Rivista Mat. Univ, Parma 4, 173-194 (1953)

LAMBERTO CESARI (%)

Contours of a Fréchet surface. (**)

If § is any parametric continuous surface in the p-space by, p = (2,9, 2),
let [S] denote the set of points covered by S and L(S) the LEBESGUE area of S.
Let f(p), p € 8, be any real, single-valued function defined on [S] and satisfying
the relation |f(p)—f(p")|< K|p-—p’| for all p, p’e [§]. By denoting by 1(¢)
a convenient generalized length associated, for each real ¢, to the subset S,
of all points p €[S] with f(p) = ¢, I have proved the following inequality

) K L(8) ;f 1t) dt

(cf. the abstract [5, (c)] submitted for publication in 1950; a proof of 1) is
contained in my book [5, (A)]). This inequality, involving length and area,
extends a classical inequality to all continuous surfaces.  The generalized
length I(¢) is essentially the JORDAN length. Indeed, whenever I(z) is finite, 8,
is the countable sum of continuous path-curves y (besides a point-set which
is the image of a completely disconnected set), and the generalized length
Ut)=2 Aly) is the sum of the JORDAN lengths Aly). of the curves y [5, (A)].
~ In the present paper I recall the various concepts underlying inequality (1)
and I prove that the length I(t) is invariant with respect to Fréchet equivalence.

(*) Professore o. della Universitd di Bologna. Indirizzo: Via Castiglione 1, Bo-
logna (Italia).

(**) Ricevuto il 4-VIII-1953. Questa Memoria & scritta in inglese in quanto.
fa parte di un gruppo di lavori che il Cesar: ha iniziato in collaborazione con R. E.
FurierTox. Di tali lavori — che questa Rivista ha il piacere di pubblicare — il primo
& gid’ comparso: L. Cesari and R. E. FULLERTON, On regular representations of surfaces,
Rivista Mat. Univ. Parma 2, 279-288 (1951). Altro lavoro del gruppo figura in questo
stesso fascicolo della Rivista: R. E. FULLERTON, On the reclification of conlours of a
Fréchet surface, Rivista Mat. Univ. Parma 4, 207-212 (1953).
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This result will be utilized by R. E. FuLLERTON [8, (a); 8, (b)] in questions
concerning the representation problem for surfaces.

In nos. 2 and 3 T recall some points of CARATHEODORY’s theory of ends
and prime ends [4] and the recent concept of right and left wing of a prime-end
(H. D. UrsgLr and L. C. Young, [17]). In no. 4 I prove a lemma which I
shall utilize in nos. 14 and 15. In nos. 7-10 I recall the definition. of .gene-

lized length I(f) and its properties. The question of the invariance of I(t)
with respect to FRECHET-equivalence is discussed in the nos. 11-15.

I mention here that a particular elementary case of (1) was recently pointed
out by L. C. Youne [19, (a)] and by L. CEsARI [5, (a)] in questions of Cal-
culus of Variations, and that an analogous classical case was utilized by H.
Lewy [12] in a question of Functional Analysis. The inequality (1) for
LEBESGUE area corresponds to an analogous relation for HAUSDORFF measures
[6; 7; 15 19, (b)]. For further recent independent research involving families
of curves on a continuous surface and their lengths see also [2, 3, 11, 15, 16].
For the extension of the prime-end theory to the space E, see, e.g., [10].

1. — Notations.

Given a point set 4 in the real Buclidean space E, we denote by Ao, A%,
A = A+A* the set of the interior points of 4, the boundary and the closure
of A respectively. A single point p, considered as a set of only one element
is denoted by (p). A set A c H,is compact if closed and bounded, a con-
tinuum if closed, bounded, and connected. Given any two sets A4 c Bc #,,
4 open in B, we denote by §(A4), or frontier of 4 in B, the set F(d)=
= (4— A)B = (A*— AA*)B, thus F(4) =4 — A = A* — AA* if Bis closed.
We denote by |p—g¢q| the distance between any two points v, qel,, by
{4, B} = Inf|p—gq| for all p €4, g€ B, the distance between two sets A
and B, and by diam A= Sup|p— ¢| for all p, ¢ € A the diameter of a set A.
It 4,, n=1,2,., is any sequence of sets 4,e F,, we denote by A'=
= lim inf 4, the set of all points p € E, in each neighborhood of which there
are points of all but a finite number of sets A,, and by A"= lim sup 4, the
set of all points p € B, in each neighborhood of which there are points of
infinitely many 4,. Thus, A'c A" and A’, A” are both closed. If all sets
4, are continua and A’z 0, then 4” is also a continuum (ZoRETTI’s theorem,
[9, p. 38], [18, I, 9.1]). By lim 4,, lim 4, we denote as usual the sets
l=7> (4,4,4,...), L=IT(A4, + A., + ...) respectively. If I =1L, then [ =
=L =—1im A4,.
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o

2. -~ On the boundary of bounded simply connected open sets (Cara-
théodory’s theory).

Let o« be any open bounded simply connected set of the w-plane B,

i ()P hens o i ar contintun- - An-are-bris-said to b an-end-cut ot E
if (1), bo*= (w), b C o-(w), where w is a single point of a*. An arc b is said
to be a cross-cut of o if ba*= (w,)+(w.), b Ca-(w;)+(w,). A point w, € a*
is said to be accessible from « if there exists an end-cut b such that bo= (o)
The set of the points of «* accessible from o form an uncountable collection
everywhere dense in o* [14, p. 162].

Two end-cuts b, b’ of = arve said to define the same end 1 of eif (1) b and
b’ have the same end-point w,eo®; (2) either bb’(U—~wn)¢0 for any neighbor-
hood U of w,, or, there are two subares b, of b and bi of b', and a simple arc ¢
such that blbi: (w,), eca, cb = (w), cb; = (w'), and the open JORDAN
region J whose boundary is b1+0+b; is contained in «. If (1) is not satisfied,
or (1) is but (2) is not, then b, &' are said to define different ends of «. We
shall say also that 7 is an end of o* in «. Thus each accessible point w € a*
is a point w, velative to at least one end #, but it may happen that for more
than one end, namely a finite or countable collection of ends 1, we have
w=w, [4, 9]

Let {n},, or {n}, denote the family of all (diffevent) ends 5 of o. If Nis
(1 =1, 2, 3,4), are four different ends and b,y (1=1,2, 3, 4), any four end-
cuts defining the ends #;, then we can suppose that the ares b; have no
point in common besides those of the points w,, which may coincide. Let
us connect the end points of b, and b, which are in « with a single
arc ¢ Co having no point in common with the aves b;,, (i=1,2,3,4),
besides the end points of b, and b, in «. Then b,--¢-Lb, is a cross-cut, sepa-
rates o into two parts [14, p. 118], and b, and b, may be in different parts or
in the same part. This property does not depend on the particular arcs by e
we have considered, but only on the ends 7:, (E=1,2,3,4). Accor-
dingly we shall say that 1, 75, separate u;, 5, in {} (and then 7, 5, separate
My N2 in {n}) [9]. Therefore, the collection {n} can be cyclically ordered and
we shall denote by 2, 2, the two fundamental orderings of {n},. If we de-
note by oo any one of the ends 7, then, given any two distinct ends 1y N2 € {0}
[71, 72 5% 0], by the open interval (i,,7.) is meant the family of all ends 7
such that 7, co separate 7, 7, in {#}. Thus by the closed interval [7, 7]
is meant (171, 72) (1) -+ (7).

A section w = (4, B) in {5}, or a prime end » of o is defined by a se-
quence [(n,,7,), n==1,2,...] of intervals, [%u1, 7nri] C (u, 7a), Such that no
end 7, or at most one, is contained in all intervals (7., #,). Bach end 5 € {n},
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defines a prime end w [say o = 7], but there may be prime ends «w which
do not correspond to any end 5. The family {w} = {w}, of all’ prime ends
can be cyclically ordered in the same two orderings 0!, Q, above [4, 9].

The concept of equivalence of two sequences [Ous )y m =1, 2 2,...] de-
fining the same prime end w can be established as for real numbers.

Let-w-be-any-prime-end-and-[{7;; ,,,'1, 7 ="1r2"Ta sequence defining ¢,
Let B be the set of all points w which have the following plopelty ther
is a sequence (1, k=1,2,..) of ends such that €L, 77711 J kE=1,2,.
w, —>W, Ny oo a8 k—oco. The set F, does not depend upon the pa1t1-
cular sequence (s, m,) defining w and is a subcontinuum of a* [4, 9]

If w is a prime end corresponding to an end #, then w, € B, , but B, may
contain other points (accessible and not accessible from a) D1ﬂ"erent prime
ends w may have sets H_ not disjoint, even coincident. The family {E_} of
all sets F,_ is a covering of «*.

Note I. Though some authors denote the sets B, by prime ends, we
prefer to keep the expressive CARATHEODORY'S term pnme end for denoting
a section o in the collection of the ends. Indeed while w determines i,
the set £, does not determine necessarily the section o.

Let w be any prime end, let [n",vyn n=1,2,.7] be any sequence
defining o and Q" any one of the mdenngs Q, Q.. Thus we can cnumemte
the ends 7,, 7, is such a way that 771<77,,<773 L e gy <L < 7,. There-
fore each end 7 € (77m: 7.,) belongs to one and only one interval [#,,7, .], or
(% ,1> nds 2> m, with exception of each 7,, 7., n > m, which belongs to two
adjacent intervals and at most one end 7, which belongs to all intervals s 1)
and to no interval [77”,77” s [77%1,77,1], n = m.

Let , B! be the sets of all points w which have the following property:
there is a sequence (e, k=1,2,.) of ends such that s, 5[7771,’ 77"”], or
N e[nnkﬂ,nnl], w,l —>w, m =00 as k —oo [5,(b)]. Thus both E,, I’ are
subcontinua of «* and B, +H, = E,, B,E. #0. E. E' are said 10 be the
left and right wings of E.

Note IT. The expressions left and right wings have been introduced by
H. D. UrsgLL and L. C. Youne [17] using other definitions, whose equivalence
with the definitions above is proved in [17, 11.2]. We have preferred the
definitions above because they are better suited for our purpose and con-
nected with the proof (L. Cmsarr [5, (b)]) of the statement below [see
also 5, (A)].
(i) Given any two points w,, w, € E; there is a sequence (y,, k = 1, 2,...)
of ends such that (1) W, Wi, W, —w, a8k —>oco; (2) e[nn,,n,,k 1],
M+l <y, - k=1,2,.... An annlogous statement holds for K, with
€L, .t m ], [5, (A), ()]
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We recall here from [4] and [9] that for every prime end o there are
sequences [I,] of cross-cuts with the following properties: (1) I, joins the
- . ) y . . ’
points w, , w, relative to ends 7,, 7, such that the sequence [(1,,7,),
n==1,2,.] is a decreasing sequence of open intervals defining w; (2) I,
divides « into two regions 7, 7. [l, separates 7, from the end 1) = 0o

in_al; (3) diam b, <nl llae=0, m=n, by CTuy MmN =1,2,... . A se:

quence [[,] satisfying (1), (2), (3) is called a fundamental sequence of cross-cuts
relative to o. ,

Hach region 7,, or any open subset of « containing a set », can be thought
of as a «neighborhood » of w in « (or of the continuum £ ).

Let us observe that if a point w is the limit of a sequence [w,] of points
w, €l,, n=1,2,., w,—>w as n —co, then, since diaml, << n1, w is also
‘the limit of any other sequence [w,] of points w,el,, n=1,2,.., and
w=1iminfl, =lim sup !,. We say briefly that w is the limit of a funda-
mental sequence [[,] of eross-cuts relative to w.

According to CARATHEODORY [4], by principal part E® of X is meant
the set of all points «w which are limit of some fundamental sequence [1,] of
cross-cutbs relative to w.

(ii) BV is a subcontinuum of E, and BE® c BB c E,.
The first part of (ii) is proved in [4], the second part is a consequence

of the definitions above.

(iii) Given any open, bounded, simply connected set « and the closed
unit circle I” of the w-plane E,, there is a mapping = such that: (1) = is bicon-
tinuous and one-one between o and I9; (2) v is bicontinuous and one-one
between the points wel™ and the prime-ends w € {w} (or the sets ¥ );
(3) T is continuous in « and I, provided the neighborhoods of the prime ends w
[or of the sets H ] are chosen as it has been explained above; (4) if (T, )
is any given continuous mapping from « into the p-space E; and T is constant
on each set X, then the mapping (¢, I') defined by ¢ = Tv is single-valued
and continuous in I

(1), (2), (3) are proved in [4] and in [9]; (4) is a consequence of (3). See
also [5, (A)] and [17, 11.3].

As above let 79 == oo denote any one of the ends n and ' one of the
orderings of {n},, {w},. Then, given any two distinet prime ends w,, w, (and
distinet from 7 = oo), the set of all prime ends w such that co<{w; < w <
< w, < oo {in '), is the open interval (w,, w,), while (w,, w.)+ ()4 (w.) is
the closed interval [w,, w,]. We shall denote by I(w,, w,) the set EZ)x +
-+ zEw +E;ﬂ,where > is extended over all w € (w;, w,). It easily proved
that I(w,, w,) is a subcontinuum of o* (for a proof see, e. g., [5, (d)]). In
particular, if w, = »,, w, =7, are prime ends corresponding to ends #,, n.,
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I{w;, w;) shall be denoted by I(y,,n.). Because of (i) the set Ez,l+z Ew-}—E’;»
is the closure of the set Y F . If we denote by I*(w,,w,) the set
EU),+Z E, +E, , then also I*w,, w,) is a continnum and I cI* Whenever
w = my, = n we set I(w,0) = BY, I*w, n) = B,.

3. — f-systems relative to a prime end .

Let « be any open, bounded, simply connected set, and {}, {»} be the
ordered collections of all ends and prime ends.

For each w € {w} let [I,] be a fundamental sequence (no. 2) of cross-cuts I,
relative to w and let », be the one of the two regions in which 1, separates o
which contains all I, with p > n. For each n let g, =r,—T,:,. Then 7,, On
are open, bounded, simply connected sets and 7, = l,+I(5.,7.), oF
o L1, 77n+1)+1(77;z+1, 77;)-

For any » let w, be a point of «l, and let b, be a simple are, b, C 0+ (0,) +
+{(wayy). Such an are exists because w, €l,, W, €l,4,, where I,, 1, arve
simple ares and therefore both w,, w,., are accessible from 0.. Let b be the
set b = b, +b,+b;4.... The set b is an «indefinite arc », i.e., the homeomorphic
image of a half-closed, half-open interval, 0 << < 1. Indeed we have only
to represent each b, on the closed interval (nt+l1)y'<u<n'y, n=1,2,...
Any fundamental sequence [1,] relative to w and any corresponding sequence
[b,] of arcs as above are said to constitute an f-system [1,, b,] relative to .

= Z7Z+

(i) For any f-system [l,, b,] relative to « the set h=1lim supb, is a
continuum and E® chc E,. There exist particular f-systems for which
E = h and other ones for which B, =1 [4, 9].

4. — Sequences of continua.

Let us use the same notations as in no. 3. Let [, k= 1,2,...] be any
sequence of continua satisfying the following condition: (Q) B: C &, Bifws, 50,
k=1,2,., lim sup B, ca* Set f=p,+p+.... Obviously all sequences
(b, m=1,2,.7 of no. 8 satisfy condition (Q).

Let o €{w} and [l,] be any fundamental sequence of eross-cuts relative
to w. We shall say that a prime end w is reached by [f,] if 1,840 for all »
large enough, i.e., there is an # such that each I, with #>% has a non-empty
intersection with some ;. Obviously the ‘propert‘y of a prime end w to be
reached by [f:] is independent of the particular fundamental sequence [Z,].

(i) Given a sequence [f;, k =1,2,..] of continua f, satisfying (Q),
then the collection I of all prime-ends w reached by [B.] is either a single
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prime end ®, or a closed interval [w’, »"]. If H=limsup f;, then H is a
continuum and I{e', w’) c H c I*(w', o).

Proof. ZLet us prove first that the collection I of the prime ends o
reached by [f5;] is not empty. Though not necessary, it is easier to transform
a onto the closed unit cirele I" as in no. 2, (iii) by a continuous mapping 7.
Then t(8:) =B, (k=1, 2,...), are continua in I and lim sup B. c I™*. Each

prime end w and relative set KB is mapped by v into a point w e I and
any f-system [I,,D,] relative to o is mapped by 7 into an f-system [I., b.]
relative to w. In addition b'= (b;+b;+...)+(w) is a simple are in I' with
b = (w).

If (p, 0) are polar coordinates and 0,, are the real numbers 0,; = 2-*(2mni),
(t=0,1,..., 2%, let o,; be the sets o,, =[1—n"'<p<1, 0,, <0, ;14]-
For eaeh n =1, 2,..., we can successively determine an index % = i(n), such
that o¢,,6,540 for mﬁnitely many integers £k, and 0,;D Ouy,e, &= i(n),
i'=14(n-+1). Thus the aresl, = [0,;,0u :01)y, Lns:1 CI,, determine a point
w, € I™. We can replace the ares I, by somewhat larger ares I, = (0,, 0,)
such that H . = (W), In+1 C (I,',)“ and also such that both 0, 0, are images
under v of ends 7, 7, € {} for every n. Then [(5,, 7)), n=1,2..] is a
sequence defining a prime end o and o is certainly reached as it is imme-
diately verified. Thus, the collection I is not empty.

‘We have now to prove that, if w;, w, are any two prime ends both reached
by [f.], then all prime ends w of one (at least) of the two complementary
intervals (w;, w.), (., w,) of {w} (in the given ordering £’) are reached by [5;].
Obviously, if all prime ends w € {w} are reached the statement is proved. In
the contrary case there is at least one prime end, say w; € (., w;), Wwhich
is not reached.

Let w; be any prime-end o, € (w,, w,). Let [, b;,] be any f-system rela-
tive to w,;, i =1,2,3,4. We can also define a continuum B = b'-+b,+b,,
by = Zbim_{‘Ews’ by= Y b,,+E,, where b’ is a simple arc joining the first
end-points of b;; and b, , and "not having other points in common with
by and by,. The continuum B separates the prime ends o, and w,
in « (i.e., the systems [l.,bi.], [Lns b2x] from both of which finitely
many ares Iy, bm,, i= 1,2, may be suppressed). Since w,, w, are both
reached, we have 1,650, 1,0 for all » (here too finitely many ares I, b
‘may be suppressed). Hence lonfi, 70y Linfi; 70, for each n and some k., k.,
and we have k,, k, — oo as n — oo, since for each k we have {M,, «*} >0,
’VIL—/SI—}— .+p.. As a consequence, if My, M denote the min and max of
k,, k., and S, denotes the set S,= > B where the sum ranges over all
M < <My, then §,B =0,

Let w, be any point of S,B,thusw, e/)’,,,n, My < My <<y My—>00 88 A—>00,
and each point w of accumulation of the sequence [w,] belongs to H. Since
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each set M, = b'4-by ... +-byn+bay +... by, i8 interior to o and {M’,, «} > 0,
each point w, must belong to an arc bsm, OU by, with m = m{n) —» co as
n—oo. Let m be large enough so that all ares I, - e T=1,2,.., are se-
parated by I, from f,, j= 3,4. Suppose, if possible, that the first case

Wy, € by, M = m(n), happens for infinitely many n. Then for the same inte-

gers.n (witILfm(')z‘)»«>ﬂ9“ﬁ»)w4vewh:weww,fe»ba»,‘;;,—»-»»ba;;;ﬁ-#0~,~~&ndwrﬁnallyﬂ*'-lg,;ﬁ-;*&O""for“a:H”*“""“““

m < n < mn)—1. In conclusion L,f+0 for all n >, a contradiction, be-
cause o, is not reached. Therefore, for all = large enough, w, €b,,,
m = m(n), by, %0, and also L, #0 for all m<n<m(n)-« 1. In con-
clusion ; ,f 40 for all n >m and w, is reached. In addition each point of
accumulation w of the sequence [w,] belongs to E, . This proves that all
w € (w,, w,) are reached. Thus it is also proved that I is either an open, or
a closed interval, or a single element.

Let us prove that H is a continuum. Let w, be any point of H and [20,]
any sequence such that w, —wy, W, € Py, M = m(n) — co as # — co. We
can also suppose m(n) <m(n+1). Let H,= 3 B, where 3 ranges over all
m(n) <t < m(n-+1). Then w, €liminf H,, H= lim sup H, = lim sup .. As a
consequence, by ZoRETTI's theorem, H is a continuum.

Let us observe that, if w is reached, then each point w € EY belongs to H,
i.e. B c H. Indeed, by no. 2, there is at least one fundamental sequence
[1.] such that 1, is limit point of [1,] and, since diam I, < n- L L,fr540, then
w elim sup B, i.e. we H. As a consequence, for each end n € 1, i.e. reached
by [5:], we have w, € H. This last result implies that, if w is reached and w
is interior to the interval I, then E,c H. Indeed each point w € E, is a point
of accumulation of points w, relative to ends # of a neighborhood of w [in {w}]
and therefore w, € # and w eH. Amlogously if ww"] is the first [second]
end-element of I then L’ CH, E c H. Thus I(ow', ") c H.

Finally I is a closed interval (or a single element). Indeed, if [1,] is a
fundamental sequence relative to w’[w"], then there is an % such that rof=10.
Hence, for all » > =, 1, separates f, from all ends 7 € (M, 17"), and, since all ends
771,, p > n[n,, p>n], are reached by [f.], then 1,6s£0. Thus 1,520 for all
n >, ie. w[w’] is reached. ‘

Let us observe that, if a point w € H, then, by repeating the reasoning
used at the beginning, we can prove that w belongs to a set , relative to
a prime end w reached by [B,]. Thus I(w’, ") c H C I*(w'y "). Thereby (i)
is proved.

- — A first extension to sets « open in a simple Jordan region.

Let J be a closed simple JORDAN region of the w-plane By w = (u, ),
and let o be any connected set open in J, ccdJ. Then «, a* C J, ot CJ*,
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and the set F= §F(x) = o™ — a*e = & — o (boundary of o« in J) is a closed,
bounded set; hence the components of ¥ are continua. .

Let v be a component of 7. We will suppose in this section that y is the
only component of . Thus the definitions of end-cut of « relative to a point
1 C v, of cross-cut of « relative to two points w,, w, €y, of point w €y acces-

sible fromi e, ol “end 7 of Y in e ot prime end & of Ty i g, Témain unchanged
as in no. 2; the statements that there are points
w €y accessible from o and that they are every-
where dense in y remain unmodified, as well as
the property of separation of four ends # of y in «;
only it may happen here that there is a cross-cut,
¢ = bl—%—co—i—bi in «, relative to two points w,,
w, €y dividing « in two parts one of which con-
tains no end-cut b relative to points w €y. In this
case we can suppose by, b, to be subares of J* defin-
ing two ends#,, 7, of y in o and the ends 5 and
prime ends w of y in « can be linearly ordered.(as the points of a closed
interval, namely the interval [#,,7.]). Let us denote by Q,, £, the corre-
sponding two linear orderings of the collections {7}, ,, {w},, of the ends 5
and prime ends w of y in o. [In the first and third illustration {w},, can be
cyclically ordered (orderings .Qi, .Q;); in the second illustration {w} . can be
linearly ordered (orderings 2,, Q,). The case where y is a single point (fourth
illustration) is exceptional and trivial, because thé collections Mynr 10}, 0
contain each only one single element.]

The extension of all considerations of nos. 2, 8, 4 to each component y
of the set §(«) does not offer difficulties provided F(x) has only finitely many
components and «-is connected and open in a closed simple JORDAN region J,
oxcCd.

6. — The general case.

All the considerations above hold even in cases where F has more than
one component y, more exactly they hold, e.g., for each component y of F
such that {y, F—y} = 0> 0 (if any): in particular for each component y of
F if P has only a finite collection of components.

Let us now suppose « to be any bounded connected set o C J, open in a
simple, closed JORDAN region J. Then the collection {y}, of all distinet com-
ponents y of F may contain infinitely many elements, even uncountably many.
Necessarily there are points w € F which are accessible from o« and these
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points are everywhere dense in F, but there may be some components y whose
points are all inaccessible from « [14, p. 162, second exercise].

Let us recall here the following properties of separation of the components
y of F, where by [ is meant either a sinple closed curve, or a sinple arc whose
end points are in J* [9]. '

(i) Given any two distinct y, y'e {y}, (if {y}, contains more than one
element), then there exists I cC « separating y and ' in J, and, given & > 0,
we can also suppose 6<Ce, where 8 = max {(w), »} for all wel [or 6 =
= max {(w), y'} for all wel].

(ii) Given any y € {y}, there exists a sequence [,, n = 1,2,...', such
that: (1) 6, — 0 where &, = max {(0), v}, wel,; (2) L., separates I, and v
in J; (3) for any y'e {y},, &' #y (if any), there is an % such that 1, separates
y and 9" in J for all n > 7.

(iii) There is a sequence [I],, n=1,2,., of finite systems [I], of
disjoint ! such that: (1) [1], C[lat1; (2) given any y €{y}, there is a sequence
by m=1,2,.., 1, e[l],, satistying (ii).

Let y be any component of F, i.e. y €{y},- We shall define a new set
A = A(«, ) open in J, as follows. If v is the only component of 7, let A=q¢.
Otherwise, for each y’ € {y}., ¥' 5 9, let us denote by f'= f'(y', v) the set of
all points w e J which arve separated by »' from y in J. The set f’ may be
empty and, if not, is certainly open in J and not necessarily connected. Let

A= Alo,y) =a + 3 (y'+ B,

where the sum is extended over all elements v €{y}., ¥’# y. The following
statement is essentially known. '

(iv) The set A= d(e,y)cJ is open in J, is connected and 4A4%* c o,
FAd)=Ad— A =A%~ Ad4% =y [9].

Now the set 4 is open in J and its boundary §(4) in J has only one com-
ponent, the component y. Therefore, we can define, as in no. 4, the collections
{n},.4» {0}, of the ends 5 and prime ends o of y in the set 4 [not in o].
In such a way, for each component y of the set F= z— «, we have defined
a complete collection of ends % and prime ends w, which we may denote for
the sake of brevity, « with respect to « » but which are in the larger set
4= A(e, y). And this is done for each y, even for those whose points are all
inaccessible from «. We recall here the further statement:

(v} If J is any closed JORDAN region, o C J a connected set open in a,
F the boundary F=5—a of « in J, y € {y}, any component of F, w, any
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point of y accessible from the set 4 = A(«, y)y b C A--(wy), by = (w,), any
arc defining an end » of y in 4, 5 €{n}, . Then: (1) bx is a non-empty set,
open in b and demse in w.: (2) if I, (n=1, 2,..), is any sequence
relative to y as in (ii), then there exists an n, such that 1,bs40 for all n > Mo}
(3) For any sequence [w,] of points w, €l,b, % > n,, we have w, — W, as
n~ oo [8, (A)].

7. — Contours of a path surface.

Let (1, Q): p = T(w), wed, be any continuous mapping (surface) from
the simple closed JORDAN region J of the w-plane H,, w = {(u, ), into the
p-space Hy, p = (z,y,2). Let f(p), p€E;, be any real single-valued con-
tinuous function in E,. For any real t, —oco<<t< +oo, let C = C(t),
Dt = D*¢), D~ = D=(t), be the sets of all points w €dJ, where 17w =t,
or >1, or <%, respectively. Since fT(w)], wed, is continuous in J,
C is closed, and D*, D- are open in J (or empty). In any case we have
C>F(D*) = Dt*— D+, 0> F(D-)=D-—D-. TIf M(t) is the subset of R,
where f(p) ==, then we have also T(C)c 3.

Note I. In elementary cases C is simply the contour (a single line, or
finite system of lines) corresponding to the value ¢ (level). In the general
conditions above it may happen that the two sets F(D+), ¥(D-) do not coincide
and that ¢ has interior points, besides the customary complications of the
boundaries of open sets. Thus 7(C) is a general closed set of H,. As we
approach € from D-, or from D+, we can say that we approach the «lower
border, or the upper border of the contour C» but we will not attempt to
introduce a terminology which is only suggested as an help to the reader.

Note II. It is not restrictive to suppose that f is defined only on the
compact set [S], even in the hypothesis, we shall consider later (no. 10) that f
satisfies a LipscHITz condition |f(p)— f(p')|< K|p—p'|. Indeed it is pos-
sible to extend the domain of definition of f to the whole spaée B, in such a
way that continuity holds in IB;, or the LrpscHITZ condition above holds in B,
[E. J. McSHANE, 13].

8. — The generalized length.
In the conditions of no. 7 let {o¢} = {cx}t be the collection of all com-

ponents o of .D~; hence each o is a bounded connected subset of J, open in oJ.
For each o € {«}, let {y}, be the collection of all components y of the boundary
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F(e) = 2z—a of « in J; hence each y is a subcontinuum of J. For each
%€ {y} and p €{y},, let A=A4(x, y) be the set defined at no. 6, and let {77}%“
{w},,,‘d be the collection of all ends, and prime-ends of y in 4. We shall suppose
that an ordering Q has been chosen for the collections I 0}, 0 [2=0,,0,,
or =0, 2,1
Let [l =101 725000 9] _be_any. finite.. subfamil.y,mofmendswr»hnme-{\n};;;iworde1’ec1~»~~»~~~~~~~~ -

as they are in {n}, ,, let us consider the corresponding set [w,]=[w,, wy..., w,],
w; = w,, ey, (i=1,2,.,n), of points of y, each w, being accessible from 4
[not necessarily from o], and let § be the sum 8 = 3| T(w;) — T(1:,) |, where
> is extended over all the values 4 =1, 2,..., n — 1, if Q is one of the orderings
Dy, 2y, and i=1,2,..., n, Wy =1w,, if Q is one of the (cyclic) orderings
0., Q.. Tinally let 1= Sup S, where Sup is taken for all finite ordered
subfamilies [17] c {n}, ,. We shall denote 1 also by the more complete no-
tation Ay, «). We have 0 <1< +oo. The number

(2) W =1t 1,9)= 3 2 My, a)

a€la}; vElV}x
shall be denoted by the generalized length of the image of F(D~) under T.
Analogous definition holds for ¥ (D+). The number I(¢) could be denoted as
the (generalized) length of the lower (upper) border of the image of the contour
T(C) of level t.

Let us observe explicitely that in (2) the sum with respect to y may be
uncountable. It can also be observed that if a component y € {y}, is a single
point, then the collection {7}, , contains a single element and, according to
the definition above, we have A = 0. Thus all components v which are single
points have no influence on the value of I(f). The following statements are
. proved in [5, (A)]. ' -

(i) Aly, ) = 0 if and only if y is a continuum of constancy for 7 in J.
In particular, 1 = 0 for all y which are single points.

(i) U(f) << ++oo implies that all numbers A(y, «) are finite and that at
most for a countable subfamily of sets y we have A(y, «) > 0.

(i) Ay, ®) << +oo implies that, for each prime-end w & {w} T is
constant on the set I .

Vid?

9. — Reduction of the generalized length to ordinary length.

(i) If for some v, « we have Aly, ‘oc)< —+oo, then T is constant on each
continuum £, o €{w},, and, if {0}, , is thought to be ordered in one of
the orderings (2, then the equation ¢: p =1T(E), we {w}yv 43 18 a continuous
curve (closed, or open) and A(y, «) is the JorDAN length of ¢ [5, (A
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By using mappings defined as in no. 2, (ili) we can have representations
of ¢ as a continuous mapping. from a simple arc (closed, or open).

As a consequence of no. 8, (ii), (iii), and (i) above, we have that, whenever -
I(t) < oo, then T(C) is the countable sum of continuocus closed curves ¢
(open or closed) and of a set h (may be uncountable) of single points, and that
I(t).is the sum of the JORDAN lengths of the curves ¢. Here the seb h ig the

image under 7 of a set whose components are disjoint continua of constancy
for T in J.

10. — Properties of (7).

(i) If (7,J) is a.continuous mapping from a closed simple JORDAN
region J C E, into the p-space Es, if f(p), fu(p), (n =1,2,...3 f» > f), are real
single-valued continuous functions in E,, and f, = f uniformly in B, if I(2),
1.(t) are the corresponding functions defined in no. 8, then I(f) <lim [.(t) as
N = 00, — oo <t < +oo [, (A)].

(i) If (T, J) is defined as above, if f(p) is any real single-valued conti-
nuous funetion in H;, then I(f) <lim I(z) as 7 —t—0 [5, (A)].

(i) It (7, J), (T, J)y, n=1,2,.., are continuous mappings such
that T, T uniformly in J, then I(f) <lim lim l,(z) [5, (A)].

1>t =0 n—>c0
(iv) Is (T, J) is defined as above, then the function I(¢), [0 <) < +oo,
— co<< t < -4oo] is measurable [5, (A)].

(v) If (T,J): p= T(w), wed, is any continuous mapping as in (i)
and L(J, T) denotes the LEBESGUE area of (T,J), if f(p), p € Bs, is any real
single-valued continuous function in E, such that |f(p)—f(p')|<K|p—p'|
for all p, p' € B,, (K > 0 a constant), then ‘

(3) o KL({J, T) >+f°ut) de .

11. - Fréchet equivalence.

Let (T,J): p = Tw), wed, (I',J'): p= T'(w), wed', be two FRECHET
equivalent mappings from simple closed JORDAN regions J, J' of the w-plane
into the p-space B,, p = (4, ¥, 2). Then, for every integer n, there is a homeo-
morphism H,: w'= H,(w), w= H'(w'), wed, w' eJ’, between J and J'
such that |7T(w)— T [H.(w)]|<nw* for all wed, (n=1,2,.). It is usual



186 L. CESARI

to say that 7' and 7" are representations of the same FRECHET surface 8.
A first well known implication is that (8] = T(J)=T"J")CH,.

Let @, G’ be the collections of all maximal continua gcd, ¢gcd’ on
which T, or 7', is constant. Both @, ¢’ are upper-semicontinuous decompo-
sitions of J, J' in disjoint continua ¢, ¢’ [9, p. 38; 18, VII]; that is, if [g,] is

a_.sequence.of .continua..¢, €G- and-limintq w7 Oy-then—limsup-¢,; =Kcy;

g € G, where k, by ZorETTr’s theorem (no. 1) is a continuum (analogously
for @').

The FricHET equivalence between 7' and 7" implies that there exists,
between the collections @ and ' a one-one correspondence T: ¢'= T(g),
g=<CT7Ug'), g€ G, g'e ¢, with the following properties: (1) if ¢’= <T(g) then
T(g) = 1"(¢9'); (2) < is semicontinuous; i.e., if [g,] is a sequence of continua
#x € G such that lim inf g,5= 0, and lim inf g, c lim SUD ¢ C Go, o € G, §,=CT(g,),
9, € G, g,= T(g), g, €&, then limsup ¢ c g, the same statement holds by
exchanging ¢ and @; (3) if C = >g C= 29, ¢= <Tlg), are two sums
of corresponding continua, ¢ € @, ¢'e @, then ¢’ is closed, open, open in J,
connected, a continuum if and only if C is closed, open, open in J, connected,
a continuum, respectively.

12. —~ Let T, T' be as in no. 11, let f(p) be any continuous function in %,
and ¢; = min f{T(w)] = min f{7"(w')] for all we J, w'ed', pe[S]. Analo-
gously for ¢, = max f[T(w)], wed. Obviously (1) =0 for all t<t, and
t>1,.

For any ¢ <t<t, we denote by CcJ, C'c J’, the closed sets of the
points w, v’ such that f[7(w)]="1, fIT"(w")] =t. Since fTw)], as well
as T'(w), is constant on each set ge@, (= > ¢ is the sum of a col-
lection of continua g € @. The same holds for ¢’ and, by no. 11, (1), we
have C = 3¢, O'== 3¢, ¢= <Tlg). Analogous statement holds for all com-
ponents « of J — C, o of J'— (', and, as before, x = 3 g, o'= >q, 9= <Tlg).
Thus, by no. 11, (3), for each connected set o open in J the corresponding
set o’ is connected and open in J' and viceversa. Thus the mapping T implies
& one-one correspondence between the collections {o}, {a'} of the components
of J— C and J'— (. .

If xe{a}, a’e{x’} are corresponding components of J— ¢ and J'— ¢,
let us consider the closed sets F=g—«, F'=a'—«, FcC ¢, F'c(’, and
the collections {y},, {y'},., of all components (continua) of the closed, bounded
sets I, F'.

Let y € {y}, and I' be the set I'= Y g where the sum ranges over all
g € G such that gys£0. We have I'>y and we have to prove first that I
is closed. If w, is any point of accumulation of I" then there is a sequence
of points w, — w,, w,eg,, gn I,y gsv+#0. Let v, be any point v, € g,y;
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hence v, €y and there is at least a point of accumulation v, €y. Since
10, =1, we have liminfg,50, and, therefore, limsupg.,Ccyg, g @, and
ve € ¢; hence gy+0, g c I, w, €. This proves that I is closed. Since I is
evidently connected, /" is a continuum.

Note that I'x = 0. Indeed, if I'z=£ 0, and w is any point w € I'x, then
weyg, geG and gaz%: 0, gl's=0; hence gce, gcl, gcal. Bubt gy=0,

therefore ya 7= 0, what is impossible. Thus we have proved [« = 0.

It y;, v2 € {y},, and I, I, are the corresponding continua I Dy, Ihoy, .
we can prove that [/, = 0. TFirst, by no. 6, (i), there is a simple polygonal
line I c« separating », and 9, in J. Now lce, [jaz=0, [« =0, hence
Uy =0, 1['=0 and so ! separates [, I, in J. This proves I\I, = 0.

Therefore we have a collection {I'}, of disjoint continua I" each containing
one and only one continuum y € {y},. Analogously we have a collection {I"'},
of disjoint continua I each containing one and only one continuum ' {y'},..

If yefy}, and I'>y is the corresponding continuum I["e{I’}  then
I'=73g and we have a continuum "= 3 ¢’ which is the sum of all con-
tinua g'e 0, ¢'= <Tg), gc I’ (no. 11, (3)). We shall prove now that each
continuum ¢'c T contains at least one point of a y'e{y'},.. Let g'cIv,
g =T Ug'), g cI'; therefore gy=40 and we can take a point w €gy. Then
there is a sequence of points w, o, w, > w. If w,eg,., ¢, €@, then g, Ca
and, because of w, — w, lim inf g,50. Hence, by [11, (3)], if g, = <T(g.), then
limsup g, C g, go = 0, limsup g, c¢’, and g, C o, g'@’= 0. Therefore ¢’ con-
tains at least a point of &'— &', that is at least one point of a y’e {y'},., hence
I'y's£0. But two different 9', y"€ {y'},. are separated by a polygonal line
a'co’ in J' and I"«'= 0, hence we can have 1"y’ 0 for only one y' € {y'},.
Since for each g'c I, we have g'y'£ 0 we obtain I"cI”, where I" is the
continuum relative to 9’. Now if I' is the set corresponding to I in J, we
have I'c T" and, by repeating the above argument, also I'c I"; hence I" = [’
and "= I". This proves that between the collections {I'}; {I"} there is a
one-one correspondence, and therefore the same one-one correspondence is
obtained between the collections {y},, {¥'}...

13. — Some examples.

Under the conditions of nos. 11 and 12, let o€ {a}, «'e {«'} be corres-
ponding components of J— ¢ and J'— ¢’ and y € {y},, v'€ {y'},. corresponding
components of F(«), F(a'). Let A=A(e, y), A'=4"(«, ') and b '
be the collections of all ends 7 of v in A and the ends n of y' in A'. Let
{w}, .y {»'}, , De the collections of the prime-ends of y in 4 and of ' in A"

13 — Rivista di Matematica.
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Not necessarily is there a one-one correspondence between the collections {in}
and {5’} or {w} and {w'}. Let us consider the following examples.

I. Let (r,0), (o, w) be polar coordinates of poles (0,0) in the =y and
wo-planes; let T: r =g, 0 =@, 2 =1—p; 11 2=1, r=01f 0<Cp <21
g=2-2p, r=2p—1, 0 =w, if 271 < p <1, be the given continuous map-

pings from - the 2-cell J="J =T < 1] into the p=space ", p="(x; ¥, z); lieiice
T~ T'. On the other hand, if f(p) == and ¢ = 1, then C is the only point
(0, 0), " is the dise[p < 2~ Jand o = [0 < p < 1],y = [o=0],a'=[2"1<< p < 1],
y'=[p=2"], A= «a, A'=0o'. Thus {5}, , has a single element, while {5’} .
has infinitely many elements (corresponding to the points 2 & p'). ’

I, Let J=[p <1}, I'=[p <2, w, ={p = 27440, w=mnx], n=
=1,2y., Io=1 4+ >w, Then Iy is a closed set, sum of I” and of the
points w,. Let d(w) = {(w), [}, and T: p = T(w), weJ, be the continuous
mapping defined by =0, y =0, 2 =1-—4d(w). If fip)=2 and ¢t =1 we
have € = Iy; hence there is only one «=J-—1,, and we have ¥ ()=
=g—o=I%+ 3w, Thus y=I"is a component of & («) and all points
w €y arve accessible from o Let J'=J, ["=I", W, =[¢ = ¢, = 274 47,
n—Datnr<o<@+l)z—n1t], n=1,2,., and [, = I"+ > W, We
can define, in an elementary way, a continuous mapping 7: w = t(w’) from
J'— I onto J— I, which maps W, onto w,. We can also suppose that 7
is one-one between o= J — I, and o'= J'— I",, and maps each J-neigh-
borhood of I onto the d-neighborhood of I and viceversa. For insta.nce, let
7: p=10"y ©=1(0")pu(@")+[1—1(0")wa(w’) for all o, <o'< o, ,, where
0 = On— 27H0n— 0nt1)y, (R=1,2,...), g; =1, where 7,(p’) is the funection which
islinear in both intervals (o,, ga), (0, 0s_,) With .(g,) = 1, L(0.) = 0, L.(0,_,)=1,
and where g.(0') = o', — 1Lz <o < n4+1)7; pu(o) = (n— 17w + nafw’ —
—m—Dr] i G—lr<o'<®m—Latn?t plo)=nz if @®w—1x+
Fal<ow < ®m 4+ Dg—nt yle) =0 + g —ax((n + Lo — '] it
n+ Dr—n'<o'< 1) »

In such a way tis completely defined. Let 7'7: p = I"(w), w € J’, be the map-
ping from J' into B, defined by 7= Tin I'", and by I'= Tt in J'— I". Since T
is continuous on J and constant on I'*, T is continuous in J’ and 7'~ 7T,
as it can be proved without difficulties. On the other hand o'= J'— I,
F)=o—ao=1"%+ 3 W,, and y'=I"* is a component of F(x). While
all points of y are accessible from o, no point of y', is accessible from o'
Nevertheless A(w,y) =dJ— 1T A( y') = J'—1I" and the collections {7}, ,,
{n'}, o coincide.

IIL. Let J= [o<l]ys=[—1<u<l, v=0], I'=J*+ s; hence J—I'
is an open set whose two components ¢, ., are two open semicircles. Let T':
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P = T(w), wed, be a continuous mapping from J into E, which maps I7
into the point p, = (0, 0,1) and each of the open sets oy, o into S-— p,,
where 8 is the sphere w*fy2tz2=1. If f(p) ==z, ¢ = 1, we have C =T,
{0} = {o, o0}, and Flo) = @ — o, = o is a continuum yeo=of, i=1,2
Thus 4; = A,(ct;, v:) = &; and all points of p, are accessible from A, = o;.

,A};.Let,.‘Ji:,y[,gmg,lij,ws!-m.ubeﬂ»«thewdoublewspiml»»s\’»-—::‘»[—O--<wg Iy-w-==ftg-(2-on)];
I"=J"*4-s'; hence J'— I is an open set whose two components oc;, o, are
such that o,* =o,* =1I" [9, p. 117]. Let 7: w = 7(»') be any homeo-
morphism between zx; and «,, and between o, and o, [9, p. 110] preserving the
direction of the votations. Let T':p = T"(w), w € J', be the mapping defined
by T'(w) = (0,0,1) for all wel"; T'= Tt for all w e« -+o,. Then T is
continuous in J' and 7"~T. We have ('=J", 105’} = {J;, aty Floy) =
= — o = = o, le. F(a) is a contmuum yo = i=1, While all
points of y; are accessible from o, y, presents a prime end w (not eorresponding
to any end) with Z = J'* and no point of K, = J'* is accessible from o,
nor from A;= o, i=1,2

14. — Generalized prime ends.

We shall use the notations of numbers 7 and 8. Let « € {«} be a com-
ponent of J—C, y e{y}, be a component of F(x) and let A=A(x,y). As
usually we denote by {n}, ,, {o}, , the families of all ends and prime ends
of yin 4. To each w we have associated a set B, and hence we shall denote
by {E,},, the corresponding ordered collection ot all sets B,, we{w},,-
If an interval (o', ") of prime ends has the property that the mapping 7'(w)
is constant on the set > I, where 3 ranges over all w € (o', "), then there
is a maximal interval having the same property. By generalized prime end Uy
or briefly a gp-end, of y in 4 we mean, either (i) a maximal (open) interval
(w'y ®") having the above property (and then 7 is constant on the set
I(w;, w.) (no. 2)}, or (ii) any prime end w such that 7 is constant on E® and
is not contained, or is an end element, of any interval (w’, w") as in (i). Hence
each end n of y in A4, which does not belong to an interval as above, is itself
a gp-end because F, = w,, = 5, and T is certainly constant in the set E“”
reduced to a single point. In either case (i), or (ii), we set U= U,= I(e’ , @"),
or U= E", respectively.

It is obvious that the collection {u},, of all gp-ends of y in 4 can be
ordered as {n},, and {w}, ,, with the exception of the trivial case where 7T is
constant on y and then {u}, , has only one element.

For each gp-end w, the set U is a continuum of constancy for 7'; hence
Ucgyg, ge @, and also Ucgy, g4 = 0. '
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o3 U= U, be the corresponding continuum, UcC gy, ¢,€G, and
let p € E; be the point p, = T(U). Let w be any prime end w € %, let [1,, b,]
be any f-system relative to o (no. 8). Then E® clim sup b, C £, (no. 3, (i)).
In addition we can always choose [1,, b,] in such a way that B = lim sup b,,.
Since E® c U, we have limsupb,c U, T(U)=p,. As a consequence,

Let we{u},

Do T(b ) >0, diam-L(h,)—=0-as-—n T = Py L (b -+ diam T (b )y

we have |p(w)— po|< 6, for all web,, n=1,2,., and J, - 0 as » — oo.
Let I', be the set > g where > ranges over all ge @, gb,5= 0. Also I, is a
continuum, and [, c 4, w,el,l,, and hence, [I',[,.,5 0. Tinally, since
T is constant on each g, we have also |[T(w)— p,|<d, for all wel),
n=1,2,... Let K=Ilimsupl,; hence K is closed and since 4 is
bounded, also K is bounded. Also, K c A since I'yc A. If w,e K, then
there is a sequence [w,], w, =1y, W, €¢,; ¢ € G, ¢ubns%0, Mm = m(n)— co
as m —oo. If w, is any point W, € ¢ubn, then there is at least a subsequence
of [w,] with w, —w’, w' € E®. Let g, be the continuum, g, € &, with w' € g,.
Then, because of the upper semicontinuity of &, we have lim sup ¢, C ¢,
where ¢oy = 0 and w, € g,. Here ¢y 0 implies g = 0. Since, by no. 8,
any two components, v, ¥’ of & («) can be separated in J by a polygonal line
lca, we conclude that gee* cy. On the other hand w, is a limit point of
points of « and hence w, € gy, and finally w, cy. IHere w, is any point of
K and this implies K cy.

Thus we have proved that the sequence [/',] defined above is in the con-
ditions of no. 4, (i), and hence K is a continuum and there is an interval
[, wi] Wwith (o, w;) ¢ K ¢ I¥(wyg, w,), where necessarily o €[w,, w,] and
where it is not excluded that [w,, w;] reduces to o itself and thus the relation
IcKcI* becomes B cKcCE,.

The relation |T(w)—p,|<d, for all. wel), implies 1(K)= p,, and
consequently, B c K c I'*(w’, »") C g,, where g = 0, g, € G.

15. — We shall use now the notations of nos. 11, 12. Let (7, J), (1V,J"),
T~ T’ be given mappings and let « e {a}, y € {y},, A=A4A(«, ) be elements
relative to T and o'e {&'}, '€ {y'}.., A’=4(a', ') the corresponding elements
for T'. Let (Y, .0 {@}, ., {u},, e the collections of ends, prime ends, gp-ends
of yin 4, and {n'}, ., {0}, ,, {#}, , the collections of ends, prime ends,
gp-ends of ' in A’. ‘ )

(i) There exists « one-one ordered correspondence between the collections
{u}, , and {u'}.. ;. of the gp-ends of y in A and of y' in A, such that if u, v’ are
corresponding gp-ends, then T is constant on the set U, Cy, T’ is constant on
the set U, cy' and T(U,) = T'(U,).

Proof. Let ue{u},,, and o beany prime end o € u. Let [s, b,] be any
f-system relative to w, such that B = lim sup b, (no. 8, (i)), and let I, = 3 ¢
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be the set [, ¢ 4 whichisthe sum of all g € ¢ with g, 0. Thus, if [,=7 ¢/,
g'=T(g), also I, is a continuum, I, ceo/, I,I, 0. Therefore, also the
collection [1’,;] satisfies the conditions of no. 4, (i), and hence if K’'= lim sup I’,:,
there is a closed interval [w,, w,] in {w'}, ;. such that I(w,, w,) ¢ K'c I*(wy, w,),
where it is not excluded that [w,, a);] is reduced to a single prime end w, and

then—#0-c- I ¢ H -+ The—relation—|-L(w)—pyt<-65—for-—all-—w-e-I;—implies
| T'(w) — po| < 6, for all w el',, and hence T(K')=p,. Consequently
(g, w(',) belongs to a gp-end w'e {u’}.},,)d. and we have I(w,, w;) c U’y and also
Ucy,, g(’,eG’. Because of the properties of the mapping T we have
9 = T(g0)-

By the procedure above we have associated to each gp-end w e {u},
another gp-end w'= o(w), w'e {v'}, .. We have to prove that this corres-
pondence does not depend upon the choice of the prime end w € we have
used. Let @ be any other primeend, & €w, and let I,, b,, I, I'.c A,
K' ¢y be the corresponding sets. Then we will have I(aw,, @,) ¢ K’ ¢ I*@,, &;),
and it is quite possible that the intervals [wo, w,], [@,,@,] are disjoint. It
is possible to join the points 1,b, and I1,b, by a polygonal line 1, c 4, such
that each point we A, is at a distance <pu, from I(w,®), with u, -0 as
n —oco. Let f,=b,--A,+b, and observe that, since 7' is constant on U
(and hence on I(w,®)c U), and T(U) = p,, the set T(B,) is contained in a
sphere of center p and radius a number §, >0 with §, — 0 as n — co. Set
B,= 3 g where > ranges over all g€ G with g, 0, and B, =3 ¢', for
all ¢'=<lg), gcB,. Then B'cA’, BB, 0, and also lim sup B, =
= K*cy' by the same reasoning used for the continua [I”,. Therefore, by
no. 4, (i), there is a closed interval [o*, »'*] in {w'}, ., such that I(w*, o'*)c
c K* c I*(w*, »'*), and 1" is constant on K* T'(K*) = p,. This proves that
both [we, w,], [@s, d,] are contained in [w*, '*] and hence in the interval
[w', ®"] relative to the same gp-end u' e {u'}, .. Thus we have proved that
the correspondence u'= o(u) we have established does not depend upon the
choice of the prime end w € u.

Now let &' be any prime end &'c »' =g(w)and let us apply to «’ the same
procedure above in order to obtain a gp-end u € {u},,. Let [I,,5,] be any
f-system relative to &', ]_“,; cA’, I'nc A the corresponding continua. Thus
there is a closed interval [, @,] in {®}, , such that I(@,, w,) ¢ K c I*(@,, ,),
K=1lim sup I",. - Let us prove that (w,w’) belongs to . Indeed let ' e’
be a prime end which is reached by a sequence [I’.] of the direct procedure.
Let [1,,b,] be any f-system relative to o' and observe that #,I,, % 0 for
some m = m(n), with m(n) = oco as n —oco. Let 1. be an arc joining the
point 4,I",, ., to the point 7.b,, where 1,c A’. We can suppose that all points
of A, are at a distance < . from the set I(w',w’) with u, >0 as »n— oco. -
Since T’ i5 constant on U’ (and hence on I(w’,cB')),‘ and T'(U') =p,, the



192 L. CESARI

al ! . » . .
set T'(L 0 -+ 4, —:—b,,) is contained in a sphere of center Ppe and mdlus a
number 6'>0 6,0 as n —co. For each n =1,2,., let 5, =4 +
=3 q, whcre 2 ranges over all g € G, Wlth gb. = 0, and set IF = F
m s=mn), I' *= ]’m “+ B, it m=m@) [or =TI -+ > B,, where > ranges over

all » such tham m(n) = m]. Finally, let I': be corresponding continua, I'* ¢ 4.

m

71'

By..no..4,.(i ) therewls ~a-closed-interval-fo® o' ¥} -in- {w} ~~~~~~~~~~~~~ with—I{w*;w"*yc

e}
C I* c I*(w*, 0'*), K*=limsup I, and [w* o'*] contains both o and
(0, 0"). Thus 1t is proved that (w,®’) belongs to u.

Thereby it is proved that not only for each « & {u}‘ the procedure above
defines an ' & {u'},, san W= o(u), but also that the same procedure applied
to «' reproduces w. The same result holds by exchanging {u}, , and W, o
This implies that the correspondence «'= o(u) is one-one between {u, and
{1(/};,"_1,. Indeed if we consider any «' and we apply the procedure dbme we
have an w € {u}, , and the same procedure applied to % gives u’. We have
now to prove that o preserves the order of {u},, and {u'},. .. Indeed, if
Wy € Uyy Wy € Usy Uy 57Uy, then there ave two other w, € Uz, wy € Uy, such that
Uy, Uy Separates ug, w, in {u},,, and we can suppose P, P, P;: DaEPsy Day
where p, = T(U,), (i=1,2,3,4). If u, = o(u;), (i = 1, 2, 3,4), we can prove,
by a reasoning similar to the one in no. 4, (i), that ul, u.l separate u;, u; in
{w'}.. - Thereby (i) is proved.

16. — Invariance of I(t) with respect to Fréchet equivalence.

1) If (L, d), (I',J") are continuous mappings from the simple  closed
Jordan regions J, J' into By and T~ T', then for each 1, <t < 1, {(no. 12),
for each pair of corresponding components « € {a},, o' {'}, of J—C and
J'— ', and for cach pair of corresponding components y € ey Y DL
F (o) and F(o') we have My, o) = Ay', o). Hence I(t) = I'(t) for all t; < t< is.

Proof. We have 1=Sup8, 8= 3|T(w,)— T(w:,)|, w, = w,, M€
€ {n}, .; hence, given ¢> 0, there is a finite ordered system [7] of ¥ ends
such that §> A-—¢ if 1< 400, > & if 1= +oo. We can suppose that
the ends n €[] belong to different gp-ends w of » in A, because of the fact
that T is constant on each U,. If [«]is the ordered collection of the gp-ends
to which the ends 5 €[] belong, if [4'] is the collection of the different g gp-ends
' of ¢ in A’ if U'= U., we have T'(U') = T(U). If 4 contains an end 7',
then T’(w )= T(w,). If %' 18 just a primeend o', then U= F“” and we

can appro aeh o’ with ends 7’ such that w,. is as close to the set B as we want.
We can choose 7' in such a way that [T (w,)— T(w,)|< 2N-1e' and that
the new set [7'] of ends n' of p"in A’ is 01’dered as [u']. We have §' > § — ¢,
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and finally 2" > 8 > 8 o~ 1. 28, 00 > et g, Therefore, 1'>> 2. By
exchanging 7' with 77 we have also A= 2'; hence 1= . -Since () =
=33 My, a), ()= v 2 A, ) we have ity =U(t). Thereby (i) is
proved.
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