ArBERTO P. CALDERON (%)

On the differentiability of absolutely continuous functions. (+*)

CesAri [1] has shown that a continuous function f(#, ) which is absolutely
continuous in the sense of ToNELLI and whose derivatives are in Lz, p > 2,
has a total differential in the sense of STorz almost everywhere. This is no
longer true for p = 2, but the result can be ithproved in the following manner.
Let () be a non negative convex increasing function, defined for 0 < ¢ << -+ oo
such that @(0) = 0. TFollowing OrLICZ, let us denote by L, the class of all
functions f for which there exists a constant A, depending on £, such that

fo{)ar<e

then if f is continuous and absolutely continuous in the sense of TONELLI
and (f2 4+ /)42 belongs to L, locally, @(t) being a function such that

o

t
[;;(’;) dt< oGy,

1

f has a total differential almost everywhere. This result is: in a sense the best
possible. In fact given any ¢(f) such that )

0

P
/ — i = oo,
J o)
1
there exists a function f which is continuous and absolutely continuous, such
2 2y1/a . . : . P e
that (f2 4 f2)¥* belongs to L, locally, and which fails to have a total diffe-
rential almost everywhere.
The general result concerning functions of % variables can be stated as
follows: if f is continuous and absolutely continuous in the sense of TONBLLI
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and | grad f| belongs locally to L,, where ¢ is a function such that

o L

i ¢ n—1
1 .

f has a total differential in the sense of STorz almost everywhere. Funections
of this class satisfy the inequality (5) and therefore belong to the class of
@-Lipschitzian functions suggested by T. Rap6. As pointed out by RAnd, on
account of a result of S1EPANOFT [2], p-Lipschitzian functions have a total
differential almost everywhere; but we shall prove the existence of the dif-
ferential directly to avoid reference to STEPANOFF’s result which is far from
being elementary.

Let f{(P), P = (», @3, ..., ¥,), be continuous and absolutely continuous in
the n-dimensional unit cube K,, 0 <z, 1. It is known that for almost
every point ¢ and almost every straight line going through @, f(P) is an
absolutely continuous function of the distance between P and . Moreover
if oy, Gpy..., o, are the direction cosines of the line and f,, fs, ..., f., denote

df
the partial derivatives of f, then (—1; = > o,f; for almost every s.

Let now @ and @' be two points in K, such that f is absolutely continuous
on almost every line through @ or ', d be the distance between @ and Q'

d
and D the disc of radius m with center at the mid-point of the segment QQ’
and contained in the hyperplane perpendicular to Q@’. Assume that D is
entirely in K, and denote by v and ¢’ the cones projecting D from @ and @’
respectively. If P is a point on D such that f is absolutely continuous on the

segments PQ and PQ’, then
Q) —F(Q) | <[ H(PY— Q)| + | HP)Y—F(Q") |

and

. (af gxiay
If(-P)—*f(Q)l—/<5;> ds<j éBIdS ,
ar Q
where the integral is taken over the segment P@. But almost everywhere
in s we have

d f n

af
— = ;f; an — i< | grad
< %if a ids grad f|,
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and therefore

| HP) — F(Q /| grad | ds

P

and similarly we obtain

LHP)— H(Q") !\\’/ | grad f|ds,

PO’
and collecting both inequalities together we find that
(1) 7@ — Q)| < | | grad f] as + [ | grad 1] .
~ Q PQ’

Denote now by d£, the element of solid angle projecting from ¢ the element
of area on D. Then dQ, = dQ, and

[ae, =2,

D
where Q is a fixed number independent of the distance between ¢ and ¢}
Let us integrate (1) with respect to dQ, over D

[1H@)— @) a2y = 2] 1@ — 1@ | <

D

</ dey, / | grad f|ds + ‘/JdQO,‘/'] grad f|ds .
D PQ D PQ’

Now if dv denotes the element of volume in K, and g and o’ the distances to ¢
and @' respectively it is not difficult to see that the foregoing repeated integrals
are equal to volume integrals, namely

. _—
/(LQQ/ Jgrad f|ds = / pe - gradf|dv

D or ¥
and _
J aQ, l | grad f | ds ::J —— | grad f| dv,
D (g d e

where y and ' are the cones introduced above. Therefore the preceding in-
equality can be written

QU@ —1@) 1< [ o |emaf[a + / L | gradf|av.

14 i
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Let now ¢ be fixed and K a cube with center at @ and entirely contained
in K,. If Q' isany point of K, the cores y and v constructed on the segment
@@’ as above, are entirely contained in K; in fact, if 20 denotes the length
of the edge of K, the distance between the mid-point of Q' and the boundary

of K is never-less than0/2;, and the lefigth of QQ" Niever exceeds /19, 50
that the radius of D never exceeds 6/2 and thervefore D and a fortiori also y
and y’ are entirely contained in K. On account of this we have

dy <

2110~ 1)< | 5l mar o+ [ e
v v

g /(.*_1 n ,”w>|hlad”d‘
K

Now if R is a point in K and | P— R| is the distance between P and R
it follows that

o 2 | grad f(P) |
@) 0@ < 8 lg{/!—]f————?”dv.

Owr next step will be to obtain inequality (5). For this purpose suppose
that | grad f| belongs to L, where ¢ is an increasing convex function such
that ¢(0)==0 and

a7 1

o =1
{3) . . . A = |—] dt .
@) . [ [W)} , =
0

jD‘e,note by E, the set of points of K where

T om < ! gl'ﬂ,df ’ V<“2m+‘l .
Then

T | grady| R dv
e d ‘_)Jm*l |
/ l R-—-P !” -1 7S Z / ‘ R P in-—l
K B T Dm

Now it is not difficult to see that the integral

' dv :
r;j: P
Eﬂl

is less than or equal to the same integral extemled over the sphere with center
at R and of the same measure as B,,. Therefore if w denotes the measure
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of the sphere of radius 1, the radius of that sphere is
} 1) \3fn
)
and therefore
(| Eml\1/n
(%) .
dv B ==
[ = [ pmdtere) = o™ | B
e 0
Replacing above we get
{ glad il /+‘° V) m-4-1 n'—‘l tn {1 n
(4) / i ) 1‘)‘!'1:1 @ \—‘w-d Hew I B l I
K
n-1 i mylfn
, (2"
2 n n 1
== ZNW z PAL l ]i ‘ (p(c)m)l’n

and applying HOLDER’s inequality to the last sum, we find that

1 n—-1

) E | ( lln + w Tiraf+e [ gmn 13 ™
Qo ifnt ]P m

z l \ (p(),,, 1/,, [ }_;! i ' ) _Zm (’,(2)):).
Now, on account of the definition of K, we have

i~ 0
SIEa| @) \] (|grad f|) dv ;
= e
on the other hand since g(t) is an increasing function

1 m 1
gum jn—1 T Ton(s+1) -l
~~~~~~~ < —! ds
[w@"‘)} \.f Lo(?f) ]
n—1

= 1

gnm Jn- -1 ) 271(s+1) -1
2”1)} < / {w(?s) l ds

-0

and therefore

"rw

5);

and introducing the variable ¢ = 2¢ in the integral we obtain

1

+ o Qum ’_1%“'1 e ¢ E—:—d 1
e <e¢ —— 1 = ¢4
“Z“’ [‘7’(21;1)} - ( / L)(f)} ¢
4]

where 4 is a constant depending on =,
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Replacing, the inequality (4) becomes

(| grad f(P nolp _ o
/ ; lfl,i P(}")”l', do<<ed ® { / (] grad 1 |) dv}]l
K , K ,

and the inequality (2) reduces to

n-l

(®) | H@ —F(Q) | <ed™ [ [t emar dfuJ”" )

K
where the letters ¢ denote constants depending on n.

The inequality (5) holds for any two points ¢ and @' provided ¢’ belongs
to K. This follows from the fact that it certainly holds for almost every ()
and almost every @' and that both sides are continuous functions of @, ¢’
and the length of the edge of K. Furthermore, the convexity of ¢ has not
been used in the argument, so that (5) holds also for non-convex functions @
provided the remaining assumptions are satisfied.

The proof of the differentiability of f almost everywhere depends now only
on one additional fact, namely that for almost every @ and for cubes K with
center at ¢ we have

. S e .
(6) ,éﬁfoﬁc‘zk/ gl| grad f(P) — grad (@) |] do — 0 .

Let us sketch the proof of this. Without loss of generality we may assume
that also @[2 | grad f [] is integrable; then for any vector a, with rational
components and any rational number s the function @[] grad f —a. |+ s]
is integrable and outside a set of measure zero for every @ and any a, and s
we have

lim —— / pl] grad f —a, | 4 s do = oll grad /(@) —a, | 4 5] .
[K|->0 [ K| . .
bd
For the same @ and any vector a we ‘have
(grad f— a) = (grad f — a,) +- (@, — a)
and, if s >|a,—a|, k
|grad f —a, | —s <|grad f—a| <| grad f—a, | + s,

gl grad f—a, | —s] <g[| grad f— a [l <¢l| grad f —a, | +- 5]

Averaging the last inequality over K, letting | K| -0 and then making
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a, —>a and s -0 we get

1
li{lim rf— / ol grad f —a|] dv == @[] grad /(@) —a ] .
[}

Replacing a by grad f(¢) the desired result follows.
Going back to the function f let ¢ be a point where (6) holds and let g(P)
. . n o —
be ¢(P) == f(P)— f(Q)“‘Zg; (@)(2;— @,) where the x; denote the coordi-
1T 0%
nates of P and the z; those of Q. If K is a cube with center at @ and ' is
a point of the boundary of I, inequality (5) gives
n-1
1 Q") — g(Q) i _____ 1 a(@h) I <ed " U (p[{ grad ¢ [ldl’]
i
and since grad g(P) = grad f(P) — grad {(@) and | K| <2"| Q@ -— @' |* we have
n- ] . o 1in
[9(Q) ] < 2e4 e 1 Q—Q'| [ I /(p[l grad f(P) — grad (@) |] (lfz:]
Wh(,n]K) — 0 the quantity in the bracket tends 10 zero so that setting
Q' =P we get

w, 2f _

[g(P) | éf(.'b) —- Q) —- §1~ o (@i @)
gt P, |
[Pl | P =@ "

as P — . In other words f(P) has a total differential at the point ¢ and
the proof of the result is complete.

We shall prove now that given an increasing convex function ¢(t) such
that @(0) == 0 and :

» L

Frog e
/ [m} df == oo,

1

there exists a continuous function f which is absolutely continuous, such that
| grad f | € L, and which fails to have a total differential almost everywhere.
This can be viewed as being a consequence of the fact that under those
assumptions there exists a function F(P) > 0 depending only on the distance g
between P and the origin of coordinates which is a continuously differentiable
decreasing function of o for ¢ >0 and such that F(P) - co as ¢ =0 and

/ @[] grad P(P)|]dv <1 Once the existence of F is established the function f
can be constructed as follows: :
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Denote by PF the points interior to the unit cube I, whose coordinates

. . 1 . . .
are integral multiples of 5 and let %, be the union of the spheres of radius
1

17 with centers at the PF. Since there are less than 24 points P¥ in K, we

) 1 .
have ].Ek]< w T where w denotes the volume of the sphere of radius 1.

TFurthermore c¢all

. 1
FI.:(Q) = {
i In 2\k . ¥ ol 1 if — 1
inf 4% § 5 (Q)_. Z’Z‘ 1 O\Q<"‘A.

On account of the properties of F( 0) it is apparent that F,(p) satisfies 2 uniform

2 I }
Lipscurrz condition, that F(0) == 4% (;) and

>

/ ol| grad F, ] de < 1.
Now define
(W(P) = X Fu(| P— PF))
h

and

» 1
fP) = 3 g ().

Since Gi(P) is continuous and G(P) << +L’v‘“<;}) » 1(P) is continuous; on the

other hand

'/(p(] grad Gy |) do < 2%n
K,

and applying JENSEN’s inequality we have

. e .
/ ol grad f[] dv < /q) {; e | grad G || dv <
7 o o

@ 1 [ ‘
@ 1 — grad G [Jdv
> s | grad G, | 2 4’~'"/ [l grad G
1 & K,
<fo| g |0 E <0
2, 2 2

so that ¢[| grad f[] is integrable and | grad f| belongs to z,.
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Let now D; = U By ‘rhen D;> Dy, and lim|D,| =0 so that the set

1—>c

D = r] D, is of measure zero. If @ is a point not in D, @ does not belong

1
g8

to™D; 1’01‘"‘“s0‘11‘1“6““’1‘;”\’&11‘('1“sinvee‘“G“,;(‘P)"Vzmisl1es*~m1tside-‘vz‘[f},;:»-\i~tm~v:’uLishes‘wout‘;side 1>y
for k >1, so that

and therefore
APy Q) ‘& 1 GuP)—GQ) 21 G (P)
Fogl —&de Pog| T2 @[P-ql

Now. it is possible to select a sequence P7 . among the points PP such that
H h{m) (=] 1 h

pr., =@ as m tends to infinibty, more precisely, such that | Py, — Q| <

1 . . . PAR
<A1 T Since @, (D)) ==4rn (3) ,

ﬂ'"u)mm)] > -1 Qg km (%>m
“Ph(m)’“QI ‘\/" ' 3

and, replacing above we get for m >,

f[ ?zm)J e /(u)_ \ il _[_ (71_! ’TL’zhL)] GI.(Q) _1 (f)"" )
i -Iﬁm) 0 l k=1 1 h(m) ""(1) i '\/;l~ 3
Tach of the Gy(P) satisfies a uniform LipscH1Tz condition so that the sum-
mation sign on the right is bounded and thus

lilll /[. h(m) /(Q = 0o

Me> 0 . 7?'7»(m) Q!

Therefore f is not differentiable at ), that is f fails to have a total differential
outside D.

Now it remains 0111\ to construct the function P( ).  We shall restrict
ourselves to consider-the case where p(t)/t, which on account of the convexity
of ¢ iy non-decreasing, actually tends to infinity as ¢t -+ co. When @(t)ft is
bounded, the gradient of every absolutely continuous function belongs to L,,.

Let

t 1

‘T s n—1
o0 =[] o

1
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and consider the function
v 1
[ i }n*l 1 (1}’(1,)

p)] D) OO

“This function is contnmous, strictly décreasing, it tends to zero as ¢t — oo
and to infinity as ¢ — 1; therefore it has an inverse ¢ — h(s) defined for all
values of s > 0. Moreover we shall have

* 1
(7) [ his)ds = oo, | plhis)s"=1ds < co.
0 0
To show this we shall first remark that since @'(f) is decreasing we have

Q) TZ(Q %) l-qi(% > P'(t) .

Then

¥ 1 o)

/ his)ds = /tds = stJi - / sdt .

: $ i
Now as s — 0, ¢ tends to infinity so that the integrated term

@'(1)

T wm "

remains bounded on account of (8).. On the other hand the integral

@0

@ S
/ st = / LW
; Jom

diverges because P(f) — oo as t — co so0 that

1
[/&(,\')(ls =00,
0 v

Clonsider now

1

1
" o
" a o n—1 s S S F—— —~ de
/ plh(s)]s 1 ds ~.‘/(p 1) (p(t T ds mj B ds

0 0 0

Again on account of (8) we can integrate by parts the last integral and its
convergence is reduced to that of

» D) (- 1)D()U
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But this integral is convergent as it is easily seen on account of (8).
Thus (7) is established.
Finally suppose that

.

[ glh(s)se=1ds < 1

0
and define
g’ 0 for p>uo,
Plo) = &
(/Wwwm@msfm 0<o<u.
Now owing to (7) it is readily seen that F(p) has the desived properties.
This completes the argument.
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