L. CESARI (*) and R. B. FULLERTON (*')

On regular representations of surfaces. (++

1. - Let @ be the square [0 <u<1, 0<v<1], let § by any FrEcHET
surface in the (z, y, 2)-space and { 7'} the family of all FRECHET equivalent single-
valued continuous mappings T': # = x(u, v), 1 Y = yu, v), z =2z(u, v), (u,v)€Q,
which represent the surface § on . The three projections of S on the
coordinate planes are flat surfaces ,, 8., S; which are represented by
the mappings T): y =y(u,v), 2= z(u, v); Toi 2 =2(u,v), = =axu,v);
Ty: & = a(u, v), y = y(u, v); (u, v) € Q.

8 is said to be an open non degenerate surface if, for any T'e { T}, there
is in @ no maximal continuum of constancy for T separating @, or the (u, v)
plane. § is said to be closed non degenerate if, for any T'e{ T}, the previous
condition is satisfied with exception of one maximal continuum of constancy
for T which contains the boundary Q% of Q, separates the (u, o) plane but
does not separate @ [5]. (These conditions are invariant for FRECHET equi-
valence). Any open, or closed non degenerate surface is called here simply
non degenerate.

A representation 7'e { T} of a surface § is called light if each maximal
continuum of constancy for 7 is a single point. It is well known (see e.g. [9])
that any open non degenerate surface possesses a light representation; any
closed non degenerate surface possesses a representation which is light in the
interior of @ and has the boundary Q* of @ as a maximal continuum of
constancy. The proofs which follow will hold in both the open and closed ’
cases since identifications of points on the boundary will make no difference.

In questions concerning surfaces it is frequently convenient to consider
surfaces which have regular representations. A representation 7T is said to
be regular [2] in case there exists in Q a countable dense set {n,} of orizontal

(*) Address: Via Castiglione 1, Bologna (Italia).

(*') Address: Department of \Iathematlcs, The Umve1s1ty of Wisconsin, Madi-
son 6, Wisconsin, U.S.A.

(**) Received April 11, 1951.



280 L. CES4ARI and R. E. FULLERTON: On regular

line segments [v = v, 0 <u<1], and a countable dense set {£, } of vertical
line segments [w = u,, 0 <v < 1], such that the images of each segment under
the mappings T,, T,, T, are of plane measure zero. The purpose of this paper
is to prove that every non degenerate surface of finite LEBESGUE area has reqular

P EPrESentation:

This statement has been already proved by using methods involving the
DIRICHLET integral: namely it has been proved [3, 5, 8] that each open non
degenerate surface of finite LEBESGUE area possesses certain generalized con-
formal representations and the previous statement can be deduced from this
result. In the present paper we shall give a proof which depends solely upon
geometrical considerations and thevefore is closer to the nature of the above
statement. Moreover it may be more valuable in generalizations to higher
dimensions.

2. — If I, J ave sets contained in an euclidean space E,, we denote by I*
the boundary of I, by I =I -+ I* the closure of I, by I° the set of all
interior points of I, by |I| the LEBESGUE measure of I, by {I,J} the
distance between I and J. We denote by 6 the nul set and, if p is a point
of E, we denote by p also the set whose unique element is p.

If T is a mapping, we denote by T(p) the image (,y,2) of a point
P = (4, v) & Q, by T(I) the set of all points (=, y,2) which are images of at
least one point p of the set Ic @, by T-Y(g), T-'(J) the sets of all points
(#, v) € @ whose images are the point ¢ = (, ¥, 2), or any point ¢ = (2, y, 2) € J.

Let O c @ be any connected open set. For any two points, p, ¢ € O there
exists a polygonal line ¢ c O joining p, ¢. A point p& 0% is said to be acces-
sible from O if there exists a simple arctc O U p, tn 0% = p, and it can be
supposed that each subarc of ¢ not containing p is a polygonal line. If O is
simply connected, O*is a continuum and points of O* are accessible from O [3, 7].

Any two mappings, T,, T, are said to be FRECHET equivalent if for any >0
there is a homeomorphism % of @ onto itself such that { 7\(p), T.[h(p)]} < e
for any p€ Q. T, T, are said to be LEBESGUE equivalent if there exists a
homeomorphism %, of @ onto itself such that T,[h(p)] = T.(p) for any p e Q.
The LEBESGUE equivalence is a parti¢ular case of the FRECHET equivalence.
If §is a FrEcHET surface, [S] the set of the points occupied by S in E,, T,, T,
any two FRECHET equivalent representation of S, then [S]= T,(Q)= T.(Q).

3. — Let S be any FricHET swrface and 7 any representation of S. We
denote by L(S) the LupESGUE area of §. If 7, is a positively oriented closed
JORDAN curve in @ and ( its image under Ty, we let O(z, y; ) denote the
topological index of (v, y) with respect to ¢ [O(z, y; €) = 0 for any (z, y) € C1.
If {r;} is any finite collection of closed disjoint JORDAN regions in @, each with
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boundary »; positively oriented, and if C; is the image of »¥ under Tj,let

glr) = j [ |0z, y; C;)| dedy, where K is a square of the (z, y)-plane con-
K

taining T(). . Let G(T,) =1w.b. S; g(r;), . were. the upper. bound. .is. taken
with respect to all finite collections {7;} as above. Similar definitions hold
for G(T,), Q(T,). If r; is as above, let g(r) = [g;() -+ ¢2(r:) + g2(r)]¥? and
G(T) =1u.b. 3, g(r;). It is well known that G(T), as well as G(T,), (r =1, 2, 3),
are invariant for FRECHET equivalence, hence they depend only on the FrREcHET
surface S, or the Friicmrr flat surfaces §,, represented by 7T,, (r =1,2,3).
Therefore, by definition, we have @(S) = G(1); G(S,) = &KT,), (r =1,2,3).

To define the total variation of the mappings 7,, (r =1,2,3), we puﬁ
Wz, y; Ty) =1lub. 3, [0, y; C;)|, where the Lu.b. is taken over all finite
collections {7;} as above. The function ¥(w, y; T,) is called the characte-
ristic function of T4, is not negative, measurable, zero outside 7T,(Q). The

total variation of 7, is the LEBESGUE integral W(T,) = j / PN, y; T,) de dy.
: K
Analogously for 1, 7.. .
Through only geometrical considerations the following statements have
been proved [1, 2] for all FrRECHET surfaces S: (a) L(S) < 4 oo if and only
it W(T) <+ oo, (r=1,2,3); (b) W(I,) <L(8S) < W(I,) + W(T) + W(T,);
(€) G(8) <L(8); (d) G(T,) <G(8); (e) G(T,) = W(T,) =L(8,), (r =1,2,3).
Through additional considerations involving the DIRICHLET integral it has
also been proved [3, 4]: (£) G(S) = L(N).

4, - It T is any mapping defined on @, let us call I'(T) the collection of all
maximal continua of constancy y for the mapping 7 in @. Analogous defi-
nitions hold for the collections -I'(T,), (» =1,2,3). For each point q =
= (@, 9, 2) € T(Q) all components of the closed set T-(gyc @ are continua
y & I'(T); for each point ¢ = (z, y) € T,(Q) all components of the closed set
T:7Yq) € @ are continua y & I'(T,); analogously for 7,, T,. In addition for
each y € I'(T) and r, (r =1, 2, 3), there is a y,& I'(T,) such that y c y,.

Through only geometrical considerations the following statement has been
proved {1, pg. 287]: (A) If W(T.) <<+ oo, (r=1,2,3), then for almost
all points q = (x, y) € T4(@) all components of the closed set T;'(g) are conti-
nua y € I(T) as well as continua y & I'(T;); analogously for T, T,.

5. — Theovem I. Let T: @ =a(u,v), ¥ = (4, 0), (4,v)EQ, be a con-
tinuous light mapping; let O be a connected open subset of Q, and p,, P, be two
points of O* accessible from 0. Then there is o simple arc s joining p, and P,
§c OUp,Up,, such that |T(s)| = 0.
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Proof. Let K be the unit square in the (z, y)-plane. It can be assumed
without loss of generality, that B — 7(@)c K. By the use of a suitably
constructed CANTOR sets it is possible to construct a closed, totally discon-
nected subset of K with plane measure arbitrarily near unity. Let H, be

such-a-setHy o I, {H; | >34, T(p;) 1ot in Hy, (3= 1,2). Since 7 is light,
I, = T-Y(H;nB) is also closed and totally disconnected. Let &, = O — (F, n 0).
G, is open and connected and, because p,, p, are not in F,, there are two circles
0, = Clp;, 8,) of center Piy radius 0 < 6, <1/4 containing no points of #,
(i==1, 2). Because the points P:€ 0% are accessible from 0, there exist sim-
ple arves b,; contained in @ u P1Up, which join p, to points of G, n C,,
such that each subare of b,, not containing p, is a finite polygonal line and
there exists a polygonal line 8; © Gy, such that b, u b.Us, is a con-
nected set joining p, and p,. b, U bip U s; Is not necessarily a simple arc
but, if p;, is the intersection point of b,;, and s;, which is first encountered
on leaving p,, (i=1, 2) and bi; is the subare of b, joining p, to P1s, if Wwe per-
form the same operation on s/, then s, — b Ubj,us) is a simple arc join-
ing p, and p, s, cG U PLUDyy, T(sy)c K—H,, [T(s,)] < 1/4, and each
subare of s,, not containing the end-points p,, p, is a simple polygonal line.
If w, = T(s,), we have w; N Hy = 0, hence {w,, H,} = 29, > 0. Let le(«wl),h
be the set of all points (z,y)e K whose distance from wy, 18 <#;. Then W,
is a closed set, W,>w,, W,n H, =0, hence |W,| <1/4. Divide the poly-
gonal line s; = 291’177\1 (subarc of s,) in %, —2 segments, SAY tiay iy eeey b, ry
each of length < 1/4, and call Qi1 = Dy1y Gazyoey (o, k-1 = Py, the points of
subdivision. Let ¢, =/, ¢, =04 G=71, ¢r, =p. In such a way
si=U. s, (1 =1,2,.., k), is divided in ky ares ty;, of which 4, t,,, have
diameter <<1/4 and all others are segments of length <1/4. Let each segment
liy (1 =2,38,..., k,—1), be now included in a rhombus R,; with ¢, as one of
the diagonals and the other diagonal chosen sufficiently small to insure that
no two of the B,; intersect except at the end points of the t;; and no R, con-
tains p, or p,. Let us observe that T-YW,) is a closed set.which containg
all points of the segments % a8 interior points, hence we can suppose that
the second diagonal of E,; is chosen so small that the rhombus R, ; is comple-
tely interior to T-1(W,), (1==2, 3, ..., k;—1). This implies t,,c R,, c (W),
i © GIUtU-‘l = 0127 hencea it 3[1 :W1 U T[(Cn u 012) u Q]yle (UiRu') UGy, u Cm;
we have T(L,) c M,.

Let H, be a closed totally disconnected set H,c K, |H,| > 17/8, T(¢,;) not
in Hyy, (1=0,1,.., k). If #, = T-H,n B) then ¢, is not in #,, and
G =6,—(#,nEG) is an open connected set. Because p, = g0, P, = 1, x,
are not in #,, there are two circles C,; — C(psy &), of centers p,, p,, radius
0, <8, 0,<1/8, free of points of F, Let by, — PPaiy (6=1,2), be a
subarc of bj, [b], =t,, b, =1y, ], completely contained in C,. Then b,,,
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(i =1, 2), are both free of points of F,. On the other hand the points p.,,
P}, [Ply =ty Pla = h,11]) ave in G and also in a connected component F,,
of G, n Cy;—U Ry, because the arc p,p), joins them in Gy n Cy;. Because F, is
totally disconnected, F,;— (Fy; n #,) is connected and hence ther e is a

polygonal line f1hy OF ty JOIOING Py, Py i F = (B ), hence i
@ n C,;. In each rhombus R,; (i=2, 3, ..., k;—1), the vertices ¢, -, ¢;; do
not belong to #,, hence there is a polygonal line ¢, c Ry, n G., joining
Qr.ie1s Qui- Now s, =U, ¢, is a simple polygonal line, s,c G,. The curve
Doy U byy U s; is not necessarily simple. If we denote with b, = pips, the subare
of by;, where pj, is the intersection point of by, with s, first encountered on
b,; leaving p;, (i =1,2), then s, = b, U b, U s; is a simple arc joining p, and
Doy 8:C Go U P U P, T(sy) c K—Hy, T(sy) C Wi,| T(s)] <1/8, and any subare
of s, not containing the end points p,, p, is a simple, polygonal line. If
w, = T(s,) we have w,n H, = 0, wy,c (W)°, {wy, H:U Wi }=2n>0  Let
W= (w.),, be the set of all points (z, y) € K whose distance from w, is < 7,.
Then W, is a closed set, w, ¢ (W,)°, W, c (W;)*, W, n H, = 6, hence |W.| < 1/8.
Divide the polygonal line s; = p;/?p;z (subarc of s,) in h,—2 segments, say
tany Bagy <oy ton-1, €8Ch of length <1/8, where hy = ky, hy = kiks, k,, k., inte-
gers > 1, and call o1 = Payy Gazy ooy Go,n—2= Doy, the points of subdivision,
in such a way that each of the arcs #;,, t,, is divided into k,—1 parts, and
each of the other ares ti,,.., f;, , is divided in k, parts. Let i, = by,
ton, = by Qoo = D1y Qoa, = P2 In sUCh 2 way s,= U, ty, ¢ =1,2,..., k) is
divided in hy, = k,k, arcs tp;, Of which iy, t, have diameter <1/8 and all
others are segments of length < 1/8. Let each éegmen‘o sy (0= 2, 3, ...y Iy—1),
be now included in a rhombus R,;, as above, and we can also suppose each
rhombus R,; completely contained in one rhombus Ry, or in €, or (..
We have ;€ Ry T2 (W,), tnC Coyy tos < Cp, hence if M, = W,uU
UT [(Coy U Con) N Q, Ln=(U; Bor) U Coy U Cuy, also T(Ly)c M, Ly Ly, My M.

Let successive steps be carried out in the same manner, each step obtaining
a simple are 8, = tuy Ulpa U oo Utun s By = Eyks o Ky 82 C 0 U p; U p,, joining
p, and p,, each subarc of s, not antaining p, and p, being a polygonal line.
Here 1,1, tns are simple arcs contained in the circles C,;= C(p;, 0x), (=1, 2},
8n < Bpyy 0, <1/27%15 each t,, (1=2,3,.., h,—1), is a segment whose
length is < 1/2#+1, and one of the diagonals of a thombus R,;. If w, = T'(s,),
there is an #,>0 such that W, = (w.), and T[U; R, Jc (W) W.c
< (Wy)o. It M,=W,u T[(C U C) N Q, L, = (U;R,i) U Coy U Ope, then
™L,)c M,, L,c Ly, M,c M,;; |W,|<1/2#1. The sets M, are closed,
M,c M,.,, hence M=, M,, is a closed non empty set. On the other
hand T[(C,, U C.) n @] is the union of two closed sets contained in two
circles of center T(p,), T(p.) and radius p, approaching zere as n - oo,
Therefore |IM,|<<1/2" 4 27, |M| =0. Let us observe that the sets L,
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are continua joining p, and p, in O U p, U p,, and L, c L, hence L=nN,L,
is also a continuum joining p; and p, in 0. We have only to prove that I
is a simple are. Let I= (0 <a<1) and define a mapping 7 of-Z-into I as
follows. Divide I into &, =kk,... k%, equal - parts  On; = (0ts,iq, 0us),

(i=1,2,.,h,), WHete o, (i =0, 1,..., hy), are the points of subdivision.
Then by putting (c,.) = ¢u, (4 =0, 1,.., k), we have a consistent defi-
nition of 7 at the points «,,€I. Let us observe that 7(0) = ¢,, = D1y (1) =
= Qun, = Pas that the points e, ,,, o,;, end-points of §,, are mapped into
the polints Qn,i-1y niy vertices of the rhombus R,,, and that the points o,;,
O, im1 K O K gy M > W, ave mapped in points gn; €ER,;. For any 0 < o<1
there is a sequence of nested intervals 6,, whose lengths approach zero as
n — oo and the points ¢n; images of the end-points of §,, are the vertices of
a sequence of nested rhombuses R,; whose diameters do not exceed 1/2%,
hence approach zero as n.—> oco. Therefore 2 unique point ¢ = z(«) is defined
and g€ L. In such a way the mapping ¢ = 7(«) is defined in I and 7(I) e L.
On the other hand, if ¢ is any point of L, then ¢ is determined by a sequence -
of nested rhombuses R,; and, if §,; are the corresponding intervals, a point
«€ L is determined such that 7(x) =g¢. Hence ©(I) =1IL. Any point
0 <1 belongs to at most two intervals 8,;, (¢ =1,2,..,4,), and for
each o' the points 7(x), v(«') belong to the same rhombus R,;, or to two
adjacent rhombuses, R, hence { v(«x), 7(e')} <<1/27. This proves that 7(e)
is a continuous mapping. (Analogous reasoning holds for o = 0 and ¢ — 1.)
Finally let us observe that, if «<C &/, are any two points in I, there exists
an n such that o,y <o <ot < o5y < ' tyy, 1< j—1, hence () and
7(«') belong to two rhombuses R, R,; completely disjoint, hence (o) F=r(e).
This proves that ¢ = t(x), a€ I, is a homeomorphism between I and I,
i.e.,, L is a simple arc.

6. - Theorem II. If Tt o =ao(u,v), y = y(u, v), (4,v)E Q is any light.
mapping, there is a light regular mapping T': x = a'(u, v)y, Y = y'(u, v),
(4, v) € @'y, LEBESGUE-equivalent to T, coinciding with T on Q*.

Proof. Let k =4 and {Q,} the subdivision of ¢ into E =16 equal
squares @, (each of diameter <C1/2) by equally spaced horizontal and vertical
line segments. For each @, let four arcs s be constructed from the mid point
of each side to the center, such that |T(s)| = 0, such that no two of the four
ares have points in common except the center and such.that each ares § has
no point in common with Q; except the mid point of the corresponding side
of @,. These arcs s can be constructed as follows. By application of Theo-
rem I to the two rectangles in which @, is divided by a parallel to one of the
sides we construct two arcs s joining the center of @, with the mid point of
two opposite sides of @,. Then these two arcs s give a subdivision of ¢, into
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two JORDAN regions and by application of the same Theorem I we obtain
two new ares s joining the center of @, with the midpoints of the two remaining
sides of @,. The four arcs s divide each square @, into four JORDAN regions.
Hence we have a final subdivision { U} of @ into 4%* = 64 JORDAN regions U,

“each of “diameter <172, The ares s form & eollection { ¢}, of 2%, arcs of
which %, join two opposite sides of @, another %, the two remaining sides of Q,
and |T(o)| =0 for any o €{o},. Let us consider all segments s’ joining the
center of the squares @, with the mid points of the sides of ;. Let ¢;* be a
homeomorphism of @ onto itself, identical on Q* as well as on each @7, map-
ping each arc s onto the segment s’ having the same end points. Hence each
of the four JORDAN regions U, contained in each @, is mapped into one of the
four quadrants ¥, in which the segments s’ divide §,. Let {V,} be the
collection of all squares V, so obtained. The homeomorphism ¢, lets cor-
respond a segment ¢’ to each o € { ¢}, and ¢’ is parallel to %, or v-axis and joins
two opposite sides of Q. TLet {¢'}, be the collection of the 2%, segments so
obtained. If T, is the new mapping 7T, = Tp,, we have |Ty(c")| = 0 for any
de{d}.

Let k, >4 be an integer and divide each square V; into % equal squares
{@.} by equally spaced horizontal and vertical line segments. The mapping
T, maps the squares @, into JORDAN regions contained in the U, and we can
suppose that k, is the smallest integer, k, >4, such that all these JORDAN
regions have diameter << 1/22: We can also construct in each square Q, four
arcs §, joining the center with the mid points of the sides and such that
|Ty(sq)] = 0. These ares s, divide each square @, into four JORDAN regions Va
and each square V, into 4k} regions V,, to which @, lets correspond in U,
as many JORDAN regions U,. Let { U,} be the collection of all regions U,
so. obtained in @, all of diameter << 1/22. The arcs s, form a collection { o, },
od 2k, k, arcs o, joining two opposite sides of @*and | T}(a,)| =0 for any o, € { 5, }-
Let {0}, be the collection of all ares o, images of o, under ¢,. We have
|T(0)] =0 for any 6 € {c},. Let s’ be the segments having the same end
points as the arcs s,, let V, be each of the four squares in which the squares @,
are divided, let ;' be a homeomorphism of @ into itself, identical on @* as well
as on each @, mapping each s, into a segment s'. Let { ¥,} be the col-
lection of all squares so obtained and {¢'}, the collection of all segments o’
in which @, maps all 6,€{o,},. If T, = T\p, = Tp,p, we have |T,(¢')| =
= |T\(0y)| = |T(0)| =0 for any o' €{0'},.

By repeating this procedure n times, we get (a) a subdivision { U,} of @ .
into 4%%-4k:... 4k* JORDAN regions U,, all of diameter < 1/27 and also a
subdivision { V,} of @ into as many equal squares ¥,; (b) a mapping
Ty =T i@ = TosPurPn = ... = T, ... 9,, Where ¢, (i=1,2,..,n), are
homeomorphisms of @ onto itself, identical on @* as well as on each V},
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(G =1,2,...,i—1), mapping each ¥, onto U;, (j =1,2,...,14); (¢) n col-
lections {0}, (¢ =1,2,..., n), of arcs joining two opposite sides of @}, each o
being a union of ares of U, and n collections {¢’}; of segments unions of
segments of ¥, all parallel to the u, or v-axis, and equally spaeed such that

]T(o‘ | = ]T (0))] = |Tu(c")] = 0.

Let v, =@p....0,, and let us prove that p =lmy, as n — oo, existy
and is a homeomorphism. First let us observe that g, Putgy -y ave iden-
tical on VF hence w,:,(p) = p.(p), (" =1,2,..), w(p)=p.(p), for any
pE VY. Let p be any point of @, and p not in V7, for any n. Then p is
contained in a sequence V,, V,, ..., of nested squares V,, diameter V, — 0,
and, if Uy, U,,..., U,, .. is the corresponding sequence of U, = Wal V),
then diameter U, -0 and there is a wunique point ¢ contained in all
U., ¢ =limg,(p) = (p). On the other hand for any point g€ @ there
is a point p & @ such that ¢ = p(p), as we prove by the same reasoning. If
two points p, p'€ ¢, p # p’, then there is an n and two different regions
U, U, €U,y p'€ U, Usn U, =0; hence g€ V,, ¢ €V, Vun V. =0,
q #=¢'. Viceversa, if ¢ % ¢/, also p % p’, by an analogous reasoning. If
p € @, if N, is the neighborhood of p formed by the JorDAN regions U, (one,
or two, or four of them) which contain p as an interior or a boundary point,
if p’is any point p’ € N, then ¢ = y(p), ¢ = p(p’), are both contained in the
neighborhood N, of ¢ constituted by the squares ¥, images of the U, under
W, and dlametel N, —0. This assures that y is a continuous mapping in @
and also that v is a homeomorphism. If 7”= Ty, then 7’ is LEBESGUE equi-
valent to 7' and is a light mapping as well as 7. All ¢, are identical on Q*
hence p is also an identity on @* Finally let us observe that for all segments
{d'}u, (n=1,2,..), we have T'(c") = Ty(c')= Tp\@ps ... pu(0") =T, (07), IT’ o )l—'

= |T.{0")] _0, and the segments {o’},, form two collections of segments
(¢,], [n.), parallel to the axes u and v respectively, everywhere dense in @,
hence 7" is regular.

7. - Theorem III. Every mon degenerate FRECHET surface S of finite
LEBESGUE area has a light vegular representation.

Proof. TLet the surface S be represented by a light- mapping
T: »=uauv), y=yunv), z2=nz2u,v), (4,v)cQ, and consider the three
projections Ty, T,, T, (§ 1). We can suppose without loss of generality
that [S] is contained in the cube K=[0 <=, y,2<1]. Let K,, K,, K, be
the squares (0,1; 0,1) projections of K into the three coordinate planes
(Y, 2), (2, @), (x,y). The plane mappings T,, T,, T, are not necessarily light.
Becavse L(8) < oo, by § 3, (b) we get W(T,)< oo, (r=1,2,3), and by
§ 4, in each coordinate plane the union I, of all points whose inverse images
under 7, are not points is of plane measure zero, I, c K,, L] =0, (r =1,2,38).
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Let us observe that in each XK, there are closed totally disconnected sets
H,c K,, H,n I, =0, whose plane measure |H,| is as close to 1 as we want.
Indeed, let > 0 be any arbitrary number, let 2 c [0 <o <1], 7' - [0 <y <1]
be two CANTOR linear closed sets whose linear measures |k, |h'| are greater

than 1 —1, let H' be the plane closed totally disconnected set, H'= h X/,
H' c K, of all points (z,y) such that €k, y&'. Then we have |H'| =
=|h] |W|>@—n)*>1—217 Let 4 be any open set covering I, and,
because |I;] =0, we can suppose |[A|<<#. Then the set H=H'— A n K,
is closed, totally disconnected, and |H|> [H'|— |4|>1—2p—n =1-—23%n.

We can now repeat all the reasoning of § 5, where we consider at each
step three closed totally disconnected sets H,, with H,,c K,, H,, 0 I, = 8,
|H,,| >1—1/2"1 (r =1,2,3). Then we prove that, given any open con-
nected set O c @, and two points p;, p, € O%, accessible from O, there is a
simple arc s joining p, and p,, s € O U p, U ps, such that |T,(s)| =0, (r=1, 2, 3).
‘Finally, by repeating the arguments of § 6 with obvious modifications, we
obtain a mapping 7" which is light, regular and LEBESGUE equivalent to 7.

8. — The previous Theorem III holds under the hypothesis G(S)<C + oo.

This statement is obvious utilizing no. 3, (f), i.e., the equality G(8) = L(S)
proved through considerations involving the DiricHLET integral. The following
proof involves only geometrical considerations. By G(S)<< + co and no. 3,
() we have G(T,)<< 4+ oo, by § 3, (e) we have W(T,) = &HT,) <<+ oo,
(r =1, 2, 3), and this is all we need for applying § 4, (A), as in § 7.

9. ~ Bzample of non degenerate FRECHET surface S with L(S) = -+ oo, all
of whose representations on @ are not regular.

" Let § be the surface defined by T: @ = ¢(u), y= pu), 2 =, (4,9) € Q,
where C: @ = ¢(u), y= p(u), 0 <u <1, is a light representation of a simple
arc C, each sub arc of which has positive plane measure. S is a cylinder
~ with diretrix € and generatrices parallel to the z-axis. T is light, therefore 8
is open non degenerate. Let us suppose, if possible, that § has a regular
representation 7. Let [£,], [#,] be the corresponding sets of segments (no. 1)
everywhere dense in Q. For any &, let us consider T,(%£,). If this set contains
more than one point, then &, is mapped by 7, into a subarc A of € joining
two different points of €, and therefore |4] > 0, which is impossible because
A =TyE), |Ts&,)] =0. From this it follows that T is constant on each
segment £ , and; because these segments are everywhere dense in ¢, it follows
that 7; is constant with respect to ». For the same reasons 7, is constant
with respect to u, i.e., Ti(Q) is a single point; which is impossible because
T(@) is the projection of [§] on the (x,y)-plane and this projection is C.
Thus we have proved that § has no regular representation on @.
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10. - Bzample of degencrate FRECHET. surface S with L(S) =0 all of
whose representations on Q are not regular.
~ With the notations of § 9, let S be defined by T: z =oqu), y = plu),
z2=0, (4,v)€ Q. The sorface S is reduced to the single_curve (), therefore

L(S) =0. It 7", as in § 9, were a regular representation of S, then we
would have 1I': & =a'(u,v), y = Yy, v), z=2u,v), (¥, v)EQ, and
#'(u,v) =0 in @. By the same reasoning as in § 9, we have 7, constant
in @, that is a'(w, »), ¥'(w, v) constant on ¢. That is [S] would be a single
point, and not €. Thus we have proved that & has no regular representation.
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