On the differentiability of absolutely continuous functions. (**)

CESARI [1] has shown that a continuous function f(x,y) which is absolutely continuous in the sense of Tonelli and whose derivatives are in L^p , p>2, has a total differential in the sense of Stolz almost everywhere. This is no longer true for p=2, but the result can be improved in the following manner. Let $\varphi(t)$ be a non negative convex increasing function, defined for $0 \le t < +\infty$ such that $\varphi(0)=0$. Following Orlicz, let us denote by L_{φ} the class of all functions f for which there exists a constant λ , depending on f, such that

$$\int \varphi\left(\frac{|f|}{\lambda}\right) d\sigma < \infty ;$$

then if f is continuous and absolutely continuous in the sense of Tonelli and $(f_x^2 + f_y^2)^{1/2}$ belongs to L_{φ} locally, $\varphi(t)$ being a function such that

$$\int_{-\infty}^{\infty} \frac{t}{\varphi(t)} \, \mathrm{d}t < \infty \,,$$

f has a total differential almost everywhere. This result is in a sense the best possible. In fact given any $\varphi(t)$ such that

$$\int_{1}^{\infty} \frac{t}{\varphi(t)} \, \mathrm{d}t = \infty,$$

there exists a function f which is continuous and absolutely continuous, such that $(f_x^2 + f_y^2)^{1/2}$ belongs to L_{φ} locally, and which fails to have a total differential almost everywhere.

The general result concerning functions of n variables can be stated as follows: if f is continuous and absolutely continuous in the sense of Tonelli

^(*) Address: Department of Mathematics, The Ohio State University, Columbus 10, Ohio, U.S.A..

^(**) Received February 20, 1951.

and $|\operatorname{grad} f|$ belongs locally to L_{ω} , where φ is a function such that

$$\int\limits_{1}^{\infty} \left[\frac{t}{\varphi(t)}\right]^{\frac{1}{n-1}} \mathrm{d}t < \infty,$$

f has a total differential in the sense of Stolz almost everywhere. Functions of this class satisfy the inequality (5) and therefore belong to the class of φ -Lipschitzian functions suggested by T. Radó. As pointed out by Radó, on account of a result of Stepanoff [2], φ -Lipschitzian functions have a total differential almost everywhere; but we shall prove the existence of the differential directly to avoid reference to Stepanoff's result which is far from being elementary.

Let f(P), $P=(x_1, x_2, ..., x_n)$, be continuous and absolutely continuous in the *n*-dimensional unit cube K_0 , $0 \le x_i \le 1$. It is known that for almost every point Q and almost every straight line going through Q, f(P) is an absolutely continuous function of the distance between P and Q. Moreover if $\alpha_1, \alpha_2, ..., \alpha_n$ are the direction cosines of the line and $f_1, f_2, ..., f_n$, denote the partial derivatives of f, then $\frac{\mathrm{d}f}{\mathrm{d}s} = \sum \alpha_i f_i$ for almost every s.

Let now Q and Q' be two points in K_0 such that f is absolutely continuous on almost every line through Q or Q', d be the distance between Q and Q' and D the disc of radius $\frac{d}{2\sqrt{n}}$ with center at the mid-point of the segment QQ' and contained in the hyperplane perpendicular to QQ'. Assume that D is entirely in K_0 and denote by γ and γ' the cones projecting D from Q and Q' respectively. If P is a point on D such that f is absolutely continuous on the segments PQ and PQ', then

$$|f(Q) - f(Q')| \le |f(P) - f(Q)| + |f(P) - f(Q')|$$

and

$$|f(P) - f(Q)| = \int_{QP} \left(\frac{\mathrm{d}f}{\mathrm{d}s}\right) \mathrm{d}s \leqslant \int_{QP} \left|\frac{\mathrm{d}f}{\mathrm{d}s}\right| \mathrm{d}s ,$$

where the integral is taken over the segment PQ. But almost everywhere in s we have

$$\frac{\mathrm{d}f}{\mathrm{d}s} = \sum_{1}^{n} \alpha_{i} f_{i}$$
 and $\left| \frac{\mathrm{d}f}{\mathrm{d}s} \right| \leqslant \left| \operatorname{grad} f \right|$,

and therefore

$$|f(P) - f(Q)| \le \int_{\mathcal{B}Q} |\operatorname{grad} f| ds$$
,

and similarly we obtain

$$\big|\,f(P)-f(Q')\,\big|\leqslant \int\limits_{PQ'}\big|\,\operatorname{grad}f\,\big|\,\operatorname{d} s\;,$$

and collecting both inequalities together we find that

(1)
$$|f(Q) - f(Q')| \leq \int_{PQ} |\operatorname{grad} f| \, \mathrm{d}s + \int_{PQ'} |\operatorname{grad} f| \, \mathrm{d}s .$$

Denote now by $\mathrm{d}\Omega_Q$ the element of solid angle projecting from Q the element of area on D. Then $\mathrm{d}\Omega_Q=\mathrm{d}\Omega_{Q'}$ and

$$\int\limits_{\Omega}\mathrm{d}\Omega_Q=\Omega\,,$$

where Ω is a fixed number independent of the distance between Q and Q'. Let us integrate (1) with respect to $d\Omega_Q$ over D

$$\begin{split} \int_{\mathcal{D}} | \, f(Q) - f(Q') \, | \, \mathrm{d}\Omega_Q &= \Omega \, | \, f(Q) - f(Q') \, | \leqslant \\ &\leqslant \int_{\mathcal{D}} \mathrm{d}\Omega_Q \int_{\mathcal{P}Q} | \, \mathrm{grad} \, f \, | \, \mathrm{d}s \, + \int_{\mathcal{D}} \mathrm{d}\Omega_{Q'} \int_{\mathcal{P}Q'} | \, \mathrm{grad} \, f \, | \, \mathrm{d}s \, \, . \end{split}$$

Now if dv denotes the element of volume in K_0 and ϱ and ϱ' the distances to Q and Q' respectively it is not difficult to see that the foregoing repeated integrals are equal to volume integrals, namely

$$\int\limits_{D}\mathrm{d}\Omega_{Q}\int\limits_{QP}|\operatorname{grad}f|\operatorname{d}s=\int\limits_{T}\frac{1}{\varrho^{n-1}}|\operatorname{grad}f|\operatorname{d}v$$

and

$$\int\limits_{D}\mathrm{d}\Omega_{Q'}\int\limits_{O'P}|\operatorname{grad} f|\,\mathrm{d} s=\int\limits_{r'}\frac{1}{\varrho'^{n-1}}|\operatorname{grad} f|\,\mathrm{d} v\;,$$

where γ and γ' are the cones introduced above. Therefore the preceding inequality can be written

$$\mathcal{Q} \mid f(Q) - f(Q') \mid \leqslant \int\limits_{\mathcal{V}} \frac{1}{\varrho^{n-1}} \mid \operatorname{grad} f \mid \mathrm{d} v \, + \int\limits_{\mathcal{V}} \frac{1}{\varrho^{\prime n-1}} \mid \operatorname{grad} f \mid \mathrm{d} v \, .$$

Let now Q be fixed and K a cube with center at Q and entirely contained in K_0 . If Q' is any point of K, the cores γ and γ' constructed on the segment QQ' as above, are entirely contained in K; in fact, if 2δ denotes the length of the edge of K, the distance between the mid-point of QQ' and the boundary of K is never less than $\delta/2$, and the length of QQ' never exceeds $\sqrt{n}\delta$, so that the radius of D never exceeds $\delta/2$ and therefore D and a fortiori also γ and γ' are entirely contained in K. On account of this we have

$$\begin{split} \mathcal{Q} \mid f(Q) - f(Q') \mid & \leqslant \int\limits_{\gamma} \frac{1}{\varrho^{n-1}} \mid \operatorname{grad} f \mid \mathrm{d} v + \int\limits_{\gamma'} \frac{1}{\varrho^{\prime n-1}} \mid \operatorname{grad} f \mid \mathrm{d} v \leqslant \\ & \leqslant \int\limits_{K} \left(\frac{1}{\varrho^{n-1}} + \frac{1}{\varrho^{\prime n-1}} \right) \mid \operatorname{grad} f \mid \mathrm{d} v \,. \end{split}$$

Now if R is a point in K and |P-R| is the distance between P and R it follows that

$$|f(Q) - f(Q')| \leq \frac{2}{\Omega} \sup_{R \in \mathcal{K}} \int_{\mathcal{K}} \frac{|\operatorname{grad} f(P)|}{|R - P|^{n-1}} \, \mathrm{d}v.$$

Our next step will be to obtain inequality (5). For this purpose suppose that $|\gcd f|$ belongs to L_{φ} where φ is an increasing convex function such that $\varphi(0)=0$ and

(3)
$$A = \int_{0}^{\infty} \left[\frac{t}{\varphi(t)} \right]^{\frac{1}{n-1}} dt < \infty.$$

Denote by E_m the set of points of K where

$$2^m \leq |\operatorname{grad} f| < 2^{m+1}$$
.

Then

$$\int\limits_K \frac{|\operatorname{grad} f|}{|R-P|^{n-1}} \, \mathrm{d} v \leqslant \sum_{-\infty}^{+\infty} 2^{m+1} \int\limits_{E_m} \frac{\mathrm{d} v}{|R-P|^{n-1}} \, .$$

Now it is not difficult to see that the integral

$$\int\limits_{E_m}\frac{\mathrm{d}v}{\mid R-P\mid^{n-1}}$$

is less than or equal to the same integral extended over the sphere with center at R and of the same measure as E_m . Therefore if w denotes the measure

of the sphere of radius 1, the radius of that sphere is

$$\left(\frac{\mid E_m\mid}{\omega}\right)^{1/n}$$

and therefore

$$\int\limits_{E} \frac{\mathrm{d} v}{\mid R-P\mid^{n-1}} \leqslant \int\limits_{0}^{\left(\frac{\mid \underline{E_m}\mid}{\omega}\right)^{1/n}} \mathrm{d}(\varrho^n \omega) \, = n \omega^{\frac{n-1}{n}} \mid \underline{E}_m\mid^{1/n}.$$

Replacing above we get

(4)
$$\int_{K} \frac{|\operatorname{grad} f|}{|R - P|^{n-1}} \, \mathrm{d}v \leq \sum_{-\infty}^{+\infty} 2^{m+1} n \omega^{\frac{n-1}{n}} |E^{m}|^{1/n} =$$

$$= 2n \omega^{\frac{n-1}{n} + \infty} 2^{m} |E_{m}|^{1/n} \frac{\varphi(2^{m})^{1/n}}{\varphi(2^{m})^{1/n}}$$

and applying HÖLDER's inequality to the last sum, we find that

$$\sum_{-\infty}^{+\infty} 2^m \mid E_m \mid^{1/n} \frac{\varphi(2^m)^{1/n}}{\varphi(2^m)^{1/n}} \leqslant \left[\sum_{-\infty}^{+\infty} \mid E_m \mid \varphi(2^m) \right]^{1/n} \left[\sum_{-\infty}^{+\infty} \left[\frac{2^{mn}}{\varphi(2^m)} \right]^{\frac{1}{n-1}} \right]^{\frac{n-1}{n}}.$$

Now, on account of the definition of E_m we have

$$\sum_{-\infty}^{+\infty} \mid E_m \mid \varphi(2^m) \leqslant \int\limits_{r^*} \varphi(\mid \operatorname{grad} f \mid) \, \mathrm{d} v \ ;$$

on the other hand since $\varphi(t)$ is an increasing function

$$\left[\frac{2^{nm}}{\varphi(2^m)}\right]^{\frac{1}{n-1}} \leqslant \int_{s}^m \left[\frac{2^{n(s+1)}}{\varphi(2^s)}\right]^{\frac{1}{n-1}} \mathrm{d}s$$

and therefore

$$\sum_{-\infty}^{+\infty} \left[\frac{2^{nm}}{\varphi(2^m)} \right]^{\frac{1}{n-1}} \leqslant \int_{-\infty}^{+\infty} \left[\frac{2^{n(s+1)}}{\varphi(2^s)} \right]^{\frac{1}{n-1}} \mathrm{d}s$$

and introducing the variable t=2° in the integral we obtain

$$\sum_{-\infty}^{+\infty} \left[\frac{2^{nm}}{\varphi(2^m)} \right]^{\frac{1}{n-1}} \leqslant c \int\limits_{0}^{\infty} \left[\frac{t}{\varphi(t)} \right]^{\frac{1}{n-1}} \mathrm{d}t = cA ,$$

where A is a constant depending on n.

Replacing, the inequality (4) becomes

$$\int\limits_K \frac{|\operatorname{grad} f(P)|}{|R-P|^{n-1}} \, \mathrm{d} v \leqslant c A^{\frac{n-1}{n}} \left[\int\limits_K \varphi(|\operatorname{grad} f|) \, \mathrm{d} v \right]^{1/n}$$

and the inequality (2) reduces to

$$|f(Q)-f(Q')| \leqslant cA^{\frac{n-1}{n}} \left[\int\limits_K \varphi(|\operatorname{grad} f|) \,\mathrm{d}v\right]^{1/n},$$

where the letters c denote constants depending on n.

The inequality (5) holds for any two points Q and Q' provided Q' belongs to K. This follows from the fact that it certainly holds for almost every Q and almost every Q' and that both sides are continuous functions of Q, Q' and the length of the edge of K. Furthermore, the convexity of φ has not been used in the argument, so that (5) holds also for non-convex functions φ provided the remaining assumptions are satisfied.

The proof of the differentiability of f almost everywhere depends now only on one additional fact, namely that for almost every Q and for cubes K with center at Q we have

(6)
$$\lim_{|\mathcal{K}|\to 0} \frac{1}{|\mathcal{K}|} \int_{\mathcal{K}} \varphi[|\operatorname{grad} f(P) - \operatorname{grad} f(Q)|] dv = 0.$$

Let us sketch the proof of this. Without loss of generality we may assume that also $\varphi[2 \mid \operatorname{grad} f \mid]$ is integrable; then for any vector \boldsymbol{a}_r with rational components and any rational number s the function $\varphi[\mid \operatorname{grad} f - \boldsymbol{a}_r \mid + s]$ is integrable and outside a set of measure zero for every Q and any \boldsymbol{a}_r and s we have

$$\lim_{|K| \to 0} \frac{1}{|K|} \int\limits_K \varphi[|\operatorname{grad} f - \boldsymbol{a}_r| + s] \, \mathrm{d}v = \varphi[|\operatorname{grad} f(Q) - \boldsymbol{a}_r| + s] \, .$$

For the same Q and any vector \boldsymbol{a} we have

$$(\operatorname{grad} f - a) = (\operatorname{grad} f - a_r) + (a_r - a)$$

and, if $s > |a_r - a|$,

$$|\operatorname{grad} f - a_r| - s \le |\operatorname{grad} f - a| \le |\operatorname{grad} f - a_r| + s$$
,

$$\varphi[\mid \operatorname{grad} f - \boldsymbol{a}_r \mid -s] \leqslant \varphi[\mid \operatorname{grad} f - \boldsymbol{a} \mid] \leqslant \varphi[\mid \operatorname{grad} f - \boldsymbol{a}_r \mid +s] \; .$$

Averaging the last inequality over K, letting $|K| \to 0$ and then making

 $a_r \rightarrow a$ and $s \rightarrow 0$ we get

$$\lim_{|K| \to 0} \frac{1}{|K|} \int\limits_K \varphi[\big| \operatorname{grad} f - \pmb{a} \, \big|] \, \mathrm{d}v = \varphi[\big| \operatorname{grad} f(Q) - \pmb{a} \, \big|] \; .$$

Replacing \boldsymbol{a} by grad f(Q) the desired result follows.

Going back to the function f let Q be a point where (6) holds and let g(P) be $g(P) = f(P) - f(Q) - \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(Q)(x_i - \overline{x}_i)$ where the x_i denote the coordinates of P and the \overline{x}_i those of Q. If K is a cube with center at Q and Q' is a point of the boundary of K, inequality (5) gives

$$\mid g(Q') - g(Q) \mid = \mid g(Q') \mid \leqslant c A^{\frac{n-1}{n}} \bigg[\int\limits_K \varphi[\mid \operatorname{grad} g \mid] \, \mathrm{d}v \bigg]^{1/n}$$

and since grad $g(P) = \operatorname{grad} f(P) - \operatorname{grad} f(Q)$ and $|K| \leq 2^n |Q - Q'|^n$ we have

$$\big|\; g(Q') \;\big| \, \leqslant 2eA^{\frac{n-1}{n}} \big|\; Q - Q' \;\big| \left[\frac{1}{\mid K \mid} \int\limits_K \varphi[\big| \operatorname{grad} f(P) - \operatorname{grad} f(Q) \;\big|] \; \mathrm{d}v \right]^{1/n} \,.$$

When $|K| \to 0$ the quantity in the bracket tends to zero so that setting Q' = P we get

$$\frac{\mid g(P)\mid}{\mid P-Q\mid} = \frac{\left| f(P) - f(Q) - \sum_{1}^{n} \frac{\partial f}{\partial x_{i}} \left(Q \right) (x_{i} - \overline{x}_{i}) \right|}{\mid P-Q\mid} \rightarrow 0,$$

as $P \to Q$. In other words f(P) has a total differential at the point Q and the proof of the result is complete.

We shall prove now that given an increasing convex function $\varphi(t)$ such that $\varphi(0) = 0$ and

$$\int\limits_{1}^{\infty} \left[\frac{t}{\varphi(t)} \right]^{\frac{1}{n-1}} \mathrm{d}t = \infty ,$$

there exists a continuous function f which is absolutely continuous, such that $|\gcd f|\in L_{\varphi}$ and which fails to have a total differential almost everywhere. This can be viewed as being a consequence of the fact that under those assumptions there exists a function $F(P)\geqslant 0$ depending only on the distance ϱ between P and the origin of coordinates which is a continuously differentiable decreasing function of ϱ for $\varrho>0$ and such that $F(P)\to\infty$ as $\varrho\to0$ and $\int \varrho[|\gcd F(P)|]\,\mathrm{d} v\leqslant 1$ Once the existence of F is established the function f can be constructed as follows:

Denote by P_h^k the points interior to the unit cube K_0 whose coordinates are integral multiples of $\frac{1}{2^k}$ and let E_k be the union of the spheres of radius $\frac{1}{4^k}$ with centers at the P_h^k . Since there are less than 2^{kn} points P_h^k in K_0 we have $|E_k| < \omega \frac{1}{2^{kn}}$, where ω denotes the volume of the sphere of radius 1. Furthermore call

On account of the properties of $F(\varrho)$ it is apparent that $F_k(\varrho)$ satisfies a uniform Lipschitz condition, that $F_k(0)=4^{kn}\left(\frac{2}{3}\right)^k$ and

$$\int\! arphi[|\operatorname{grad}\, F_k|]\,\mathrm{d} v \leqslant 1$$
 .

Now define

$$G_k(P) = \sum_h F_k(\mid P - P_h^k \mid)$$

and

$$f(P) = \sum_{k=1}^{\infty} \frac{1}{4^{kn}} G_k(P) .$$

Since $G_k(P)$ is continuous and $G_k(P) \leqslant 4^{kn} \left(\frac{2}{3}\right)^k$, f(P) is continuous; on the other hand

$$\int\limits_{K_0} \varphi(|\operatorname{grad} G_k|) \, \mathrm{d} v \leqslant 2^{kn}$$

and applying Jensen's inequality we have

$$\int\limits_{\mathcal{K}} \varphi[\mid \operatorname{grad} f \mid] \, \mathrm{d} v \leqslant \int\limits_{\mathcal{K}} \varphi\left[\sum_{1}^{\infty} \frac{1}{4^{kn}} \mid \operatorname{grad} |G_k|\right] \, \mathrm{d} v \leqslant$$

$$\leqslant \int\limits_{K_{\bullet}} \varphi \left[\frac{\sum\limits_{1}^{\infty} \frac{1}{4^{kn}} |\operatorname{grad} G_{k}|}{\sum\limits_{1}^{\infty} \frac{1}{4^{kn}}} \right] \mathrm{d}v \leqslant \frac{\sum\limits_{1}^{\infty} \frac{1}{4^{kn}} \int\limits_{K_{\bullet}} [|\operatorname{grad} G_{k}|] \, \mathrm{d}v}{\sum\limits_{1}^{\infty} \frac{1}{4^{kn}}} < \infty$$

so that $\varphi[|\operatorname{grad} f|]$ is integrable and $|\operatorname{grad} f|$ belongs to $\mathcal{L}_{\varphi}.$

Let now $D_l = \bigcup_{k=1}^{\infty} E_k$; then $D_l \supset D_{l+1}$ and $\lim_{l \to \infty} |D_l| = 0$ so that the set $D = \bigcap_{1}^{\infty} D_k$ is of measure zero. If Q is a point not in D, Q does not belong to D_l for some l, and since $G_k(P)$ vanishes outside E_k it vanishes outside D_l for $k \geqslant l$, so that

$$f(Q) = \sum_{k=1}^{l-1} \frac{1}{4^{kn}} G_k(Q)$$

and therefore

$$\frac{f(P) - f(Q)}{\mid P - Q \mid} = \sum_{k=1}^{l-1} \frac{1}{4^{kn}} \frac{G_k(P) - G_k(Q)}{\mid P - Q \mid} + \sum_{l}^{\infty} \frac{1}{4^{kn}} \frac{G_k(P)}{\mid P - Q \mid}.$$

Now, it is possible to select a sequence $P_{h(m)}^m$ among the points P_h^k such that $P_{h(m)}^m \to Q$ as m tends to infinity, more precisely, such that $\left|P_{h(m)}^m - Q\right| \leqslant \sqrt{n} \frac{1}{2^m}$. Since $G_m(P_h^m) = 4^{km} \left(\frac{2}{3}\right)^k$,

$$\frac{G_m[P^m_{h(m)}]}{|P^m_{h(m)} - Q|} \geqslant \frac{1}{\sqrt{n}} 2^{m} 4^{km} \left(\frac{2}{3}\right)^m$$

and, replacing above we get for $m \ge l$,

$$\frac{f[P_{h(m)}^m] - f(Q)}{|P_{h(m)}^m - Q|} \geqslant \sum_{k=1}^{l-1} \frac{1}{4^{kn}} \frac{G_k[P_{h(m)}^m] - G_k(Q)}{|P_{h(m)}^m - Q|} + \frac{1}{\sqrt{n}} \left(\frac{4}{3}\right)^m.$$

Each of the $G_k(P)$ satisfies a uniform Lipschitz condition so that the summation sign on the right is bounded and thus

$$\lim_{m\to\infty}\frac{f[P^m_{h(m)}]-f(Q)}{\mid P^m_{h(m)}-Q\mid}=\infty\;.$$

Therefore f is not differentiable at Q, that is f fails to have a total differential outside D.

Now it remains only to construct the function $F(\varrho)$. We shall restrict ourselves to consider the case where $\varphi(t)/t$, which on account of the convexity of φ is non-decreasing, actually tends to infinity as $t \to \infty$. When $\varphi(t)/t$ is bounded, the gradient of every absolutely continuous function belongs to L_{φ} . Let

$$\Phi(t) = \int_{1}^{t} \left[\frac{s}{\varphi(s)} \right]^{\frac{1}{n-1}} ds$$

and consider the function

$$s = \left[\frac{t}{\varphi(t)}\right]^{\frac{1}{n-1}} \frac{1}{\varPhi(t)} = \frac{\varPhi'(t)}{\varPhi(t)}.$$

This function is continuous, strictly decreasing, it tends to zero as $t \to \infty$ and to infinity as $t \to 1$; therefore it has an inverse t = h(s) defined for all values of s > 0. Moreover we shall have

(7)
$$\int_{0}^{1} h(s) ds = \infty, \qquad \int_{0}^{1} \varphi[h(s)] s^{n-1} ds < \infty.$$

To show this we shall first remark that since $\Phi'(t)$ is decreasing we have

(8)
$$\frac{\Phi(t)}{t} \subseteq \frac{\Phi(t)}{t-1} \geqslant \Phi'(t).$$

Then

$$\int_{\varepsilon}^{1} h(s) ds = \int_{\varepsilon}^{1} t ds = st \Big]_{\varepsilon}^{1} + \int_{t(1)}^{t(\varepsilon)} s dt.$$

Now as $s \to 0$, t tends to infinity so that the integrated term

$$s\iota = \frac{\Phi'(t)}{\Phi(t)} t$$

remains bounded on account of (8). On the other hand the integral

$$\int_{-\infty}^{\infty} s \, \mathrm{d}t = \int_{-\infty}^{\infty} \frac{\Phi'(t)}{\Phi'(t)} \, \mathrm{d}t$$

diverges because $\Phi(t) \to \infty$ as $t \to \infty$ so that

$$\int_{0}^{1} h(s) \, \mathrm{d}s = \infty.$$

Consider now

$$\int\limits_0^1 \varphi[h(s)] s^{n-1} \,\mathrm{d} s = \int\limits_0^1 \varphi(t) \, \frac{t}{\varphi(t) \varPhi(t)^{n-1}} \,\,\mathrm{d} s = \int\limits_0^1 \frac{t}{\varPhi(t)^{n-1}} \,\,\mathrm{d} s \ .$$

Again on account of (8) we can integrate by parts the last integral and its convergence is reduced to that of

$$\int^{\infty} \!\! \left[\frac{\varPhi'(t)}{\varPhi(t)^n} \!-\! \frac{(n-1)\varPhi'(t)^2t}{\varPhi(t)^{n+1}} \right] \mathrm{d}t \ .$$

But this integral is convergent as it is easily seen on account of (8).

Thus (7) is established.

Finally suppose that

$$\int\limits_0^{\infty} \varphi[h(s)] s^{u-1} \, \mathrm{d} s \leqslant 1$$

and define

$$F(arrho) = \left(egin{array}{ll} 0 & ext{for} & arrho \geqslant lpha \,, \ \int lpha \left[h(s) - h(lpha)
ight] ext{d}s & ext{for} & 0 < arrho \leqslant lpha \,. \end{array}
ight.$$

Now owing to (7) it is readily seen that $F(\varrho)$ has the desired properties. This completes the argument.

References.

- [1] L. Cesari, Sulle funzioni assolutamente continue in due variabili, Ann. Scuola Norm. Super. Pisa (2) 10, 91-101 (1941).
- [2] W. Stepanoff, Sur les conditions de l'existence de la différentielle totale, Rec. Math. Soc. Math. Moscou 32, 511-526 (1925).