Rivista Mat. Univ. Parma 4, $3-94 (1953)

Jr- MDA NS RTN ) and T G A N (R

A game over function space. (*

1. — Introduction.

The present paper is concerned with a specific zero-sum two-person game
over function space, which arose in a natural way, and whose investigation
appears to possess considerable theoretical interest. We obtain an explicit
saddle-point solution to this game; we know of very few other examples (none
of which are published) of games over function space for which explicit solut-
ions have been found. .

The fundamental facts concerning the theory of games are set forth in [6].
By a zero-sum two-person-game is meant a (real-valued) game between two
players, 4 and B, in which, whatever the outcome, the numerical gain to A (B)
is equal to the numerical loss to B (4). Any particular manner of play chosen
by 4 —- his total aggregate of «moves» during the game — may be thought
of as constituting a «strategy» x selected by A from a given «strategy space» & .
Likewise B selects a strategy y from a space Q). The game is characterized
by the so-called « payoff function », a funetion (or funetional) s(z, ¥), which
represents the « payment to 4 by B» (positive, negative, or zero) which results
from the adoption of their respective strategies @, y. (It is not necessary to
consider separately the payment to B by 4, since this is, by assumption,
merely the negative of the payment to 4.)
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Thus A wishes to maximize n(z, y) (but he controls only ), while B wishes
to minimize m(w, y) (but controls only ). The game is said to have a (saddle-
point) solution if

max min gz, ¥) = min . max s(x, ¥) ;
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strategies x, € &, 1, € @ such that n(w,, 4,) has this saddle-poin’b value are
called optimal strategies. It should be observed that in gemeral there is no
reason to suppose that solutions (or optimal strategies) exist.

The model for the game which concerns us heve is a duel, between an at-
tacker, 4, and a defender, B: the motive of A is to destroy B; that of B, to
survive. Hach is equipped with a machine gun, and with given finite amounts
of ammunition. With each bullet fired by A from any given distance ¢ to B
there is associated a given probability that the round will be lethal to B;
likewise for the rounds fired by B. It is assumed that the distance between A
and B is decreasing during the duel, that is, with increasing time, and that
the probabilities in question increase as the distance becomes smaller.

‘The strategies available to the players are their rate-of-fire functions; it
is assumed that these rates cannot exceed certain given bounds.

Various idealizations are assumed in the problem. It is suppbsed, for
example, that destruction, if it occurs, is instantaneous with the release of
the lethal round. Etc..

In the mathematical formulation below, # and y represent the strategies,
& and # the lethality probabilities. The functions @, and @, which appear
represent the (cumulative) survival probabilities; classical probability reasoning
will explain their particular exponential form. The parameter ¢ represents
range or distance, and thus decreases as the duel proceeds.

7(z, y) is then the probability that B is destroyed by 4 in the course of
the duel. A wishes to maximize n(», y) and B wishes to minimize it.

Speaking now purely mathematically, we seek a saddle-point solution to
the game determined by the payoff

©

73('777 ?/) = f@y(t) de(t) ’

0
where we have put

W

Q-0) = exp[— [ a(@)é(x) dr]

t

and

@s(t) = exp [— F y(am(x) dz] ,
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&(t) and #(?) being fixed strictly decreasing continuous positive functions sum-
mable over (0, co). The functions a(¢) and y(t) will be selected from the
strategy classes &€ and @ respectively, where 2 is the class of all measurable
funetions satisfying, for a given positive constant X,

0<a@#) <1l and f @) dt < X,

0

and Q) the class of all measurable functions satisfying, for a given positive
constant Y,

0<y)<1 and fi'/(t) A<Y.
g 0

Specifically, then, we seek functions a, and w,, with z, € & and Yo E Y,
such that ‘

(Sy) (X, Y) = (g, o) for all yeq
and
(S:) (@, Yo) < (W, Yo) for all ze e

Under further assumptions on &(t), 5(t), X and Y (stated in Section 4) (which
were satisfied in the model which led us to this problem), we are able to give
in Section 5 explicit formulas for the pure optimal strategies x, and ¥,, and
incidentally to show that they are unique. Without such further assumptions
the complexity of the problem is greatly magnified. However, we arve able
to prove the existence of a saddle-point without using these assumptions;
this we proceed to do in the following section.

2. — Existence of a saddle point.

We shall need a well-known fixed-point theorem. The statement quoted
is that given in [4]; a more general theorem had already been given by
BeGLE in [7], unbeknownst to the author of [4]. The less general result is
adequate for our purposes.

Fixed-point Theorem. Given a closed point to convex set mapping @
of a convex compact subset S of a comvex Hausdorff linear topological space into
itself, there ewists o fized point z e B().
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We introduce a topology into & by regarding it as a subset of the space
L, of essentially bounded measurable functions on (0, co) and employing the
weak star topolog‘y of L, . Thus, recalling that L, = L7, the directed set
(cf. [2] or [8]) {z, J seq Will be said to converge to w, provided that for every

01(7‘) &.Ly-we. have

o] [eed

f{uo(t)u(t) dt — J wo{t)u(t) At .

0 0

& is clearly a subset of the unit sphere K of L_. Furthermore, it is closed
in I, as may be seen from very simple arguments. K itself is compact Haus-
DORFr in the weak star topology, according to a theorem of L. ArniocrLu ([1],
theorem 1:3). Accordingly, & is compact. It is obvious that both & and L
are convex. We treat @ in the same way. We then take as the set S of the
fixed point theorem the product space & X, which is obviously of the type
required by the theorem.

Now we shall prove that m(x, y) is continuous. Suppose that z; — z, and
Ys > Yo. Imploying the summability of & and » and the uniform boundedness
of z4(t) and y(8), it is easy to show, e.g., by the classical procedure of ARZELA,
that the functions Q‘,‘O(t) and (()1,6(t) converge uniformly in ¢ to ¢, (f) and
@, (¢) vespectively. Turther, de(t) and Qyé(t) converge uniformly in 6 fo 1
a8 t —co. Hence n(wg, y,) — a(x,, %), as required.

Fix an v & 2. Since Q is compact and » continuous, there exists a y € Q
such that sz(w, #) is a minimum. Let y,, ¥, be two elements of @, both of
which yield the minimum. Then for any 1, 0 <A<, if we write y, =
= (L— Ay, + Ay, it is evident that y, € @ and we have

(@, 1y,) = J exp [— fJ, n(7) dv ] AQ.(7)

0
< (@ — Az, yo) ~+ An(w, y1) ,
so that y, is also minimizing. Similarly, to each y € @ there corresponds 3
non-empty convex set of #’s € & which are maximizing. Denote by {w} the

set of minimizing #’s corresponding to any fixed ¥, and by {ym} the set of
minimizing y’s for fixed . Consider the point to convex set mapping

D, y) = ({z,}, {v.})

of 8&xqQ into itself. Since z(w, y) is continuous this is a closed mapping;
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accordingly, it has a fixed point (x,, ¥,), i.e., such that 2, € {‘1}30} and y, € {y, }.
But these are precisely the conditions that (x,, ,) be a saddle-point.

We observe that it is obvious that J @y(t) At = X and f Yolt) dt = Y.
1)

1]

3. — Necessary conditions on the optimal strategies.

In this section we shall derive conditions that x, and w,, as optimal stra-
tegies, must satisfy. Define

(1) H{t) = [ Qu(r) dQu (x)
and
3
@) K(t) = Q,(0)@4,(0) + [ Qu(x) 40 () .

o

- We shall show that there exist positive constants & and % such that the two
conditions

> 0 whenever ,(f) >0,
(oh) H@) )
: < o whenever ,(f) < 1
and
%
> 0 whenever a(t) > 0,
(C.) @) J :
< E(:t) whenever ,(f) << 1

are simultaneously satisfied at every point of approximate continuity (for
definition see [5], p. 132) of z,(f) and w,(f), and hence almost everywhere. It
suffices to demonstrate (C;), the proof for (C,) being analogous.

Since @, and 9, are optimal we have

@) (@, y) > 7oy 4o)  for all yeq,

(i.e., the saddle-point condition (8;) of Section 1). Let 3, be an arbitrary element
of the strategy space @), and for each 4, 0 << A2 <1, define ¥,(t) = (1 —A)y,(t) +
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-+ Ay (t); then y, €@ . A simple argument shows that (i, _7/}) is every-
where differentiable with respect to 1. From (3) it is easy to see that

-

‘ (@0, 4,)],—y >0 for all y,eq .

(4) A

On rewriting (4) we obtain, after inverting the order of integration,
(5) f H(@)n(t) [yolt) — yu(0)] dt > for all yeq.
0

To obtain (C,) from (5) we use an elementary variational procedure. Write
for convenience W(t) == H(t)n(f). It will suffice to prove that if y, is appro-
ximately continuous at two points ¢, and t,, satisfying 0 <7 9,(t;) << 1 and
0 <o(t:) < 1 respectively, then W(t,) > W(t). Tet & be any positive number
less than y.(t,) and such that ()<< 1— 2 In view of the approximate
continuity there exist disjoint measurable sets X, and E, containing ¢, and i,
respectively and satistying 0 < m(¥#,) < 2m(#,), such that

1) on E, y(t) >« and W) < W) + ¢,
2) on B, yt)<l—2¢ and W@ > W) —e.

Now put

I Yolt) — &, te i,
l B .
nt) =1 yt) + 0 e,

m(H,) !
Yolt) te (B, + I,).

Clearly y, € @ and so it satisfies (5). Ience applying this we get
(6) W) > W) —2¢,

which in view of the arbitrary choice of ¢ is the result desived. Thus (Cy)
holds, as we set out to prove. To see that % is positive, it suffices to observe
the form of K(f) and that a,(f) is less than unity except on a set of measure
at most X. To see that h is positive it suffices to note that if ¢ is sufficiently
large, then w,(t) will have been positive on a set of positive measure to the
left of ¢ and so H(t) positive, and then to take account of the fact that Yolt)
is less than unity except on a set of measure at most Y.
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At this stage it is convenient to note some properties of H and K. First,
observe that, for all ¢,

(1) H{t) + K1) = Q)

o Where.owe- have.written

(8) Q) = Q. (1)@, (1) -

Next, H, I, ¢, and ¢, are all diffeventiable at any point at which z,(f) and
Yo(t) are both approximately continuous. They are absolutely continuous and
non-decreasing in ¢ Finally, as @(f) is obviously <1, then so a fortiori
both H(t) and K(f) are < 1.

4. — Additional assumptions.

Let t be a positive number si»tisf_ving the inequalities
[ i> X,
(9) - - -

We shall assume that throughout the interval (0, 7) both

— & (1)
A,
(&) EBn(t)
and
—7'(t)
(A) om0 <"

are satisfied, except for a set of measure zero. Observe that we may nof

assume either (A;) or (A,) to be valid in the infinite interval. The reader will

find the reason for the choice of ¢ in the proof of Lemma 3 in the next section.
These assumptions are valid in many physically practicable cases.

5. — The optimal strategies.
We shall be able to write down the explicit solution of the game afte
proving a series of lemmas. '

Lemma 1. There exists a non-degenerate maximal interval (0,1,) on which
Yo(t) = 0 almost everywhere,
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Proof. It is sufficient to prove the existence of a non-degenerate inter-
val (0, @) with this property. Suppose no such interval exists. Then for any
a there is a set of points ¢ of pomtlve meqsule, lying in (0, a), for which
H(t) > hjy(t). It follows that H(0) > h/n(0) > 0, which is obviously impossible.

Lemma 2. On (0,t) we have xy(t) = 1 almost everywhere.

Proof. TFor any ¢ >0 there is by Lemma 1 a set of points ¢ of positive
measure, and lying in (t,, t,+¢), for which y,(t) > 0. Accordingly, we have
H(t,) > hjn(t,). Now K(f) is obviously constant over (0,¢,). On comparing
I () with %/&(t) it is clear that there is a satisfying 0 <, <{#, such that on
(0,1%:) we have @,(f) = 1 almost everywhere and on (t:5 %) we have zy(t) = 0
almost everywhere. Suppose now that t,<<t,. Then as ¢, is a limit point
of points at which y,(t) is zero, we would have H (t:) < hy(t,). Bubt we would
also have H(,) = H(t,), so that H(t,) < h/n(ty), a contradiction.

Lemma 3. There is a smallest number t,, satisfying &, <t, << 1, such that
%(t) = 0 almost everywhere on (t,, co).

Proof. Tet (0,%) be a maximal interval on which (1) = 1 almost
everywhere. Obviously ¢,<<¢. Then for any &> 0 there is on (tsy ta-Fe) o
set of points ¢ of positive measure on which 2o(8) << 1. Accordingly K(t,) <
< kjE(,). We vewrite this as

(10) k= E)K(t) ;

we shall prove that k> £(t). Now by hypothesis (4A,) we have, on (0, t,),
(11) — S < ()
almost everywhere. On integrating we obtain
(12) E(t) > £(0) exp [— f "n(0) &) > £(0) exp [— Xp(0)],
0

where we have taken account of the fact that ¢, < X. Turning to K(), we
obtain easily

(13) K(t:) > Q(0) > exp [— X&(0)— ¥n(0)] .
Accordingly,

(14) k> £(0) exp [— X£(0) — Xn(0) — ¥Y9(0 )] > &) .
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Now, since wy(f) == 1 over (0,%,), we have K(,) > k/&(,). Hence &) > k.
It follows that there is a number ¢, on the interval (f,, ¢) such that k = &(t3).
Let ¢, > ¢, be a point of approximate continuity for w,(f). Then if z,(t,) were
positive, we would have K(i,) > k/&(f,) > 1, an impossibility. Consequently,

(). =0 _almost.everywlhere .on. (£, 00). . Let-f,-be.the smallest.number. with
the property that x,(f) = 0 almost everywhere on (¢, co). EHvidently i, <
<ty <ty << t, as desired. : '

Lemma 4. y,(f) = 0 almost everywhere on {t,, co).

Proof. As H(i) is constant on (4, co), it will suffice to prove that
H{ty) < hjn(t,). Suppose the contrary. On comparing H() with &/n(t) and
taking account of (C,) it is clear that for some interval (f,, ?,) we have y,(t) =1
almost. everywhere. We may take f, <t. Now since almost everywhere on
(ty; t) we have from (A;) the inequality

©

&
(15) e < (),

it follows that

() = Kt + | @40,

tq

= K(to) + Q(t) { exp [ [ () @] —1}

&(t)
> K(t,) + Q) L:'(t;") — l}
£(1p)
K@) =t
> Kt E(ty)
_ "
)]

a contradiction, since K(f,) < k/&(t,) from (C,).
Remark. It follows trivially that ¥, < t,.
Lemma 5. Every non-degenerate subinterval of (ti,%) contains « set of

points of positive measure on which yy(t) > 0.

Proof. If this were false there would be a maximal subinterval (i, f;)
of (t,1%) on which y,(f) = 0 almost everywhere. It is obvious (from the spe-
cification of ¢, in Lemma 1) that ¢,>¢. Now by an argument we have used
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before we have H(1,) = h/y(t) and H(t. < hfnlty), with equality holding in
the latter if ¢, < t,. As in the proof of Lemma 2, we see that in either event
Zo(t) = 1 almost everywhere on (4, %,). Then, employin(r an argument similar
to that applied to A (?) in the proof of Lemma 4, we see [with the aid of (A,)]

that H(ty).>-h/n(t;);-a-conbradiction.

\Ya/

Lemma 6. Hvery non-degenerate subinterval of (i, %) contains a sel of
points of positive measure on which x,(t) > 0.

Proof. Analogous to that for Lemma 3.

Lemma 7. Ivery non-degenerate subinterval of (b, %) contains @ set of
points of positive measure on which y,(t) < 1.

Proof. We suppose this false, and obtain a maximal interval {t:, %) on
which y,() = 1 almost everywhere. Clearly H(t,) = = hin(t) and H(t;) = h/y(t,).
It follows by an argument now familiar that () cannot be equal to unity
almost everywhere on (f,, %,); hence there is a subset H of (ts, t3), of positive
measure, on which #,(#) << 1. Tet B’ denote the set of points of B which arc
points of density for ¥, at which &'(f) exists, and at which o(t) and y,(t) are
approximately continuous. Making use of Lemma 6 it is easy to see that
we have

s
16 K{t) = —
(16) 0 =55
everywhere on E'. Also, of course, H(t) > hin@t). Now let t& I and take
the derivatives of both sides of (16) through points of E, ie.,

k %
i _— - & e
lim ]_{(Q.,__é(.t) — lim ° (t) M‘E_(t) .
t'—> ¢ -1 vt 4 |
vEr reEr’

Since the deuv atives at ¢ exlsb and are the same for any approach, we obtain

4G k'

a &)

On writing out the left side and then dividing we see that

B k&' (1)
Yolt) = — En(HQ)
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But [recalling (7)]

) h k
Ot > — 4+ —
200 - 7(t) F HON

Accordingly,

RN
SOLREWD + Tl ~ ()

Yo(t) <<

throughout %'. This is the contradiction desired.

Lemma 8. x(f) << 1 almost everywhere on (21, 1y)-

Proof. From (C,) and Lemma 6 we have K(¢) > k J&(t) throughout. Now
as each subinterval of (4, 7,) contains a set of pomts of positive measure on
which 7/0( ) > 0 and a set of points of positive measure on which Yolt) < 1 we
have H(t) = h/n() identically on (f,¢,). On differentiating this identity we
obtain the result, in & manner analogous to but somewhat simpler than the
argument used in the last part of the proof of Lemma 7.

Clearly, from Lemmas 6 and 8, we have aslo K( t) = k/&(t) identically on
(t1, t); hence we may differentiate, and replace 1nequf1hL1es there by equalities.
Thus we have owr result:

Theorvem. There exists a ty, at,, and an m > 0, such that 0 <t << {,< %,
and such that

1) on (0, t,), To(t) =1 and y(t) = 0 almost everywhere,

[2
2) on (b, 1),  x() = .’] t)[w:;y : 0] almost “everywhere,

£'()
Yoll) = — -t almost everywhere
PO == L otme + ] yronere
and
3) on (g, ©0), B(f) = Yo(t) = 0 almost everywhere.

The existence of the quantities ¢,, ¢, and m (= h/k) is of course assured
by the existence proof of Section 2. It is well to state how these quantities
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may be found. Applying (C,) and (C.) at ¢,, and then dividing, we obtain

(i ty
m == f_f,([l) e.\:p[ ‘ £(1) dt] —1 7.
£(ty) - .

0

There remain two equations for determining the three quantities. We apply
merely the conditions that ]‘m‘,(t) di = X and fv_?/(,(t) dt =Y. It is an elemen-
N 0 [}
tary exercise to show that the solution to these three equations is unique,
so that the saddle-point of the theorem is the unique solution to the game.
The value of the game now may easily be determined in terms of m and ty.
Apply conditions (C,) and (C,) at the point t =1¢,. We get

1
[ h
u (1( r == )
| 00, = 0,
0
and
1'}
1 [Q ag, ="
Wi ,‘_’/u r.I‘D h— S(ﬂ)

0
From these it follows easily that
i(b

4 mé(t,)
75(‘7‘107 Yo) = J Q!/u d(z)wﬂ == ”( - .

:)“S(['()) ‘l‘ 7(l)
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