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Introduction.

In recent years, a number of important and interesting results were obtained
by various authors concerning the relationships between the LEBESGUE defi-
nition of surface area and other definitions based upon HAUSDORFF measure.
For background, see the book [7], which will be referred to by LA in the
sequel (numbers in square brackets refer to the Bibliography at the end of this
paper). The present paper was motivated by the study of a very beautiful
result of BEsicovitcH [1] te the effect that if

8: z=fz,y), myle: 0=2z=<1, 0sy=s1,

is a non-parametric continnous surface, then its LEBESGUE area is
equal to the two-dimensional HAUSDORFF measure of the set of its points,
provided that f(x,y) is absolutely continuous  in the TONELLI sense.
This result of BEsicovitcH has been shown by FEDERER [4] to hold
for all continuous non-parametrie surfaces. The method of FEDERER brings.
to bear upon the problem on hand a series of general results on various measures.
which he established in [3]. Tn particular, he uses a certa,ingeneralized version
of FAVARD measure as a majorant, in a sense, to obtain the necessary estimates
in the course of his argument. The main purpose of the present paper is to
show that the LEBESGUE area of the given non-parametric surface may be
used as such a majorant. The main reason for.this is the fact that for a
non-parametric surface of finite LEBESGUE area thereis available a particularly
convenient parametric representation, namely, the so-called generalized con-
formal representation in the sense of C. B. MORREY (see LA for literature and
for technical details). As a result, we obtain a proof of the theorem of BE-
SICOVITCH, in the generalized form due to FEDERER, by methods which are
germane to the theory of the LEBESGUE area. Furthermore, we cbtain a
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gener‘lhm‘mon to those parametric surfaces which admit of a quasi- Lipschitzian
represeniation in the sense of 5.23 below. This generalization is stated in 5.28.
As a corollary we obtain in 5.33 the theorem that certain area-definitions
proposed lwently by BESICOVII‘CH [2] and L C OTJ\'(r [9] agree Wlth the

Fhe essentm.l oontrlbumon of the present paper is cont,‘uned in part 5.
Parts 1-4 are devoted to background material, including a discussion of certain
portions of the argument used by BESICOVITCH [1] and FEDERER [4]. Our
study of their work led us to various observations which we thought may jus-
tify the rather detailed presentation in the preliminary parts 1-4 of this paper.

. = Preliminary definitions and remarks.

1.1. — In this seetion we shall give some. definitions and remarks needed
in the sequel.

1.2. — For two pomts P, g in Buclidean 3-space- B; we shall denote by
d(p, q) the distance between them and for a set F c B, we shall denote by
d(E) the diameter of the set.

1.3. — For a set £ in B, let ¢, be a generic notation for a finite or denume-
rable number of sets e, €., ... which satisfy the conditions: (i) B=c, e, +....
(ii) For cach 7§, d(e;) << e. . We set

¥

1
HYE)=glb > i nd{e;)*  for all g, .
7

Since the set function H(H) increases when e decreases, it has a limit
{finite of infinite) for .¢ — 0. The HAUSDORFF two-dimensional measure of E
is defined to be

2( Y — liy 2T
| HE) liln: HYE) .

1.4. — For a set & in E; let 7, be a genéric notation for a finite or denume-
rable number of open spheves s;; s,,.. which satisfy the conditions:
() Fcs, +s, +.... (i) For each j, d(s;) < e. Then SYE) and S*HE) arve
defined as HXE) and H*(E) in 1.3, using of course the diameters of the open
spheres s;. \

For a set F in F, let 7 be a generic notation for a ﬁmte or d(,numelzmble
number of open spheres sy, 8y, ..., which cover E, ie., Ecs, ~ $y 4 ... {note
there is no 1est110tlon on the size of the diameters). - Then we define

1
SE(B) = glb 2 i wd(s;)2 for all =.
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1.5. — For a set Ein I, let ¢ be a generic notation for a. finite or denum-
berable number of sets ¢;, ¢,, ... which satisfy the condition that E=e¢, -+ +....
We set

HL(E) == glb ¥ d(e;) for all o,
L i B : .

1
Hiy(B) ==glb Y 1 ad(e;)* for all o.

Note that there is no restriction on the diameters of the covering sets ¢; in
defining HL(E), HL(E).

" 1.6. — The set functions defined in 1.3, 1.4 and 1.5 possess the following
properties. ’
(a) If @(E) is any one of these functions then @(#,) < O(E,) whenever
FByc B, and O3 E;) < 3 -D(E)) for any sequence of sets E,, B, ...
7 3
(b) S2(E) < Si(E) for every ¢ > 0, and H%L(E) < 8% (E) for every set E.
(¢) HE) =0 if and only if S%L(E) = 0.

(d) kE(E) is a. CARATH®ODORY outér measure (see SAKs [8], pp. 39-54).

1.7. — For a set E in a metric space we shall denote by fr(E) the frontier
of E, by GE the complement of E, by ¢(E) the closurc of E, and by Int B
the interior of E. : k

1.8. — For a-set E in myz-space we shall designate by E' the set in the
xy-plane obtained by projecting E orthogonally upon the xy-plane.

1.9. - Let @ be.a point in E; and let r be a positive number. We shall
denote by K(a, r) the open sphere with center at a and radiusr, by C(a, 1)
the closed sphere with center at @ and radius » and by B(a, 7) the boundary

. of Kla,).

2. - Lemmas on HAusporFF measure and density.

21, - The purpose of this section is to collect, for convenience of appli-.
cation, a series of lemmas which occur in the work of BESICOVITCH and FEDERER.
The reason for a detailed presentation will he explained in 2.8.

2.2, — Lemma. In Ruclidean three-space Ej; let I' be a straight circular
(solid) cylinder of height h, whose base circle has diameter d. Tf d <h then
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{see 1.4)
Se ) < 7dh .

Proof. S8ince d < I there is an integer % > 2 such that

Ly ‘ =N A<h< nd.

Then I' can be covered by = straight cireular cylinderé 5/1, «++y Yu, €ach having
height less than d and a ba-se circle of diameter d. If 0, is the center of Vi
then y, is contained in a sphere with center at 0; and diameter /2d < 2d.
Hence . o
1 - 1
Szd(;’i) < i w(V2d)3? = 57;{22 .
Thus

1- B §
83 < 5 and? = 5 md(nd)y < sdh ,
where the ‘last inequality follows from (1) since nd < h -+ d < 2h.

'2.3. ~ Lemma. In the sy-plane, let A’ be a hounded set and, for z,
and g > 0 given, in @yz-space let A be the set of points (z, y, 2) satisfying the
relation (v, y)€ 4/, 2p—p <2< 2 + o. Assume d(A4') <2p. Then

Szd(g,)(xi) < 8mpd(4').

Proof. A4’ can be covered by a circular disc of diameter d -— 2d(A"Y.
Hence 4 can be covered by a straight circular cylinder I" whose base circle
has a diameter d — 2d(4') and height h = 4p > 2d(4') = d. Hence, by the
Lemma in 2.2, ' '

Siacan(4) = 85,(4) < S2(T) < wdh = 72d(A"Yp = Smpd(A') .

- 24 -~ Lemma. Tet B be a bounded set in By, let o >0 be given, and

let 2 be a number such that (see 1.5, 1.9, 1.8)

H. {[Bn K(a, el }< 4.
Then
2 85[Bn K(a, @)1 < 8mpHY {[B.n K(a,p)] I

- Proof. By the definition of H?, (see 1.5) we have an intrinsic covering
of [Bn K(a, 0)]' by sets A;,..., A, ..., such that [Bn K(a, 9))'= U 4] and

I

1. T SUAD < HL {[Bn K(a, o))} +e< .,

Where ¢ > 0-is’ arbitrarily small. Let 2, be the z-coordinate of the center a,
and let ¢ be the ¢ of K(a, ). For each A7, let 4, be the set (as in the Lemma
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in 2.3) of points (@, y, 2) satisfying (2, ME A, gg—0<ZT<H + 0 ~Clearly
<9

BnK(a, o) c U 4;. Hence, by the Lemmﬂ in 2.3 (note that (I(A,') 0}

i(zu y{(4;) < Snod(A ).

Frony(1)-we--have 17( 47) A Hence
3

S85(4;) <8 S’;du W4 < ‘%'wd(A A
and
83,08 n K(a, 0)] < 3 83,(4,) <8mp 3 d(4]) < Smp[HL {[Bn K(a,0)]'} + e
Since & > 0 is arbitrary, the statement of the Lemma follows
9.5. - Lemma. In E,; let B be a bounded set with the foll‘owing pro-
perty: there exists a 6 >0 such that '
HY, { [E n Kb, 1) y<r/ib
for every K(b, v) with 0 << d (b is; not re¢quired to lie in B). Then H¥B)==0.
" Proof. It is sufficient ,(se;e 1.6) to show that
(1) S%L(B) ==
To show (1) we set
2) ’ p=0/8,

and let & be an arbitrary positive number. By the definition of SfL(B) we can
cover B with open spherves K(b,,?,) (centers not generally in B) such that

(3) S S art< 83(B) + &, AE@D.,r)]=2m<p.
Then
4) : 8%(B) < z 8B 0 K(b,, )] -

Now 7, < u/2 = 6/16 < 6. Hence, by‘_assumption,
(5) HL {[B N Kby, 7)1 } < 7a/16 < /32 < 832 .

Hence ,by applying ‘the Lemma in 2.4 with 2 = 6/32 and hence 42 = 0[8 = p,

we obtain
S3[B n K(ba, 1a)] < Bar, H. {[Bn K(bm D1 3

and hence, using (5),

S , ‘ B
(6) S2[B 0 E(bn, 7)1 < 8701 [16 = 5 2
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The relations (4), (6) and (3) yield

1 1o
(7) S5(B)< 5 2 <3 [Su(B) + ).

Since &> 0 is arbitrary, it follows from (7) that. i

a fortiori, 8%(B) = 0.

2.6. — Theorem. Let A be a bounded set in E,. Then
H, {[4n K(a, )] } 1

1) - lim sup

~>0 r - 3 ’

8o

for a € A, except at a subset of 4 whose H?® measure is equal to zero.

Proof. Let E be the exceptional set in A where (1) does not hold.
For ac E, ’

) H, {[EnK@n)} Hy,{[4nK@an} 1
lim sup , < lim sup " 33
>0 >0

Hence we have rational numbers &a), Ma), sﬁch that é(a) >0, 0 < A(a) < 1 /32,
and
H, {[E n K(a, Y}
-

< Ala) < 1/32  for t<r<é@, ackE.

Now for assigned rationals 0 < § < ©0, 0 <A< 1/32, let E;, be the subset
of B where §(a) = 8, A(a) = A. Clearly F c UE;, and hence, (see 1.6) it is
sufficient to show that HX(Ej,) = 0. Setting, for fixed 6, 2, B = H,;,, we
know that, since B c B, ‘

H. {[Bn EK(a, o) '
Al ( 9)],}<A<1/32 for 0<o<d, acB.

4

4

Now taking any K(b, ), b not necessarily in B and 0 <<r< /2, we assert
that
H {[BnE®, 1Y} 1

) . . T

Indeed, it B n K(b,r) =0, then (2} is obvious. If Bn Kb, ») == 0 take
ae B n K(b,r). Then K(b, r) € K(a, 2r) and hence g -

HL (B0 K, 0)'} _ B, (1B 0 Kle, 20) )

2A< 111
» 2 <2A<1/16,

sinee 0 << 2r << § and e € B. Thus (2) holds for 0<r< d/2, b not necessarily
in B. From the Lemma .in 2.5 it follows that H*B) = 0.

2 B)-=:0-—and-hence;
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2.7. - Lemma. Let A be a bounded BOREL set in wyz-space, let p(B)
be a finite, non-negative, completely additive function of bounded BOREL.
sets Bc A. Assume that there exists a real number 2 such that 0 < A< oo

and
spld.n K{a,1)]

im sup ~——— s
>0 P ar? L

for ac A except on a set F with H%E) = 0. Then
H2(4) <p(4)/4.
Preof. 'We note first that we have a fortiori (see 1.9)

4 n Ola, 7) , . -
Him sup 7 e i >l for a€d¥*=4-—F.

r—>0

Now let ¢>0 be given and let C, be the class of all G(a; #) such that:
(1) a€ 4%, (i) 10r < ¢, (iii) ¢[4 n C(a, r)] > Awr®. Then C, covers A* in the
sense of Virarl. Hence by a well-known covering theorem (see MoORSE [5],
§ 3.10) we can select from C, a sequence of disjoint elements C(a;, 7;) such
that: («) a;€ 4% (f) 101, << e, (y) p[4 n Cla;, v;))]1 > Ak, (6) for every pocu-
tive integer =,

4*c U (/( 0y, 1) (a’:ia 57'9‘):

i=1 ge= n+1

It thus follows that

@ A% U [4% 0 Clay,r)] + U [4% n Clay, 51,)] .
J=1 j=n+1

Now all the sets on the noht of (1) have dlametels less tlmn or equal to
107r; << &. Hence

n 1 o o
(2)  HHA*) <Y -a(2r)* 4+ 3 —n(lOl Z’m 25 % wi <
-4 jomer & ’ FETES
1 21 25 2 :
<G ZaPANC@, m 45 S gl n O, )]
A4 A S

Now the sets A n Cla;,r;) are disjoint BOrE). subsets of 4. Hence

(3) 5: pld n Cla;, r)] <p(4),
4) S Z‘P[A nCla;, 1)1 -0 for n-co.

J=n+

(2), (3), and (4) imply that HHA*)<p(d)/A for every £>0. Hence
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HA*) < @(d)/A. Therefore, since H2(E) = 0
H*A) = H*(A* + B) < H¥A4%) + HYF) = H(4*) < qv(A)//..

2.8, — On comparing the lemmas in 2.2, 2.3, 2.4, 2.5 with analogous state-

ments in BESICOVITCH [1] and FEDERER [4], the reader will notice that our
lemmas are worded in a more detailed manner. The purpose is to remedy
certain minor discrepancies involving +he diameters of the covering sets and
spheres, in order to conform to the exact definitions of the quantities HE),
H*E), HL.(E), SXE), S¥E), S%(E) (see 1.3, 1.4, 1.5).

3. - Lemmas on total variation.

3.1. ~ The lemmas to be discussed in this section are velated to corresponding
statements in ‘Besicoviten [1] and FEDERER [4] as follows. BESICOVITCH
considers a surface z — f(z, ), where he assumes that flz, y) is ACT (abso-
lutely continuous in the ToNELLT sense). To extend his ingenious argument
to the case when f(z, y) is BVT (of bounded variation in the TONELLI sense),
FEDERER [4] replaces the various definite integl-a»ls bearing upon derivatives
(as used by BEsICOVITCH), by integrals bearing upon total variations. These Iat-
ter integrals coincide with one of the alternative forms of the so-called GESGCZE
expressions which play an important role in the theory of the LEBESGUE
area. Beyond this point, FEDERER [4] proceeds to use his important and
interesting results on a generalized version of FAVARD measure which serves
in a sense as a majorant. At this point, we deviate from FEDERER [4] by
‘observing, essentially, that the LEBESGUE area itself (extended to BOREL sets
as a completely additive set function) may be used as a majorant. Another
reason for giving a detailed presentation of this portion of the argument is
the presence of minor topological discrepancies in both FEDERER [4] and
Bestcovitor {1].° For instance, in connection with a certain open set O
which arises in the course of the proof, it is asserted that the set of the com-
ponents of the closure of O is countable, a manifest slip. Accordingly, we go
into various details which seem to be necessary and which may also help the
reader to better understand the remarkably ingenious geometrical argument:
of BEsicoviTcH [1].

3.2. — Let F be a compact set in the plane and let ¢ be a generic notation
for a countable system of mutually dls101n‘( contmuft Cy, ..., Oy, ... such that
UC,cF. We define .

#{F) = lub ): d(C,) forall ¢.-
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- 3.8. - Lemma. Let O be a bounded open set in the plane. Then

{1) HL(0) < #[fr(0)] .
Proof. We can assume O == 0 [otherwise (1) is trivial]l. Let I}, I, ...

—he-the components-of-0--(the-set—-of-these—components-is-finite-o6r-countably
infinite). Let C,, C.,... be those components of the closure ¢(Q) of O which
.contain at least oneof Iy, I, .... Then

OcUrlcuc,.
. i n
and hence

{2) HL(0) < 3 ad,) .

Now C, is a bounded continnum. Hence, in particular, the unbounded com-
ponent D, of the complement €C, of C, has a connected fmntlel r, = C,
(see. NEWMAN [6], p. 117, Theorem 14.3). We assert :

(3) ) d(Fn) - d(("‘n) .

Let p,., ¢, be points in C, such that d(p., q.) = d(C,). Le') be the. line

through p, and ¢, and let 4, be the closed segment of A from p, to Gn- Then

A— A has two components each of which is in D,. Hence p, and g, are

in F, and &(F,)>d(C,). Since F,c C,, dF,) <d(C,) and (3) follows.
We next assert that '

{4) F, éfr(O) .

Since F, c €, c ¢(0) we have to show that F, n 0 = 0. Suppose p, € F, n 0.
Then p, e I; for some j and I'; c ¢, for some k. Thus p, € 0, n 0, and,
since C, and C, are components of ¢(0), k¥ = n. Thus p,& I; cInt C, and
(Int C,)nF,=0. Thus p,&I;nF, This is a contradiction. Hence
r, n 0 =0 and (4) follows. '

v (4) and the fact that F,c €, where (,, C,. ... are disjoint continua
[components of ¢(0)] it follows that F,, I’,, ... are disjoint continua in fr(0)."
Hence by definition ‘ '

(8) 2 A(F,) < #[fr (0)] -

n

(2), (3), and (5) imply (1). .

. 84. - Let £ =0 be a (omp‘w set in the plane For h >0 we define
w#(E, h) as follows.
1) A subset G of K is h-admissible if p €@, qEG P #q, unphes
that d(p, q) > h.
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(i) If N(G) is the number of distinet points of an h-admissible set
G c E then clearly N(G) <w(E, h) < oo, where, since F is compact, »(B, k)
depends only on E and h. ‘

(ili) It now follows that there is an h-admissible set G, < E such that

We now define w(E, k) = N(G,) = max N(@) for all h-admissible sets
Gc B If B=0 we define w(E, k) = 0.

NAG Yo agoqny
AR )

3.5. - u(E, k) has the following upper semi-continuity property. There
is an open set 0> F such that H(E= ) < (B, k) for every compact set
E*c 0.

Proof. Let 0, be the set of points p in the plane for which d(p, I) < 1/n.
Take K, compact in 0, and set o= u(l, h). Suppose L, contains points
Pis ey Ppy, such that d(p®, p3) > h for i &= j. Foreach p" have-¢% € E such
that d(p%, ¢2) << 1/n. Hence, for 1 =7, h<dp}, p)) < dlg", ¢") + 2fn or

2
5

adqs, ;) >h—2/n. TFor a proper subsequence, we have " - . €RB,
i=1,.., u-1. This yields an  h-admissible set G c E with N(@) =
= u(H#, k) + 1. -This is a contradiction. Thus for some n the set 0, can be
taken as O.

3.6. — Let E be a compact set in the xy-plane. Define
&z, by B) = Wl h)

where ., is the intersection of Z with the line # — constant. Then &z, h, EY
is uniformly bounded (less than or equal to w«(E, h)), is identically zero outside
of some bounded interval and by the remark in 3.5 is an upper semicontinuous
" funetion of x. Hence the integral

0

[ &@, b, BYde = [ &, b, Bydo

“exists and is finite. ; , :
In a similar way (Y, hy, B) is defined by exchanging the roles of z and Y.

3.7. - Lemma. If & is a compact set in the zy-plane then (see 3.2, 3.6)

(1) #(B) < lim int {/ &, by B)de + [y, b, B) a;:,] .

30 .
Proof. Take any (finite of infinite) sequence of disjoint continua.
Ciyery C5y...in B, We -can -assume. #(E) == 0 (otherwise (1) is obvious) and
hence that d(C;) > 0. The projection of C; onto the s-axis is an inter-
val a;<x<b; (may have a, — b;) and onto the y-axis is an interval
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¢; <y <d;. Let g,(w) be the characteristic function of the interval on the
z-axis. Take any integer » and let 6(n) be the minimum distance of pairs
in Oy, ..., C,. Take h such that 0 <<h<C d(n). For given z, clearly g,(z) -+
+ oo -+ gu{®) is the number of those amongst C,,..., €, that are intersected

secndpyethevertical-line-through..#....Hence
gl(m) ’T’ + _(]”({B) < 5(‘/177 h: E) ?
and thus on integrating

z (b; — a;) < / &, hy, B)dx .
i !

Similarly

| 2 (d; —¢;) <./-77(y, h, B) dy )

Thus |

Z‘ s ’éw)j — )+ (@) < [ Elay By BYaw + [y, b, By .

Now h was subject only to the condition 0 << h << §(n). So, keeping » fixed
and making b -0, we get '

n 7

> a(C;) <lim inf “ &, by, B)dz + /‘n(g/, hy, ) dy] .

Jj=1 h—0

Letting 71— co we obtain

S a(C;) <lim inf “ E(w, y, B)de + [17(?/, h, B) dy] .
=1 R . I
Since the seQuence Cyy ..oy Cyy ... was arbitrary, (1) follows.

3.8. — Throughout the remainder of this section we shall assume that
f(z, ) is a continuous function defined for all # and y and that the LEBESGUE

area of the surface z = f(x, ¥) is finite over every rectangle.
Whe shall denote by S the point set consisting of the points [, y, 2 = f(a,¥)].

3.9. - Lemma. Under the assumptions of 3.8 assume 8 n K(a, ) == 0.
Then [8 n K{a, )] is an open set in the xy-plane, and (see 1.9)
fr { {8 n K(a, )]} [ n Bla, n] .

Proof. Obvious.
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3.10. — Theorem. TUnder the assumptions of 3.8 we have
-
He { [S 0 K(a, )]} <liminf § [ Z(a, &, [S n Bla, »)]) dw -

0

Proof. The proof of the theorem follows by using successively the
Iemmas in 3.3, 3.7, and 3.9 (note that clearly K, ¢ E, implies that () < ().

3.11. — For a bounded BoREL set B in the ay-plane we define Vi(B,,y, f)
and V,(B., x, f) as in LA IT1.2.45. We set

nfvl(B7 f) = / I’:(Bya Y, f) dl/ s ‘Vy(B) f) :/ Vl(Bl? &y f) da H
RNe(By ) = | Blo + WB, /), R(B,f) =|B|, + WuB, ),

where ]B » denotes the two-dimensional LERESGUE measure of B.
It should be noted that R, and R, arve finite, non-negative, completely
additive functions of bounded BOREL sets in the plane.

\

3.12. — Theorem. Under the assumptions of 3.8 we have the inequality

9%, {[S N K(a, 20)) } + %, { [§ n K(a, 20)]
H, {[8 n K(a, )] } < 8 L {[S N Ka 9)]}2 i, SN Kla 9)3}1
2

where @ is not required to lie on S and g > 0 is arbitrary.
Proof. Set (see 1.9}
D=8 [K(a,r+h)—Cla,r—h)], O<h<r ,  B=8nBa,).

We first want an estimate of &z, h, B'). Keep z and h fixed. Assume-
E(@, b, B') > 1 (otherwise we have a trivial estimate). On a vertical line-
through # we have points (z,w),..., («, ¥e) in B’ such that |y, —y,|>h
for i 7= j. Consider, for 0 < A1 <h,

Pi(R) = 2 + |1y g5+ 22) — fla, 93) | + (e, 9,) — fe, y,— A/2) ] .
Then @;(0) = 0, @,(h) > h. Thus there is a smallest 2 > 0, call it A;, such that
@A) = 1/2 and @A) <h2 for 0<A<,.

We assert that the intervals IN:y,<y<uy; + Aif2 and I):y,— 4,2 <y <y,
on the vertical line through @ lie in D’. Indeed, take I7 and let 0 < A< Ay
Let p; and p} be the points of § over (s, y;) and (2, y;, + A/2). Then

Aps, P5) < A2 + | fle, ¥+ 42) — H(@, y,) | <@s(A) < /2 .
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Since (@, y;) € B, p,&€ B and hence pte D. Therefore, (z,y;+ Al2) € D"
Thus the 2£ intervals I;, I, are non-overlapping intervals in (D"),. We thus.
have the inequarlity :

2 lrs(l’“”h B! )”"““Z‘P;(ﬁ ) < D’ x%l ; vy{(«D,)xa & ﬂ?

where | (D'), |; indicates the linear LEBESGUE measure of (D'),. Integration -
vields

@) h | &z, by BYdw < R,(D', ) .

D2 | e

Now, since the projection from the surface § upon the zy-plane is one-to-one
and (D', f) is additive, we have the following relationships:

DcSn[K(a, r+h) 51{(a,, r—n0)]=8nKa, r+nh)—8n K(a, r—h),
D' c[8n K, r-+h)Y—[SnKa, r—h)],
R(D', )y <R, {[SnKa,r —;~7z)]"—— RNASn Kla, r—R)] }.
From (1) we thus have the inequality

%, {[S N Kla, »+ 07 —x, { (S n K(a,7-k)]}
) 2h v

@) [&{@, 180 Bla, )]} do <4

Similarly

%, {18 N K@, 7+ 1))} — %, { [S n Ko, 7= 1)}

@) [7{y N 18 0 Bla )Yy <4

2h
Now let
(4) o) = RS0 Ka, )]}, ) =R A8 n E(a, )]}

Then >(p(‘)‘) and (r) are non-decreasing functions of » and hence @'(r) and p'(r)
exist for almost every r. From the inequalities (2) and (3) we thus have

(5) hmmf“ {=, b, [S n B(a, 7 )]'ldv—}—/n{y,h,[SnBa, #] Ydy <

=0
< 4’ (r) + 1/)’(9')]] for almost every r
Set '

(6) Ulr) = H% {[Sn K(a, )] }.
From the theorem in 3.10 and the relations (5) and (6) we have

U(ry < 4{e'(#) 4+ »' ()] for almost every 7.
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Thus, for any g > 0,

2

Yo

0 2n

{7) oU(p) < / Ur)ydr < 4 “(p'(‘i') dr -+ /1/)’(7') dr} <

J .
2 2 2

<4 p(Zo) + p(20) —glo) — (o)) < 4[p(20) + p(20)] .

The statement of the Tilemem then follows from the relations (7 )y (6) and (4).

3.13. ~ For a bounded BoREL set B in the zy-plane we set (see 3.11)
R(B) = R.(B) + R,(B).

Then R(B) is a finite, non-negative, completely additive function of bounded
BOREL sets. From the Theorem in 3.12 we have the following Theorem.

Theorem. Under the assumptions of 3.8 we have the inequality

NA{[S N K(a, 29)] }
T

H', {[SnKa, o)) } <8

2¢

where the point « need not lie on S and 0 >0 is arbitrary.

4. — The inequality of Brsicovirch.

4.1. — This inequality is stated as a theorem in 4.3 below. ILet us recall
that BEsicovirem proved the inequality for the special case where f(z, ¥)
is. ACT. The more general version of the inequality, stated as a theorem in
4.4 below, illustrates the convenience of using the important fact that the
LEBESGUE area gives rise to a eompletely additive function of BOREL sets.

4.2. - Lemma. Under the assumptions of 3.8, let 8 r Dbe the portion
of § over the oriented rectangle E. Then
H(S),) < 2048 R(R),
where R is the set function defined in 3.13.

Proof. Let 4 be the set of points (=, y,2) such that (, y)e R and
2 = f(z, y), where R° indicates the interior of the rectangle E. On 4 we
define for BOREL subsets Bc 4 the set function

p(B) = R(B') . .

Then @(B) is a finite, non-negative, completely additive function of BoOREL
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setson 4. Take apointwaon 4. Then R {[4 n K(a, 7)) } = R{[S n K(a, 7)) }
for » small enough. Hence ¢ {[4n K{a,7)]}=R{[8n K(a,r)]} for »
small enough. Thus, by the Theorem in 3.13 with g = r/2,

eldn Kan]. 1 Hy {80 K@} .

7r? 7 16n 72

Hence, by the Theorem in 2.6,

old n K(a, r)] - 1

“16- 327

lim sup

T ar®

for a € A, except for a set of H? measure zero. Therefore, by the Lemma
in 2.7, ‘ '

H(A4) <16 - 3200(A4) <16 - 3270(8 ) = 16 -32aR(R) <16 - 32 - 4 R(R) = 2048 R(R).

Since clearly H*(S, — 4) = 0 we have H?*(S;) <2048 R(R).

4.3. ~ By LA V.3.9 we have that R(R, f) =2 | R|, + W.(R, ]) + W,(R, ) <
< 44(R), where A(R) denotes the LEBESGUE area of the part of & over R.
Since 4 - 2048 = 8192 < 10t < 105, we have in view of 4.2 the following ine-
quality of BmsicoviTeH (cf. 4.1).

Theorem. Under the assumptions of 3.8 let S, be the portion of §
over the oriented rectangle R. Then

H2(8,) < 1054(R) .

4.4. — Under the assumptions of 3.8, by LA V.3.28, the rectangle function
A(R) has a completely additive extension to BOREL gets in the plane, and this
extension satisfies the relation A(R°) = A(R). Let O be a bounded open set
in the plane. Then O = R, + R, + ... where R, is an oriented rectangle and
RINRI=0 for i==j. Hence A(0)> A(R}) + AR} +...=A(R,)+ A(R,) +...>
> A(0) and therefore A(0) = A(R;) + A(R,) +.... Let S, denote -the
portion of § over 0. Then

H2(Sp) < 3 HY(8y) <1053 A(R,) = 10°4(0) .

‘We thus have the following corollary to the Theorem in 4.3.
Theorem. TUnder the assumptions of 3.8 let S, denote the portion of §
over & bounded open set O in the xy-plane. Then

H(8,) <1054(0).

3 — Rivista di Matemalica
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5. - Relations:between HAUSDORFF measure and LEBESGUE area.

5:ti-—Tigt

1) Vi = {l}('ZL, v) 3 ¥y = y(u, v) y k= ?(’M, ?) ’ (/"-’7 v) € Q ’

be a continuous mapping from the unit square Q: 0 < u <1, 0<ov <], in

the wv-plane, into Eueclidean ayz-space H,. We shall use vector notation T

to denote a point (#,y, 2) in E;. In the next few sections we shall give some
definitions and properties for continuous mappings 1.

5.2. — A continuous mapping 7 as given in 5.1 is called BVT if each of

the coordinate functions in (1) of 5.1 are BVT and is called ACT if each of
the coordinate functions in (1) of 5.1 are ACT (see LA I11.2.64).

5.3. — A component of an inverse set T-1(x) for pe& 7(Q) is called a.
maximal model continuum. A maximal model continuum will be called non-
degenerate if it does not reduce to a single point.

5.4. — A continuous mapping 7' as given in 5.1 is called monotone if Ty
is a continuum for each re& T(Q).

5.5. — If ,,..., 2, exist at a point then W(u,v) = VEG— F* will be
‘called the Jacobian of the mapping, where E = wy + Yy A, = + oy’ 2P,
F= Ty -+ ’]/u?/u T+ RuRye

5.6. — For each p € F; and set E c @ we define N(z, T, E) to be the number
(possibly — cc) of points (#, v) € E for which T(w, v) = t. We shall use the
well known fact that N(x, 7, B) is an H® measurable funetion whenever B:
is & BOREL set. ~

5.7. — Lemma. Let T be a continuous mapping as given in 5.1. As-
sume 7' is BVT (see 5.2). Then there exists a dense denumerable set of ver-
tical line segments and a dense denumerable set of horizontal line segment

DSkt =y, 0<o<1; Sop 0 =1, 0<w<l;  4,j=1,2,..,

such that

H2[T'(s,)] =0 . H2[T(sy)] = 0.
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Proof. Choose the line segments so that T is of bounded variation on
each of them. )

5.8. ~ Lemma. Let T be a continuous mapping as given in 5.1. As-
gume T is BVT and let F, be the set-sum of all the non-degenerate maximal

I EY. LI

model contipia deteriiined by I (see 5:3) ThenH [T (BT =0

Proof. Let y be a non-degenerate maximal model continuum determined
by T and let s, , s, be the line segments obtained in the Lemma in 5.7. Then
3 3
either y ns, ==0 for some ¢ or y N$, == 0 for some j. Hence"
k3

T(Ig()) c U T(Sui) _x_ U 11(8')}) 1

and .
HAT(B)] < 3 HYT(s,)] + Z H2[T'(s,)] = 0.

5.9. - Lemma. Let T be a continuous mapping as given in 5.1. Assume
7 is BVT and monotone (see 5.4). Then for any BOREL set- B c ¢ (see 5.6)

I - [Na, 1 Bam = BTGB

Préof. Let E, be the set-sum of all the nqx_l-deg'enerate maximal model
continua determined by 7. By the Lemma in 5.8, H[T(E,)] = 0. Thus,
since T is monotone, N(x, T, B) > 1 only on a set of H* measure zero. Hence,
(1) follows.

5.10. — Lemma. Let 7 be a continuous iapping as given in 5.1.
Assume T is BVT, monotone and that Wlu, v) (see 5.5) is summable. Then,
for any BOREL set B c ¢}, :

|| Waude < BIT(B)].

Ry

B
Proof. We have a BOREL set B,c B such that | By|, =| B}, and W
exists everywhere on B,. By a theorem of FEDERER ({31, 6.3, p. 455) we have
then B

(1) // Wdudo = ‘/.AT(% T, B,)dH? .

B

Hence, by (1) and the Lemma in 5.9,
j] Wdudo = U Wdudv :] N(x, T, By) AH? = H?[T(B,)] < H}[T(B)].
B 'Bo

5.11. — Let T be a continuous mapping as given in 5.1. Then T may be
_thought of as a representation of a FrEcHET surface of the type of the twe
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ccll (see LA IL.3.44). We denote by 4(7) the LEBESGUE area of this surface.
If R is an oriented rectangle in @ then Ty will denote the continuous
mapping 1 operating from R. We shall also use A(R) to denote 4(T R

5.12. —~ Lemma. Let 7 be a continuous mapping as given in 5.1. Let 0.

be an open set in ¢ such that 7' is ACT on every oriented rectangle in 0 and
the partial derivatives of the coordinate functions are summable with their
squares on 0. Then

. 'mﬂ>mem.
Io] ;
Precof. On every oriented rectangle R < 0 we have (see LA V.2.27)

AT = || Wduav .
bl
Now O = R, + R, 4+ ..., where R, is an oriented rectangle and R} n R) = 0
for ¢ == j. By LA V.2.15 we thus have

AT >3 ATy =3 [[Waundo = [[Wando.
n n o ./'n ‘ ()

5.13. — Let f(», y) be a continuous function defined for (z, ) in the unit

square ¢: 0 <x <1, 0 <y <1. Then z-_f'n Y¥), (@, y)E Q is a non pala-

metrie surface. We shall denote by

}7: T =1u, Y=Y, 'Z:f(.’l?,fl/), (m,?/)EQy
the continuous mapping from @ into H,.

It should be noted that if A(f)< oo then f(®, ) can be extended by
reflections to the entire xy-plane to satisfy the conditions of 3.8.

5.14. — Let f(x, ) be a continuous function defined for (@, ¥) iIn the unit
square @: 0 <z <1, 0<y<1. Assume f(x,y) is BVT. Then (sce 5.13)
A(f) < oo and § is topological. Tence there exists a generalized conformal
representation (of the surface represented by f)

1) T: w=awv), y=yu), z=:zun0), @)€K,

where K is the unit square 0 < <1, 0 <v <1 in the wv-plane. T satisﬁes
the following conditions:

(i) T is a continuous monotone mapping.

(ii) T is ACT, the paltlal derivatives @, ..., 2, exist almost everywhere
in K and are summable with their square on K, and

CAm = [[ Wauae.
) J;
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(ifi) For the first two coordinate functions in (1) the mapping
m: x=ux(u,v), y=yluwv), HvVIEK,

is a continunous monotone mapping from K onto @ and

T = fm, m: K=, f: @ —>B,.

5.5. -~ Lemma. Under the assumptions of 5.14, for every oriented
rectangle R c Q ' )

(1) [ / Wauds = 0.
™ _l(f?—]3°)

Proof. By the Lemma in 5.10 the integral in (1) is less than or equal to ’

H2{ T[m (R — R%]} = Hf(R — R%] and clearly H2[f(R — R°] = 0.

5.16. — Lemma. Under the assumptions of 5.14, for every oriented

rectangle R c ¢
A(R) = / [ Wdudo.
m=1(R) v

Proof. Let m, be a monotone retraction of @ onto R (see LA I1.2.39)
and let ?R be the mapping f operating from R. Then (see LA IL.1.64) f,
and fmm are representations of the same surface and hence A(f ) = A(fmgpm).
Now fmp,m and T are identical on the open set m~*(R°) and hence, by the
Lemmas in 5.12 and 5.15 we have

(1) AR) = A(f ) = AFmpm) > [[ Wandw = [| Wanao.
’ m _'i(Rn) n 41'(12) )
Now @ can be divided into 9 oriented rectangle R,, ..., R, one of which is K
and for each of which (1) holds. Then, by LA V.3.18, (1) and the Lemma
in 5.15 we have , -
9 9 o .~

(2) A(Q) = A(R) >3 jj Wdaude = // Wdude = A(T) = A(Q) .
v o] .

L CARy K

Frmh (2) it follows that the equality sign holds in (1).

5.17. - Lemma. Under the assumptions of 5.14 for every open set
0 c @ (see 4.4) ' T

L A0) = [ Wauas.

~m likO)
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Proof. O =R, + R, + ..., where R, is an oriented rectangle and
R}n R} =0 for ¢ 4= j. Then (see 4.4) by the Lemmas in 5.16 and 5.15 we
have

L1 AT Yoo S [.- - /'"‘ -
AOy =3 AR,)y="3 [1' Wdnds = ”’ Wdwdy
" " “'li.lf") m ;1‘(0)

5.18. — Lemma. Under the assumptions of 5.14 let F be a set of
" LEBESGUE plane measure zero in XK. Then
(1) HAT(E)] =0 and HT(K—E)] = H{T(K)].

Proof. Let E, be the set-sum of the non-degenerate maximal model
continua determined by T. Set B, = E — H,. For &> 0 given we have an
open set O > E, such that

/A/W dudv < e.

0
Let O* be the set-sum of all the maximal model continua determined by 7
and lying in 0. Then 0% is an open set (see LA 11.1.12) containing H,, m(0%*)
is an open set in @ and 0* = m~'m(0*). Thus by the Theorem in 4.4 and
the Lemma in 5.17 ‘

HT(B)] < H{T(0%)] = H[fm(0%)] < 105 A[m(0%)] = 105 /'/'Wdudz: < 10%¢
| on

Since ¢ > 0 is arbitrary, H[T(E,)] = 0. Since Ec E, + L, by the Lemma
in 5.8
H“‘[T(E)] H* [T(L') + T(E,)] < H¥T(E))] + HY[T(E,)] = 0.
Thus H2[T(E)] == 0 and the first part (1) holds. - Now
HYT(K—E)]< HE[T(K)] HE{TY‘K——E)] + HYT(E)] = H{T(K — mj.
Thus the equahtv sign holds in the last relationship and the second paxt of

(1) holds.

5.19. — Theorem (BESICOVITCH [1], FEDERER [4]; cf. the introduction).
Let f(,y) be a continuous function defined for (, ¥} in the unit square
Q: 0<z<], 0<y<1. Assume f(z,y) is BVT. Then

A(Q) = H[H(O)]-

Proof. Using the notation in"5.14 let E be the set of points where W
does not exist. Then E is of LEBESGUE plane measure zero. Let B be a
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BOREL set of LEBESGUE plane measure zero containing E. By the theorem: -
of FEDERER ([3], 6.3, p. 453), the Lemmas in 5.9 and 5.18 we have

A(Q) = A(T) = // Wdudv = ” Wdude =

e i K—R

— [ ¥, 7, K—B)dH: = B{T(K —B)] = HAT()) = HF(Q)] -

5.20. — Lemma. Let @ be a Lipschitzian transformation with constant 1
from wyz-space FE; into #'y'?’-space E;. If E is a bounded H? measurable
set in F, with H*(E) << oo then

) HY(E) > [ NG, &, B)aH:? .

Proof. Obviously N(x', @, E) is an H* measurable function. There are
only a denunierable number of planes m parallel to the coordinate planes
such that Hzw n E) £=0. Let K be a cube with sides parallel to the coordi-
nate planes, containing E in its interior, and such that for each integer = it
can be divided into n® congruent cubes k7, ..., ks by planes m parallel to the
coordinates planes for which H¥m n E) = 0. For each integer n let f.(2").
be the number of cubes &7, ..., ki containing points of @-13"). Then

(@) HYB) = SHAENE) > S HP(E n k) _—{ fux) dHz.

Except for a set of H* measure zero, f,(#') converges monotonically upward
to N(p', @, E). Thus (1) follows from (2).

5.21. - Lemma. Let T be a continuous mapping as given in 5.1 and
let @ be a Lipschitzian transformation with constant 1 from FE, into
#'y'z'-space E;. Then ‘

ey [¥@, 1, @am> [ ¥, o1, @ am: .

Proof. Assume the integral en the left-of (1) is finite (otherwise the
inequality holds). For each integer = let A, be the set of points ¢ & F, for
which N(z, T, Q) =n and let A, be the set of points y € E, for which
N, T, Q) = co. Then H*A4,) =0 and HP(A,)] = 0. Thus

@ [¥@ 1, @ am: = 3 wmAL)

n.

and

3) ' NG, OT, Q) = SaN@G, &, 4,), ¥ &D(A.).

n
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From (2), the Lemma in 5.20 and (3) we thus have

[ ¥z 7, QA = S nit,) > 3 [y, 0, 4,) i —

o . , -

=N o Ay A= [N, o, gyans

5.22. — Theorem (BESIcOVITCH [1], FEDERER [4]; cf. the introduction).

Let f(z, ¥) be a continuous function defined for (z, ¥) in the wunit square
Q:0<x<1, 0<y<1. Then :

1) A(Q) = H[f(Q)] .

Proof. (a) Assume A4(Q) = oo and HYF(Q)] = co. Then (1) holds.

(b) Assume A(Q) << co. Then f(w, y) is BVT and (1) follows from the
Theorem in 5.19. S

() Assume H[f(@)]<co. We note that N(z,7,0) is 1 for TEF(Q)
and is 0 for T & F(Q). Let a(T) denote the lower area of the surface repre-
sented by a continuous mapping as given in 5.1 (see LA V.L.7). Let
Py, Py; P, denote respectively the projections of E; upon the ye-plane, zw-plane,
oy-plane. Then by LA V.3.7, LA V.1.3, LA V.1.4 and the Lemma in 5.21
~we have i '

AQ) = af) <alPif) + o(Pf) + a®f) < || Ny, 55 P, Q) ayae +

+ /[ ¥z, w5 27, Q) dz + [ ¥, y; B, Q) dzdy <

<3 [N F, Qam = 3H7(Q)] < oo
Thus A(Q) < oo and (1) follows from ).

5.23. — Let T be a continuous mapping as given in 5.1. 7 will be called
a quasi-Lipschitzian mapping if the following conditions are satisfied. There
exist a function f(u, ») which is BVT on ¢ and a constant M sach that for
the continuous mapping

fo U=, o= vy, w=flu,v),  (u,v)EQ,

- from @ into wvw-space, the inequality
UL, 02), Ttz 0)) < M - Ay, ), Fltty, )]
holds for every pair of points (u,, v,), (U, vy) I Q. -
If flu,v) =0 the definition of a quasi-Lipschitzian mapping reduces to
the ordinary definition of a Lipschitzian mapping. ‘ : '
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5.24. — Lemma. LetT be a quasi-Lipschitzian maﬁpping as given in 3.23.
Then there exists a Lipschitzian transformation @ with constant M from (@)
onto 7(Q) such that 7 = &f.

Proof. For a point y €& f(Q), y = f(u,v) we set

¥ = @ly) = Tf(y) = T(u, ).
For u, = f(uy, 1), o = f(ug,pg), (#y,v;) and (4., v,) in @ we have
M- d(yy, 9e) = M- d[?(“u 1)y F ey 0a)] > AT (U, 01)y T(s, 0:)] = A[D(yy), D(Ds)] -
Thus @ is a Lipschitzian transformation from f(Q) onto 7(Q) and

T = 1f-f= &f.

5.25. — Let T be a quasi- Llpschltaan mapping as g1ven in 5.23. By the
Lemma in 5.24 there exists a Llpschltzmn tsmnsfmmatmn @ f10m 7(@) onto
T(Q) such that

) T = @f .

As anoted in 5.14 there exXists a generalized conformal representation, of the
surface represented by f,

(2) f*: u=ulo, ), v=0vp), w=we«f), (peEK,
where K is the unit square 0 <o <1, 0 <A <1 in the «f-plane. Then

3) . Com w=ulo, B), v=0l,f, (,pekK,
is a continuous monotone mapping from K onto Q and

) f*=fm

We set

B) T*=1Tm: zw=a¥,f), ¥=y"ap), z2=2%up), (,PEK.
By LA 11.1.66 T and T* are representations of the same surface and hence
(6) LA = A,
The mapping T* ecan be written iﬁ thé following forms:
(1) LT = Tm = Ofm = Pf*
5.26. — Lemma. For the continuous mdppin“ T* defined in () of 5.25
.each of the coordinate functiong” v*(a, ﬂ), *(ot, B)y 2%{er, f) are. ACT on K,

and the first partial derivatives «¥, ..., ~ﬂ exist almost evewwhele in K and
are summable with their squares on K. . :
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Proof. The fact that the coordinate functions in (5) of 5.25 are ACT
on K follows immediately from the last form of T* in (7) of 5.25 where @ is
4 Lipschitzian transformation and from the fact that the coordinate functions
of f* in (2) of 5.25 are ACT on K.

Since-the-coordinate functions are ACT the partial devivatives &7, ., 27

f:
exist almost everywhere on K. Let p and ¢ be two points in the «f-plane.
Then

A[¥(p)y #¥(q)] < d[T*(p), T*(q)] < Md[f*(p), F*(q)] <
. , < AMLdfup); w(g)] + dlv(p), v(g)] + dlw(p), w(g)] }.
Hence almost everywhere in K
(@52 <3M2u? 4 02 4 w?).

Similar inequalities hold for 232, ..., z;‘z. Since f* is a generalized conformal
mapping, u,, ..., wy are summable with their squares and hence ¥, ., z/? are
summable with their squares.

5.27. — Lenima. Let 7 be a quasi-Lipschitzian mapping as given in 5.23.
Using the notations and mappings defined in 5.25 we have
N, T, Q) = N(x, T*, K
for every p € E, except for a set of H? measure zero.

. Proof. - Let H, be the set-sum of all the non-degenerate maximal model
continua determined by f* = fm. Since f is topological this set is the same
as the set-sum of the non-degenerate maximal model continua - determined
by m. Then by Lemma in 5.8

H[T*(Ey)] = HDJ*(B,)] < MH[FXB)] =0.
Since m is one-to-one on K—E,,
N@, T,Q) = Nz, T*, K) for re& T*(H,)

and the statement of the lemma follows.

5.28. — Theorem. Let 7 be a quasi-Lipschitzian mapping as given in
5.23. Then
A(T) = / N, T, Q)dH? .

Proof. Using the notation and mappings defined in 5.25 let W* be the
Jacobian of the mapping 7' and let F be the set of points where W#* does



in surface area theory ‘ 43

not exist. Then the LEBESGUE plane measure of F is zero and by the Lemma
in 5.18 we have

(1) ‘ HTHE)] = HPFHE)] < MH{f*E)] = 0.

From (1) we thus have tlmt

(@) N, T*% K — B) = N(g, T% K)

for ¢ & B, except for a set of H® measure zero. By the Lemma in 5.26 and
by LA V.2.27 it follows that A(T*) is given by integrating W* over K.
Using the relationship (6) in 5.25, the theorem of FEDERER ([3], 6.3, p. 455),

the relationship (2) of the present section, and the Lemmma in 5.27, we obtain
the desired equality:

A(T) = A(T*) = H W dude — //Vf dudv = [ N(y, T*, K—B)dH* =

K K-E

— [ ¥, 7%, Kyam = [ Nz, T, Q) B

5.29, — Let T be a continuous mapping as given in 5.1. Assume that the
coordinate functions satisfy the following conditions: (i) @(u, v), y(u, v) satisfy
a LipscHITZ condition with constant M >1. (i) 2(u, v) is BVT on @. In
the terminology of 5.28 let F: u = u, » = v, w = 2(%, v). Then, for (u,, v,
and (i, v.) in @,

ATy, v1), Tlus, v2)] < dlws(ty, vy), (U, o)) -+ dly(uy, 1), YU, 92)] +

-+ d[z(ula Ul)y Z(’ll.z, '02)] <3M- d[i(uly 1), —f(u‘u )] .
Thus if 7 _satdsﬁes the conditions (i) and (ii) then 7T is a quasi-Lipschitzian
mapping and by the Theorem in 5.28, 4(T) = / N(x, T, @YdH® Let us note

that in the special case # = u, ¥y =7v this 1esu1t reduces to the theorem stated
in 5.19. ‘

5.30. — Let T be a continuous mapping as given in 5.1. For y & K, we set
N(x, T, Q) = number of points in 7I-(x),
Ny(x, T, @) = number of maximal model continua in T-Yy),
Nyglx, T, @) = number of maximal model continua in 7-x) which do

not interseet ¢ — @°.
We set

AT = [ ¥yls, T, Q) am
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and following the definitions of area of Youne [9] and BESICOVITCH [2] we set
AQT) = [ Ny, T, Q)aH:,

7.

ATy =] Bl Ty QydHE T

——

5.31. — Lemma. If 4 v ) < oo, then Ay(T) = 4 ,(T).

Proof. Assume A,(T)< co. Let F, be the set-sum of all the non-
degenerate maximal model continua determined by T. Then HT[E,)] =0
and Ny, T, Q) = Nyu(z, T, Q) except on a set of H® measure zero. Hence

ATy = A(T).

5.32. — Lemma. JIf HT(Q — Q%] =0 then Ap(T) = AQ(T).

Prootf. If HIT(Q — @°)] = 0 then Ny(x, T, Q) = Nylx, T, Q) except on
a set of H? measure zero. Heneg Ap(T) == A (T). ’

5.33. — Theorem. Let 7' be a quasi-Lipschitzian mapping as given in
5.23.  Then (see 5.30) ‘ '

A(T) = Ag(T) = AQ(T) = A (T).

Proof. By (6) of 5.25, the Lemma in 5.26 and LA V.2.27 we have
A(T) < co. The first two equalities then follow from the Theorem in 5.28
-and the Lemma in 5.31. Using the notations and mappings in 5.25 we have

HYT(Q— Q)] = Hf[@f Q@ — Q)] << MHf(Q — Q)] =0,

since clearly H2[}(Q — Q®)] = 0. The third equality then follows from the
Lemma in 5.32. : :

The Okio Siate University, Columbus, Ohio, U. S. A.
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