Let

T

(6.3) ) =8 [ gt +Dg(v)Az, @) = pt) —igu(t) ,

0

where ¢(¢), —oco<<t< + oo, is the periodic function of period 7' defined for
all 0=¢t<< T by

[ g(t) = H(e, p) e,
(6.4) - { o . | y
l’ H(OC, ﬁ) — z(eT(oc-i‘zﬂ)___‘ 1) / |6T(ex Wy

o

and defined in (— oo, -+ co) by the periodicity of period 7. Since
o -+ i35 0 (mod wi), we have |e"*P_.1]5£0, and, thus, the function g(t)
is of bounded variation in [0, T7]. As a first consequence, we have also
a—1if £ 0 (mod wi). From Theorem (5.ii) and formula (6.3) above, we have
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-0
@{t), @o(t) are summable in [0, T]. In the next few lines the symbol z' shall

n= — 00

mean that the term with % = 0 is zevo. Let
+ o ) + A
q)(t) —~ Zl n 617:(,0! , {/(t) ~ z dn emwt .

I n=—

Then,

T T

d, = (UT) [ gy e~ at = [H(x, B)|T][ >~ P~ At =
= [H(a, B)|T][("*~ P —1) /(@ — i — inw)],

and, thus, from (6.3) and Theorem (5.ii), we have
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Moreover, since @,(f) is summable and TPt ig of bounded variation in
[0, T], we have, using Theorem (5.i) and formula (6.6), that
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where &, is a constant to be determined later. Consider the series
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where @,;(n), Q.(n) are real bounded functions of u, positive and monotone

-1
for all n > n,, sufficiently large. We know that the series D7 ea(tnw) e

n=—a
converges uniformly [,6 p. 27]. Therefore, from the character of Q,(n), Q.(n),
the series (6.8) converges uniformly [6, p. 3]. Consequently, the series (6.7)
can be written in a simpler form

(6.9) ‘J‘ c(zx-i»iﬂ)t(pl(i) dt = [e(f,\'-{kiﬁ)tw(t)] ::l ,
&
where
o o 4 inw )
— ! . inwt
(6.10) p() “‘nzw (@ + if + inw) (o —if + inw) "¢ -

The series (6.10) is the FOURIER series of y(¢) since the sum of the squares of
the coefficients is convergent [6, p. 74]. The function (¢) is periodic of period
T = 2njw, and since ¢, =0, also, m[y]==0. Moreover, since ¢*+Pty(t) is a
primitive function of ¢*+*g,(t), we have w(?) is continuous in (— oo, + co).
Also, () is a real function; for,

_ +c’o o — inw —inwt
YO = Y T e i —ina) =
+clo o+ inw inmt
:n_,.z_m (= i+ o)k -+ ima) ¢ = PO

Therefore, since w(t) is a continuous, real-valued function in (— oo, + co)
and m[y] = 0, there exists a number &, 0<< & < T, such that (&)= 0.
In (6.9), if we choose & such that (&) = 0, then

(6.11) [ +Pigtyat = ¢+ Pry(s) .
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In a similar manner, from Theorem (5.ii) and formula (6.5), we get

(6.12) J e TP gyt dt = [F Pz,
where
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Moreover, n(t) is a continuous, real-valued function in (— oo, o0}, periodic
of period T and m[n] = 0. Thus, there exists a number &, 0<& < T such
that n(&,) =0, and if, in (6.12), & is chosen such that #(&) = 0, we have

(6.14) ‘ [P gty @t = o=+ P () .
&
Combining (6.11) and (6.14), we have
[e=TPlp)dt = P [p(a) + in(x)],

as was to be shown. Moreover, combining (6.10) and (6.13), we have

+ ¢ einwnf
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This last result would also have followed from Theorem (5.iii).

Theorem (61) H fla) = z i (p, Ye C k m[go,-] =0 (j = 1‘, 2,“.‘..', n),

and if m{f] = 0, then there is a ﬁmte decomposition f = > f, in C, such that

i=1
[1@)de =3 [fix)dw,
i=1 §
with 0<< &< T (i=1,2,..,m).
Proof. If, as in Theorem (5.iii), we suppose in;0 + o; = 0 for some
n; ( = 1,2, ..., n), and we let g;(z) = ¢**[p;(w)— Cim, ¢}, where Oin; ==

=m [e“f’”(p,-(x)], then m[g;]=0, (j=1,2,..,n). Thelefme, we have

[ g:@) az

1

M:

[ @ ae =3 [ a + Il E
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since m[f] = 0. Moreover, by assumption, m[p,] = 0, and, thus, m[ep;(x)—
= Cin, e =0 (j=1,2,..,n). Finally, since m[g;] =0, we may apply
the preceding Lemma (6.ii) to obtain each of the primitives. [ g;(x)yde. If
for some § =1, 2,..., n, we have inw -+ «; 50 for all », then Lemma (6.ii)
can be applied directly to the corresponding term e*p;(x). Thus, the

theorem is proved.

7. — Further remarks. If, in Lemma (6.ii), ¢(f) were a complex-valued
function, the above procedure could be carried out for both real and the
imaginary parts of ¢(f).
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It is also interesting to observe that in Lemma (6.ii), since f(t) ="+ Pip(1),
we have

[0y dt = [ o+me g ayat + i [ ¢,y ds —

2 £, r .
= j e Pp(t) At + BH(a, B)] TP f e~ P 4 1) dtde,
£ 3 0

&1 1

(7.1) J fit)ydi = j f&)de - 8 H{x, p) f e*‘“ﬁ’{f }(t 4+ 7)dt }dr.

Example 1. Let us return to the preceding example where f(z) =
¢Psing, f=1-4¢ &> 0. Using the notation of Lemma (6.ii), we have
=0, f=p, p(t) =sint, w =1. Calculating g,(1), @.(t) from (6.3) and (6.4),
we get

it —it o
() = g (Te_fﬂ -+ 18—;[_}) ) () = sin t—ipy(t) ,

and  y(t) = -— (eos t)(1— B2)~1, 5(t) = B(1 — f*)~*sin i. Therefore, we may
 take & =m[2, & =7, and we will have

Cos & .
1
1—pe 1—pe

sin ] .

[ e sin ¢t =
, £

T (O)dt + i [ Pipy(e) At = o [—
Example 2. Suppose that f(z)= e*cos® -+ ¢/ sinw, where f is a
real number.- Then, for the function e==cosx, we have using (6.3), (6.4),
that @;(t) = cost, @u(t) =0, and o(t) = (1/2)(— cost -+ sin t), n(t)=10. More-

over, p(n/4) =0, and from the preceding example, we see that in this case
f f®)dz consists of a sum of three definite integrals.

8. — Evaluations for the primitives in the class C,. Let f(z) = ¢~#7,
o, f real. In order to obtain a primitive fe“’j“”ﬁ" dt of mean value zero, we
will perform the integrations as follows:

N R & . {x-tife
o> 0, J 6(oc+15)ldt — f 0(a+zﬁ)tdt — e >>>>>>> —,
- - o _I_ 'Lﬁ
, . . 4 ) (et ife
8.1 << 0 ety — [ petibegy — ¢
©1) . I o,
. K . e . eiﬁa:
o =0, fe’ﬁ‘dt:feosﬂtdt+zfsm/ﬁ’tdt::.“ .
2if fcepy if
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Lemma (8.i). If f@)=“""p), «, f real, and if p(t) is a real-valued
L-integrable function in [0, 7], periodic of period T'=2x]w, and if m[f]=0, then
the primitive fc‘““ﬁ"rp(t) di may be chosen so that

[ e Pipa)yat] < 27 M N («, B, T)
for all 0= 2= T, where M= f](p {dt and N(«, f, T) is a constant depending
only on «, f5, T.

Proof. Case 1. In case mp] =0, we may apply Lemma (6.i1) and
formula (7.1), to get

J‘ e(u+i[)’)t(r( ) dt= a+lﬁ)!(p(t) dt +

:"‘%

(8.2) r :
4 ﬂH( ‘ o= 2 J (\—HB)(H—T) t -+t dt] dT,
0 &

where 0<§1,§ < T and H(or, B) = z( gliet ‘F” —1) 13""‘*”7’ 1|
If we let ¢t =u—v, v=wv, then the last integral in (8.2) becomes
ro Sato
(8.3) I=fH(u )| e[| & Pupu)du]do,
0 4w
and the interval (&, --wv, & -+ ) is contained in the intelfval [0, 27]. Therefore,
I|S2MT|B|e7/|7>+P 1|, and from (8.2), We see that

2MT|B ezl
[ e+ Py at| < < arebir o 22T R, , T,

167’(0:1-1;3) —1
where R(a, 8, T) = 2{61“]7' c)[zﬂseo]alr g7 +iB___ 1!}

Case 2. mp] = c,# 0. VVe may then write () = P(x) + ¢, where
m{¢] =0, and, then,

J. 6(w+iﬂ)t¢( ) fe(x }—1/3)! ( )dt + Cofg(‘t—hﬁ)t dt .

r
We have |¢,|= (1/1) {f(p(t) dt| < (M|T), and, thus,
0

T

[190]@ = [ |p—o|dt < M+ |e| T< 2] .

Also, from (8.1), we see that

Ifé(ax»yiﬁ)tdtl < IOC’{“iﬁ! §6MT/[¢z _,I_,Lm
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for all «, p, and, thus,

” e(zv—’riﬁ)f(p(t)dtg[ < H‘ <«+rﬁ)t—( dtl —L}Col fe(a-x-z'mtdtlé

2MR(e, B, T) | Melolr  MN(« B, T)
2 RN 2

?

where N(x, B, T) = 2R(«, f, T) + 2¢*7] (T'|2-+iB|). As a consequence, we
have in all cases that

i [ (B gy dt! < 2"'MN(a, f, T).

Remark 1. Suppose g(t) = @, (f) -+ ip.(f) where ¢,(t), p:(t) are real. Then,
since

2 )[é{?’(m,

ACIESUIGIF
we. have

!fdﬁ*"ﬁmp(t)dt]g} fe‘“+’ﬂ” (t) dt] + | [e=+ Pyt ) dt| < MN(, B, T) .

Remark 2. If a, f are considered as parameters and allowed to assume
only a finite set of values and o + if 3£ 0 (mod w?), then there exist constants
K, I, independent of «, f, such that |H(e, p)|=1/|¢’“"P—1] <K,
1/|ec +iB|< L. Therefore, we have ] f ¢+ Pp(t) At | < M N, independent of o, f.

Theorem (8.i). For every function f(z) = z ¢ pi(x) € C, with m[f] =0,

there are constants N(o;, T) depending only on oc,, T such that
n A T,
[ fe)de] < 3 N, T) [ pi@)|do
i=1 0

foral 0 e T,

Proof. Ag%in, as in Theorem (5.iii) and Theorem (6.i), we let g;(@) =
= ;) — c’"a‘"’”] (j=1,...,n), and apply the preceding Lemma (8.i)
to each of the funemons g:(x), 1=1,2,..,n), or to each of the functions
() if inw 4 «; 7% 0 for all n.
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