JouN M. DANSKIN, dr. (%)

On the existence of minimizing surfaces in parametric
double integral problems of the Calculus of Variations. (**)

1. - Introduction.

... The object. of this paper is the demonstration of the existence of a surface

minimizing the integral
T(8) == f/f(x, X) dudv

among the class of all parametric FRECHET surfaces bounded by a fixed JORDAN
curve in space, under general conditions on the function f. This is a gene-
ralization of a theorem obtained in 1936 by B. J. McSuanE [6], in which the
function f depended only on the Jacobian vector X and not on the coordinate
vector x. L. CmSARI has recently obtained (oral communication, August 1950;
see also Abstract No. 26, Tvanston meeting, Bulletin A.M.S., January 1951)
a very similar theorem, and so has A. G. SiGALov ([10], 1950). Professor CESARI
knew of but has not seen my proof, and I have not yet seen his. The existence
of S16ALOV’s proof was brought to my attention in August 1950 by Professor
MoSmane.  All three proofs are thus completely independent, and employ
different methods.

The existence theorem is stated and proved in Section 3. Section 2 is
‘devoted to notation and two preliminary lemmas.

(*) Address: The RAND Corporation, 1500 Fourth Street, Santa Monica, Cali-
fornia, U.S.A.. ‘

During the period when this research was ecarried out the writer was a Predoctoral
TFellow of the United States Atomic Energy Commission.
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A.M.S., March 1950.)

Another version of this paper was submitted by the author in partial fulfillment
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The results of J. W. CALkiN in [1] and C. B. MoRrRrEY in [7] and [9], as
well as those of Professor CESARI in his many papers, are used freely.

I take this opportunity to thank my teacher, Professor CHARLES B.
MorrEy, Jr., for his very active guidance and stimulation during the carrying
out of this work. ’

2. — Preliminaries.
2.1. — Notation, definitions, and general remarks.

Boldface letters indicate vectors; x in general will refer to the vector
(@, o*, @®). If x(u,v)is a representation of a surface 8§ the vector X(u, ») will
denote the generalized Jacobian in the sense of CESARI at the point (u, v).
If 8 is of finite area the quantity X(u, v) exists almost everywhere and is inte-
grable L Ful'ther,'~it'iseqﬁélalmdst everywhere (f3]}~Theorem VII-et-seqs)
in value and in sign to the classical Jacobian J(u,v) = x, X2, whenever x
‘has partial derivatives almost everywhere. Since no other kind of Jacobian
appears in this paper, we refer to X as the Jacobian without further speci-
fieation. S . . :

We frequently write f(x,X) for f(a, 2% 23, X1, X2, X?9)

FrEcarr surfaces are understood as, for example, in [12].

The integral 7(8) need not always exist in the LEBESGUE sense. But
under very general conditions on f— weaker than those we assume here — it
does always exist as a WEIERSTRASS integral in the sense of CEsARI [2]. Whene-
ver the area of § is given by the classical (LEBESGUE) integral, then this
WEIERSTRASS integral equals the LEBESGUE integral. 7(S) as defined by CESARI
does not depend on the particular representation employed for §. By 7(S)
we shall always understand this WEIERSTRASS integral. As each surface of
the final minimizing sequence employed in Section 3, as well as the limit
surface, is A.C.T., then 7(S) there coincides with the LEBESGUE integral.

See for the definition of absolute continuity in the sense of TONELLI
(A.C.T.) [1] or [7] or [11].

A representation x is said to be generalized conformal provided

1) « is A.C.T.;

2) x,x,=0 and a’ = x* almost everywhere;

3) //(xi + al)dudv < oco.

A surface ‘is said to be nondegenerate provided it possesses a nondegene-
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rate representation. A representation x is nondegenerate provided that there

are 1o continua, containing more than one point, over which x is constant.
The DIRICHLET integral D(x, R) of x over the region R is defined by the

equation
Dyfa, ) = / [ 6+ auan.

H(x, R) denotes the harmonic (vector) function on B coineiding with x on
R¥, the boundary of E.

If B is a set m(E) will denote its LEBESGUE measure. || will denote length
of vectors, and | | FrEcuer distance.

For the definition of a region of class &, see [7], p. 195. For the definition
of a funetion of class B, see [1]. '

2.2~ Two lemmas.”

Lemma I. Let x(u,v) be of class B, on a region G of class K. Then,
given &> 0, there exists a region S contained with iis closure in the interior of G,

such that
' !DQ[H(x7 @), Gl — De[H(xa B), R”< €

for all regions R of class  satisfying S < Rcd.
Proof: For any R of class § € G, the DIRICHLET principle 1mphes that

Dy[H(x, B), B] + Dy, ¢ — R) = D,[H(x, G), G].
Hence the inequality
D,[H(x, R), R] > D,[H(x, G), G]— ¢

will follow on taking § appropriately.
To obtain the inequality in the opposite dnechon, put

w=x— H(x, &)

at each point (u,v) of G. According to a theorem of MorrEY ([7], Theo-
rem 7.1 (iv)) we can choose § satisfying the conditions already imposed on it
and find a w’ vanishing outside S with Dy(w —w', @) arbitrarily small. Then
for any R of class & with SSCREC G,

DJH(w, R), B] = Di[Hw —w', R), R]< Dyw —w', B),
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so that D,[H(w, R), R] is arbitrarily small. Accordingly, as strong conver-
gence in L, implies convergence in norm (the norm here being the square root;
of the DIRICHLET integral), the quantity D,[H(w, R) + H(x, &), R] is arbitra-
rily close to D,[H(x, G), R] and therefore to D,[H(x, @), G]. But again ac-
cording to the DIRICHLET principle, as H(x, R) and {H(w, ) - H (x, G)} take
on the same values on R*, then

Du[H (%, R), R)< Do[H(w, E) + H(x, @), R].

Taking account of the above remarks, the Lemma is proved.

Lemma II. Let R be a region which is the sum of a finite number of convew
polygonal regions R,,..., R, Let {x.(u, v)} be a sequence of functions satis-
fying the following conditions:

1) there is a function xo(%, v) on R such that along each boundary R} the

~sequence {x,} congerges wniformly. lo. xq(u, v);..

e

2) each x, is absolutely continuous one-dimensionally along each R*

i

3) the generalized derivatives of each x, in the semse of Ivans (1) ewist
almost everywhere on the Rl* and coincide almost everywhere there with the ordi-
nary partial derivatives;

o
4) 2 | &P ds< A uniformly in n.
T
Then
im Dy[H(x,, R), R] == Dy[H(x,, R), K] .

N—p00

Proof: We break the proof into sections.

A, The lemma s true if R is replaced by a circle and if xo(u, v) is iden~
tically zero om C*.
Let us write, regarding «x, as a function of § on C*,

@

a, L
x,(0) ,\,2£ + (@ €08 MO -+ b, sin mb).
1

m o=

Here ~ indicates that convergence of the series on the right to the function

(*) For the definition of generalized derivatives in the sense of Evaxs, see [1],
p. 175. This condition is required so that in the course of proof we may employ a.
change of variable theorem due to Evaxs (see [7], pp. 189-190).
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on the left is in IL,. According to known theorems (cf. for example [9],
Lemma 6.2, p. 40), the Dirrcurrr integral of the harmonic function taking
on the boundary values of «, is given by

])Q[H(x1l7 0), OJ =T 2 Tn’(aim + bflm) *
m=1
On differentiating the above FOURIER series term by term —it can easily be
shown from the facts that x,(0) is A.C. in 6 and «x,, is integrable L, that this
gives the FOURIER series for the derivative— we get

o

x,(0) ~ 3 (— may, sin mf + mb,, cos mb) ,
m=1

8o that
w
2 2 2
fxﬂodo == zlmz(aﬂm _§— bﬂm) *
=

R

As the quantity on the left is uniformly bounded by hypothesis, and since

0 o Y l o0
z ”Z(a;xm + b;m) é 7 Z {m’2<a’fmz + b;zzm) ?
m =N N m =N
©0
then 3 m(a, -+ b%,) can be made arbitrarily small independently of =
m=N

merely by taking N large enough. Since for each separate m we have

lima,, =0 ; im&,,, =0

N> T 00
then it is clear that

Lim = > m{e;, + b},) =0

P00 me=1
as required.
B. The lemma is true if R is a single convex polygon and xy(u, v) =0
on R*.
We choose a point in the interior of R and from that point triangulate R.
Let ¢ be the unit circle in the (v, o) plane. Each triangle can be mapped
in a 1-1 manner onto a sector of ¢ in such a way that

1) the mappings, when pieced together, form a 1-1 continuous trans-
formation 7 of R onto C;

2) this transformation and its inverse is uniformly Lipschitzian through-
out, and almost everywhere analytic. :
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Accordingly, using Evans’ change of variable theorem (see footnote (1),
p. 46), the condition that

/ x, . ds,

R*

be uniformly bounded in » transforms into a condition that

'/‘yiodey

o%

be uniformly bounded in =, y. being the transformed function
yn(P,) :x’n(Tﬁl-P,)7 Pe C’ (n=17 21 "')'

Also, y, is A.C. along the boundary C%; and y.(u',v’) converges uniformly
to zero there; hence by Remark A we have ‘

lim D,[H(y,, C), €] =0.

N -0
Accordingly, taking account of the uniform Lipschitz conditions,

lim Dy[w,, R), R] =0,

n—>m
where
w,(P) = H(y., C)(TP), PeR, (n=1,2,..).

By the DIrICHLET principle,
D.[H(x,, R), R]< Ds(w,, E), (n=1,2,..)

the values of w, and H(x,, R) coinciding on R*. Accordingly

lim Dy[H (%, R), R] = 0

. PN OO
as required.
C. The lemma is true if B is as in the statement of the Lemma.
We prove this first for w,(w,v) = 0 on the boundary. Now for each i,

(t=1,..., q), we have ,
lim D[H(x,, R;), B]=0

Nn—>00

by Remark B. By the DIRICHLET principle,

D:z[H(xny -R)a R] éle Dz[H(xny Rz‘), Rz] ?
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so that
hm D, H(x,, R), R]=10

as required.
Now consider the general case and put

y'n(u'? ’l)) = xn(u; 7")"" xo(u, ID) 3 ('u’y 17) el.
Then
lim D, [H(x,,, R)— H(x,, R), R] = lim D,[H(y,, R), R] =0,

=300 N->c0

so that H(x,, R) converges strongly to H(x,, ) in the spacé\ with norm given
by the squarve root of the DiricmrET integral. Hence H(x,, E) converges
in that space to H(x,, I) in norm a-lso, ie. |

lim Dy[H(x,, R), R] = D,[H(x,, E), RB].

N> 66

The proof of the lemma is thus complete.

- The existence theorem.

Theorem: Let the function f(a*, %, @3, p', p, p*) satisfy the following
conditions:
1) f is of class C* in all siz variables, if p # 0;
2) f(x,0) =0 for all x;
3) f(x, kp) =|k|f(x, p) for all x, p, and k;
4) there ewist positive constants m and M, with m < M, such that

m|p|< f(x, p)< M|p|
for all x and all p % 0;
5) fpip,(x,p)g"g" >0 unless Exp=0.

Let g be a Jordan curve in space bounding at least one surface of finite area.
Then, among the class of all surfaces bounded by g, there is one for which the

ntegral

7(8) = f #x, X) du do

attains its minimum.
In Section 3.1 through Section 3.5 we shall find a minimizing sequence

{ - Rivista di Matemalica
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with very special properties; in Section 3.7 we shall modify some of its terms, ’
and in Seetion 3.8 we shall use the modified sequence to obtain the theorem.

3.1. — The minimizing sequence.

Let d be the greatest lower bound of 7(S) for surfaces § bounded by g.
Obviously d= 0; and, because of condition 4) and the fact that g is bounded
by at least one surface of finite area, d<C co.

There exists, then, a sequence of surfaces of finite area and bounded by
g whose integrals tend to d. Fix attention on one of these surfaces, say S.
It is the limit of a sequence of polyhedra converging to it in the sense- of
Fri:cHET and whose areas converge to its area. Neither type of convergence
will be disturbed by moving the vertices of each polyhedron sufficiently to
insure that it is nondegenerate and that its boundary is simple. According
_ to a theorem of CEsARrI ([2], Theorem III), the integrals taken over the poly-.
hedra algso converge, to the integral taken over &§.

1t follows that the original minimizing sequence may be replaced by a -
minimizing sequence of nondegenérate polyhedra, with simple boundaries
which converge to ¢ in the sense of FrEcHET. We denote this sequence by {8,}.

Choose on g three distinet points p, ¢, and ». On taking account of the
Fricaer convergence of the boundaries S to g, choose distinet points p., q.,
and r, on each 8 in such a way that p, —p, ¢, — ¢, and r, — . Fix three
points a, b, and ¢ on the unit circle, 120v apart. According to a classical
theorem, each §, possesses & generalized conformal representation on the unit
circle C, which sends a, b, and ¢ into p,, ¢,, and », respectively. We denote
this representation by =x,.(%, v).

Observe that the DIRICHLET integrals

. N 1 .
Dy(x,, C) = 5 /J (a2, 4 a2 )dudo

[

of the representations a, are uniformly bounded in n. For since x, is gene-
ralized conformal on C,

almost everywhere. Hence

// f(xa, X)) dudo = m// [X,,] dudy - mDy(x,, C),

and the assertion follows from the fact that {x,} is a minimizing sequence.
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The proof will proceed as follows. First we shall find a countable every-
where dense (along the interval (—1, 1)) 'set of lines parallel to the u axis
and a countable everywhere dense set of lines parallel to the axis, whose
intersections with the unit circle form a net 9 possessing certain special pro-
perties with respect to the sequence {x,(,v)}. We then prove that the se-
quence {x,(u,v)} is equicontinuous on the boundary of the unit circle, and
from this and the uniform boundedness of the DIRICHLET integrals that a
subsequence converges weakly in a certain HILBERT space to a function xy{u, v),
which does not a priori have to be continuous. With the aid of the net €x,
however, we shall show that z, is LEBRSGUE- -equivalent to a continuous function
and may therefore be taken to be continuous. Again employmg N, we find
a further subsequence which can be so modified as to converge uniformly
to x,, while the mtegmls still converge to d. At this stage a known semi-
continuity them em can be applied and the theorem proved.

3.2. — The net 9N.

Let K be an upper bound for the DIRiCHLET integrals Dy(x,, ¢). Put
B, = E ] (xn, + a2)dv < 29K,

~15us1 |,
{ul

where p is a positive integer and the integral is taken over the m’celsectlon [w]
of the line of abcissa w with the unit circle. Then it is easily seen that

. 1
m(Evm) 2 2 - 1; ’
8o that ’ ‘
m{lim sup K,,) = Iim sup m(¥,,) = 2 — -,
oE . T
Put . = ' :
- 1, =lim sup &,,
n
and

Traitireres i oL = zFﬁ *

Then the F, are increasing and

’m(F) = 2.

Thus if % is'not in a certain set of measure zero, thereexists an infinite sub-
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sequence of {x,} for which

9

/ (22, + af Ydo,
13

is. uniformly bounded. The same holds if we replace {x,} by any one of its
subsequences; that is, given the subsequence then there is a set of measure
zero such that if « is not in that set the integrals over the segment [%] of
abeissa w are uniformly bounded for some further infinite subsequence.

The same remarks hold for integrals taken over segments [v]; we are now
ready to define the net 9.

Observe that there is a set Z of measure zero on (—1, 1) such that if
& Z., then x,(u,?) is absolutely continuous in » on the open segment [u]
for all n, a set Z. of measure zero such that if « & Z, then the ordinary partial
derivatives x,, and x,, are equal almost ex?erywhere on [u] to the generalized

derivatives in. the sense of EvaAns (this property is needed in the application . .. .

of Lemma II) and a set Z, of measure zero on (—1, 1) such that if & Z.
then the integral

| (a2, 4 2)do,

Tu]

It

exists and is finite for each #. Put now Z, = Z, + Z. 4 Z.. Define cor-
respondingly a set Z,.

Choose u,, not in the set of measure zero corresponding to the original
sequence,-and not in Z,. We obtain a subsequence for which the integrals
over [u,] are uniformly bounded. Choose %, not in the set of measure zero
corresponding to that subsequence and also not in Z,; we obtain a further
subsequence on which the integrals over [w,], as well as [u,], are uniformly
bounded. Continue this process, choosing the numbers w;, #.,... in such a
way that their totality is everywhere dense on (—1,1). Employing the dia-
gonal process of CANTOR we obtain a single subsequence whose integrals are
uniformly bounded over each segment [u,], [#.],... We subject this sub-
sequence to the same process with respect to ». Thus we obtain finally an
everywhere dense collection of segments

[¢], [%a], -
parallel to the » axis and an everywhere dense collection of segments
[v]y [%2]y oo

parallel to the # axis, and an infinite subsequence {x,,k} of {x,} for which the
integral of («f, -+ ;) is uniformly bounded in =, over each segment of the
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collection. Furthermore, each X, is absolutely continuous over each segment
of the set. This collection of segments is called the net N, and is fixed throug-
hout the sequel.

3.3. — Equicontinuity on the boundary.

In this section we prove that the minimizing sequence {x,} is equiconti-
nuous on the boundary C* of the unit circle. We first observe that the boun-
daries S are equi-uniformly locally connected in the following sense:

For any e> 0, there ewisits a 6> 0 such that for every n, if 4 and B are
“two potnts on SF distant less than & then they lie in an arc of S* of diameter < e.

To prove this, take "¢ > 0. Since ¢ is uniformly locally connected there
is a o satisfying 0 << ¢ < ¢ such that any two points on g distant less than ¢
lie on an arc of g of diameter less than /3. Since the boundaries S¥* converge
Tinthe sensé of FRECHET to gy, there is an n, such that it w>"n, then
(8%, g] < 6/3. Corresponding to each of the curves §¥ with 1< n< n, there
is a d, > 0 such that any two points of S* distant less than §, lie on an arc
of §¥ of diameter less than ¢. Take 0 < § < min (0/3, 8, ..., d,). Let n be
any positive integer and A and B ftwo points on 8¥ distant less than 6.
If n< %, the result is immediate. Suppose # > #n,. Then there is a homeo-
morphism of the circumference of the unit circle into itself under which the
image on S* and ¢, respectively, of corresponding points, are distant less than
o/3. If A’ and B’ on g correspond to 4 and B respectively, then A’ and B’
must be distant less than ¢ and so lie in an arc ' of ¢ of diameter less than g/3.
o' corresponds under the homeomorphism to an are « of S* A and B lie
in o, and the diameter of « is clearly less than /3 + 2-6/3 < e. This proves
the result. :

The following equicontinuity probf is modelled on one used by COURANT
(see [5], pp. 542-544).

Let ¢> 0. Clearly we may suppose & less than the minimum of the
distances between the points p, ¢, and ». If x is sufficiently large, then, ¢ is
less than the minimum of the distances between the points p., ¢., and r,.
We fix an #, so that this is true for all n=n,. As each mapping is con-
tinuous on the boundary of the unit circle, it will suffice to prove the equi-
continuity of the part of the sequence with n= #n,. By the equi-uniform
local connecteduess property, there exists a 6> 0 such that for any = any
two points on 8F distant less than ¢ lie in an are of S of diameter less than e
Fix such a 6 and put

Ak 5
. n=2=e .

We may assume ¢ taken smail enough so that n<1/2. Let O and ¢ be any
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two points on the circumference C*, distant less than . We shall prove that
the images under x, of 0 and @, for any n> g, are distant less than e,
Let P be the midpoint of the shorter arc joining O to . Describe with P
as center two circles with radii » and \/7—7 respectively.. The region in which
the annulus between them intersects the -unit circle ¢ will be called B. Fix
any n=n,. Then

// (%5, + 23,) dudo < 2K
” .

7 will remain fixed for the remainder of this argument; we drop it tempora-
rily for convenience in notation. We now ftransform the integral by intro-
ducing polar coordinates (g, 8) with origin at P. Within R this.transformation
and its inverse are analytic. R is obviously of class § in the sense of
MorrEY ([7], p. 195). Accordingly, in virtue of the EVANS change of variable

theorem..(see..footnote (), p.- 46}, it ig-clear-that the - funchion x(uy oy

is transformed into a function of ¢ and 0 which is absolutely continuous in
the sense of ToxELLI, whose partial derivatives with respect to p and 6 are
given almost everywhere by the formulas of the elementary calculus, and

satisfying
' 1
[/ (x3+ . ) 0dodd < 2K .

'
R

This implies

n

1
[dg-[mgdagzzc.
J e,

n 4

From this we see that there is a set of g’s of positive measure such that

4K
o<
j 74 =log (1/7)

e

For otherwise we would have

. 4K
f 780> g ()

almost everywhere, so that

4K g
[dg —/m,,d6>10“(l/77) =2K,
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a contradiction. Since x is A.C./T. in ¢ and 6, then x is absolutely continuouns
as a function of § for almost all p, and accordingly A.C. in 0 for some g lying
in the set of positive measure for which the inequality just proved holds.
Choose such a ¢ and call it g,. The circle with center P and radius p, inter-
sects C* in two points A and B. The images under x of 4 and B are distant
less than 6. For

| ] yz | 4Ha Qe

lx(d) — x(B)| = ! -[xg df g < [ﬂ‘/x%dﬁ} ’g !Ioar;(l/;y—)] = 4.

0=0, e=0
Hence the images of A and B lie in an arc of §¥ (we resume now the use of the
subscript ») of diameter less than e. This must be the arc containing the
image of P, as since % <C 1/2 the other arc joining the images must: contain
at least two of the three points p,, ¢., 7., and accordingly have diameter
greater than ¢. Hence the image of the arc APB has diameter less than e.
But” APB containg the points O-and @, so that '

|2,(0) — & (@) < &

Accordingly the minimizing sequence is equicontinuous on the boundary.

3.4, — Weak compactness of the minimizing sequence.

On taking account of the uniform boundedness of the DIRICHLET integral
“and the equicontinuity on the boundary, it is easy to show that the integral

[/ x3(u, v) du do

is bounded independent of n. Hence obviously so is the quantity

Doz, C) = Dy(xn, C) + [f x%(u, v) dudv .

This is the square of the norm in the HmsErT space called P, by CALKIN
and MorrEY ([1] and [T]).

What is important here is that functions x A.C.T. with D,(x, () bounded
are functions of class %B,. Thus the functions of the minimizing sequence are
of class PB,, and furthermore have ﬁg(x,,, C) uniformly bounded. It fol-
lows from a theorem of Morrry ([7], Theorem 8.4) that a subsequence
converges weakly in B, to some function x, of class %,. This limiting funetion
need not be continuous. The next section will be devoted to proving that x,
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is however equal almost everywhere to a function which is continuous on the
closed circle €. Tirst, however, we shall use some of the 1°esu1ts so far obtained

‘to extract a particular subsequence

At the end of Section 3.2 we found a subsequence {x,,k} of {«,} for which,
over each segment of the net 9, x; 18 absolutely continuous and the integral
of (x;, -+ x,fk”) uniformly bounded. Given a segment of the net, it is easy
to see from this, using the SCHWARTZ inequality, that the sequence {x,,k} is
equicontinuous on that segment. Acecordingly a subsequence of {x";,} con-
verges uniformly there. Applying the diagonal process to the countable col-
lection of segments in N, we obtain a subsequence of {x,,k} which converges
uniformly on each segment of the net. Because of the equicontinuity on the
boundary there is a further subsequence converging uniformly also on the
boundary. Finally, a subgequence of this converges weakly in B, to the
function x,. We change notation and denote this sequence by {x,}.

In- summary, the sequence {x,} possesses-the following properties:

{x.} converges weakly in 8, to a function x, of class P,;
b) {x,} converges uniformly on each segment of the net N;
¢) on the boundary of the unit circle, {x,} converges uniformly to a
representation of the JOrRDAN curve g;
d) the representations x, are generalized conformal;
e) the DIRICHLET integrals Di(x,, (') are uniformly bounded;
f) on each segment ¢ of the net M each x, is absolutely continuous and

the integrals / (2], -+ a2 }ds uniformly bounded;

{x,} is a minimizing sequence.

3.5. ~ Equivalence of the limiting function to a continuous function.

The object of this section is to demonstrate the existence of a function
x;(u, v) which
a) is continuous on the closed unit circle C,
b) coincides on the boundary C* of the unit circle with the limit. taken
on there by the there uniformly convergent sequence {x.,},
¢) coincides on each segment of the net N with the limit taken on there
by the there uniformly convergent sequence {x,}, and
o d) coincides almost éverywhere' on ( with the function xy(w,+) (of the
last section).
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We shall prove in Section 3.6 and Section 3.7 that x; is a represensation of
the surface &, which minimizes 7(8).

We turn to our demonstration. A theorem of C. B. Morrry ([9], p. 42,
Theorem 6.2) states that

If a vector function x of class ., whose boundary values are -continuous along
C*, satisfies, for some 4 =1,

D) Dy(x, R)< A-Dy[H(x, R), R]

for every subregion R of ¢ which is of class §, then there ewists a function '
which is continuous on the closed civcle C, takes on the boundary values of x,
and is equal to x almost everywhere on C.

Let us modify the function x, by replacing its values on ('* by the limiting
values taken on there by the there uniformly convergent sequence {x,}. This
will not affect the results of the last section. Then, according to the result
_quoted above, the existence of a function a, satisfying a), b), and d) above

will be established as soon as we have proved the condition (D) for some A.
Property ¢) will then also follow, as follows: since the sequence {x,} converges
weakly in P, to x, it converges strongly in I, to x, ([7], Lemma 8.3).
Employing procedures similar to those used in constructing the net 9t, we find
a (countable) everywhere dense set of segments parallel to the v axis and a
single subsequence of {x,} which, along each segment of the set, converges
strongly in I, to x, and also uniformly to a function continuous along the
segment. It follows that the uniform limit must coincide everywhere along
each segment with x;. Now let [v] be a segment of the net 9 parallel to
the u axis. It follows that at an everywhere dense set -of poinfs on [v] the
limit of {x,} regarded as a uniformly convergent sequence on [v] coincides
with x,. Both x) and the uniform limit of {«x,} being continuous, they coin-
cide everywhere on [v] and so ¢) is proved.

Thus what is required is merely a proof that x, satisfies a condition (D)
‘We shall in fact prove that x, satisfies the condition

M
@) Dy(x,, B) = m - Dy[H (%o, R), R] ’

for every subregion R of ' which is of class .

In view of Lemma I of this paper it is sufficient to prove this for regions &
bounded by a finite number of pieces of segments from the net 3. Suppose
that R is such a region. Now since {x,} converges weakly in 9, the sequences
{x,,} and {x,,} converge weakly in L,. Hence as is well known

Dy(2y, R) = lim inf Dy(x,, R) .
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Also, as the conditions of Lemma IT are evidently satisfied, we have

D,[H(xy, R), R] = lim [D,H(x,, R), R].

N300

Hence it is sufficient to prove that

lim inf Dy(x,, B)< 2 lim [D,H(x,, R), R].

n m n->co
Suppose this is not the case. Then there is an &> 0 and an #n, such that
mDy(x,, R) > BID2[H(x7U R), R} +- ¢

for all n>n,. Let now w, be the vector function gotten by replacing =x,
on R by H(x,,R). Let .S, be the surface represented by w,, (1 = o T
Then for »> n, we have

7(S,) :‘[/f(w,,, W, dudv =

- [ [ fawa, Wy audo + /j/'f(x,,,Xn)dudvg M [ [1w,|dude +ff fatmy X,y dudvo<

R C—~R R c—r

< MDy(w,, B) + [[ fxn, X,) dudo < mDyxa, B) + [f fln, X,) dudo — o<

0—R C—R

= [/f(x"’ X,) du do ‘{“‘/'/"f(x”, X,) dudv—~ & = T(8,) __, £0 s

C—R

so that
liminf 7(8,;) < lim 7(8,) .

This is impossible as {§,} is a minimizing sequence. This completes the
-proof of the results of this section. Thus the results summarized in Section 3.4
can be written in the sharper form - and from now on we drop the prime
from x; —: ‘ :

a) {x.} converges weakly in P, to a continuous function x, of class B,
(and therefore:A.C.T.);. , ‘ ,

b) {x,} converges uniformly on each segment of the net 9N to xy5

¢) on the boundary of the unit circle, {«,} converges uniformly to x,,
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and =z, restricted to the boundary is a representation of the JORDAN curve g;

d)
e)
f) |
) |

as before, in Section 3.4,

3.6. — A special pair of function.

With a view to their application in Section 3.7, Section 3.6 is coneemed
with a pair of convex functions f(X and di(y)

We fix an x, and put f(X) = flx,, X). Then f(X) is convex, even
{i.e. f(—X) = f(X)), positively homogenedus, of class (J*, and positively re-
_.gular,  Put

(y) =-max X y.
£(X) =1

‘Then @ enjoys the following eight properties:

1) @ is convex;

2) & is even;

3) @ is positively homogeneous;
4) @ is of class C' if y = 0;

5) PIVAX)] =1; ‘

6) f(X) = max X y;
D(y)=1

) fIVO(y)] =1;
8 On &y)=1, mZ|y|< M.

These properties arve well known or easily derived; their .proof will be omiftted
here. We point out that it is in the proof of 4) that positive regularity plays
a role. '

3.7. — The modification theorem.

We state an extremely important theorem concerning the minimizing

sequence {x,}.
‘Modification Theorem: Let £6>0 and N a positive integer. There
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ewists an >N and an A.C.T. function y, such that
1) | ¥ule, ?J)—~xo(u, v)|<le  throughout, and
2) //f(y,l, ydudo < // flx,, X,)dudo + ¢.
Proof: There exists an 5 < ¢/2 such that if {2, — a,|<< 7 then

1
m f(xl,X)éf(g,xX)§ 1+ 6)f(x17X) ’

for all X, where d = ¢/(3K3), K being, it will be. recalled, the bound on
Dy(x,, C). There is a finite subnet of N so fine that the image under x, of

any of its rectangles (under «rectangles » we include figures containing pieces

~of the boundary C* of the unit circle on their boundaries) has diameter less
than (y/2)(m/M)%". Let (where R is a rectangle)

1 "
0 — e
= m(R)j / %ol ) du do.

R

. \8/2 . ’
Then x(R) lies in a sphere of radius E(TLI) with center x). There is an
7 (m\3[2 . :
7 >N s0 large that |x,(u,v)— x,(u, v )< 5l3) o R* for each R; accord-

3/2
ingly x,(R*) lies in a sphere of radius 17(1—» with center «f.
3

Now we fix attention on a fixed R and define geometrically a new function
¥a(%; ©) on B which coincides with x,(%, ») on R*. We may assume withoust
loss of generality that y is the origin. Let ®(y) be the function of Section 3.6
corresponding to f(X) = f(xg, X). The two surfaces o: D(y) = M-3/2miey

3/2
and (the larger). 3': @(y) = M~ are nested between the spheres ly|=19 GZ[)
and |y|[=7. The modification consists in projecting radially those points
xa(u, v) lying outside the smaller surface ¢ onto o, without disturbing the
remainder. This is effectuated for those points outside by the transformation
M2V Mm 7

®[xn('lb, U)] xn('u’ q;) .

¥, v) =

Now the poin‘ts' ¥alit, v) all lie in or on the smaller surface and so a fortiori
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differ throughout from xy(u%, v) by less than »; consequently conclusion 1) of
the theorem is satisfied, clearly each ¥, is A.C.T. In order to prove 2) we
shall prove first, that at any point affected by the transformation :

WY < : X,

where p = x,/y,. This is a simple matter; all that is necessary is to com-
pute the derivatives

o ) L }
Yo = T (VO w] G ¢
and
Q B 1 I’ - . _y.g‘ff_b ,
ym' e g 1x"1‘ [v@yn) xnv] (p(yn) }’

_.and_put these into _the formula

. Yn = Yau Xymr
to get

1 Xn'yn
Y,, s = 20D n) -
0* D(y,) Vely.)
Then
. 1 I-Xn'ynl _ 1 |X"yﬁi< £
f(¥,) = o By fIVO(y.)] = o By =g (X,

as required.
Suppose now that x,(u, v) lies within 2. Then x,(u, v) and y,(u, v) both
lie within % of xf and

Hyws Ya) = (1 + 0)f(ag, Y)
= (1 + Of(ag, Xo)
= (1 + 0w, X,)
= (1 + 30)f(xa, Xa) -

On the other hand, if x,(u, v) lies outside 2/, then o> VM and
- m

fyar Y= (1 + 8) fad, Y.
< (1 + 8) % flah, X.)
;g (1 4—}— 8)ym| X, |

= (1 + O)f(xn, Xa)
= (1 + 30)f(%n, Xn).



62 J. M. DANSKIN, Jr.: On the ewistence of minimizing surfaces

Since otherwise y,(u,v) = x,(%, v), we have
f(ym Y.,,)§ 1+ Bé)ﬂxw Xn)

at every point of R where X, exists, and indeed at almost every point of the
unit cirele ¢. Hence

[/df(ym Y,) d%d’vé./“/' flon, X)dude -+ 36]/ flan, X,) dudo

= [[ fwa, Xy auao + 3052
= ‘/‘ﬂ/vf(x,,, X)) dudw 4 ¢.

This completes the proof of the modification theorem.

3.8. — Proof of the principal theorem.

For a detailed statement of this result the reader is referred to the be-
ginning of Section 3.

Theorem: There is a surface minimizing J(S) among all Fréchet surfaces
bounded by the Jordan curve g.

Proof: There is, according to the modification theorem, an infinite sub-
sequence My, #y; ...; Ny, ... 0f the natural numbers and an infinite sequence
of continuous functions Yuys (p =1, 2,...) modified from the T, such that

1
1) ' | Yt 0) — xo(t, )| <}} for all (u,v) € C,
and
. . E
2) f / [y, Y,)dudo< / j flwn , X, ) dudv + .

Hence { y,,ﬂ} is a minimizing sequence, and { .’Yn,,} converges uniformly to a.
Hence according to a known lower semicontinuity theorem ([4], Theorem ITI),

([ 10, Xo) Qo < iint [] ., , ¥, ) dudo
< linjint // e, , X, ) du do
= lim inf / / flzxn, X,) dudo .
As {x,} is a minimizing sequence, the surface S, represented by x, is the sur-

face required.
This completes the preof. .
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