TiBOR RADG (%)

On identifications in singular homology theory. (=)

§ 1. - Introduction.

1.1. - The purpose of this paper is to study the reievanoy of the various
identifications that occur in singular homology theory. To introduce our
main result, let us consider a general topological space X. Let E‘m denote
HILBERT space (that is, the space of all infinite sequences 7y,..., #,,... of real
numbers such that »} + ... 4+ 2 -+ ... converges, with the usual assignment
of distance). Tor p=0, let v,,..., v, be a sequence of p -1 points in B
which are not required to be distinct or linearly independent, and let
| 04, ..., ¥, | be the convex hull of these points. We associate with X an abstract
closure-finite complex R — R(X) as follows. For p=0, a p-cell (v,, ..., v,, T)®
of R is an aggregate consisting of a sequence v,, ..., v, (of the type just de-
scribed) and of a continuous mapping 7': |v,, ..., v,| - X. In terms of these
p-cells, we introduce in the usual manner the group CX of finite integral
p-chains, with the standard convention that for p < 0 the group ()f reduces.
to a zero element. We introduce then the boundary homomorphism

R.nR R
b 'Cz' '—>Cp—1’

by the conventional formula

r -

W (wy, .y 0, TR = 20 (— 1) (W0 erry Dy .y 0, T)E
for p=1. For p <0, 2% is defined as the trivial zero-homomorphism. Since
obviously ™% =0, our R =R(X) is a manifestly closure-finite abstract
complex (in the sense of [1]; numbers in square brackets refer to the biblio-
graphy at the end of this paper). To stress the fundamental feature of the
definition of R, we state explicitly that two p-cells (v, ..., vy, THE
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(Vyy .y 05, T")¥ arve considered as equal if and only if they are identical, that
is, if v, = vy, ..., v, =10}, T"=T". Accordingly, our approach differs from
the classical one in various respeets.

(@) Suppose that the points wq, ..., w, form an odd permutation of

thelinearly -independent points (¥, .5 %,). Tl the ¢lassical approach, one
identifies then the singular p-simplex (w,, ..., w;, T) with — (bn, vy Uy T

(b) Suppose that vy, ..., v;are linearly independent points, and Vgy eeny V)
are also linearly independent. Let t: |vg, ..., v,| —|v;, .., vs| be a linear
transformation such that the points #(v)), ..., t(v,) form an even permutation
of the points vy, ..., v/, in the indicated order. Let 7": Vgy -y 0| = X,
T": | oGy ..., v)| =X Dbe continuous Inappings which satisfy the relation
T'=T"t (products of mappings are to be read from the right to the left).
In the classical approach, one identifies then the singular simplexes
(®gy ey vy, T) and (vl ..., o7, T7). '

(¢} In the classical approach, one considers mappings from simplexes
located in finite-dimensional Euclidean spaces. In view of the classical iden-
tifications («) and (b), the use of HILBERT space is not an essential departure
from the classical ways, even though it is important for our own purposes,
as will be seen later on.

(d) In the classical approach, the points v,, ..., v, (See above) are required
to be linearly independent, while we permit them to be linearly dependent
and to coincide among themselves arbitrarily. However, inspection of the
proof of our main theorem reveals that it applies also, after plausible modi-
fications, if we define our complex R in terms of p-cells (v,, wey Uyy T)E where
Doy ey U, are required to be linearly independent. Actually, by admitting
arbitrary systems v,,...,0, We make our main result stronger. In any case,
the restriction to linearly independent systems %,,..., v, could be made, if
desired, without affecting the validity of our main result.

N

1.2. — Our objective is then, basically, to determine what happens if one
drops the identifications (a) and (b) in classical singular homology theory.
Our main result is that the homology groups remain the same. In the present
paper, we restrict ourselves to the case of the integral homology groups, since
our main purpose is to develop the formal apparatus needed for this line of
work. TFurther relevant questions will be treated elsewhere. However, we
want to make some comments about the motivation of our work. The iden-
tifications () and (), described above, are based partly on permutations of
vertices, and partly on what may be termed affine cquivalence of Mappings.
In an important paper which appeared in 1944, BILENBERG [3] clarified the
role of the identification with respect to. permutations of vertices. The present
investigation was motivated by the desire to complete the result of EILENBERG
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by showing that the identification with respect to affine equivalence is also irre-

levant.
1.3. — We proceed to state our main theorem. The topological space X

notations. Superscripts B will be used to refer to the complex R described
in 1.1. Thus ¢ will denote an integral p-chain in R, 2% a p-cycle in R, HE
the p-th integral homology group of R, and so forth. TFollowing a suggestion
of BILENBERG, we shall compare the groups H 2 with the singular homology
groups as defined in the version of the theory which is used in the (as yet
unpublished) book [4] of EILENBERG and STEENROD (the writer wishes to
express his gratitude for the privilege of having access to the manuscript of
this book). In the EILENBERG-STEENROD version, a closure-finite abstract
complex § = S(X) is attached to the topological space X as follows. For
each dimension p =0, a fixed fundamental p-simplex is selected. For our
own purposes, it is convenient to choose in HILBERT space K. the points
dy = (1,0,..), d =1(0,1,0,..), dy=(0,0,1,0,..),. and so on, and take
dy, ..., d, as the vertices of the fundamental p-simplex. A p-cell of § is
then an aggregate (dy, ..., d,, T)°, where T: |dy, ..., d, | X Is a continuous
mapping. Now let v, ..., v, be arbitrary points in F.. . There exists then
a unique linear transformation ¢: | dq, ..., d,| =] 2oy ..., ¥, | such that #(d;) =v;,
i=0,.., p. Let us denote this transformation by [v, ..., v,]. The boundary.
homomorphism ' ‘

D OY

7’ i3

is then defined, for p=1, by the formula

W(dyy oy dyy TV =

i

M=

(= 1) (g wony By T[dyy oy @y ooy A1)

Here CS denotes the group of finite integral p-chains ¢ in terms of the p-cells
(dy, .. d,,, T, For p< 0, C’S is defined as consisting of a zero-element alone.
For p< 0, ¥ is then a tuvml homomorphism. Since clearly 5% =0, we
obtain in this manner a closure-finite abstract complex § = S(X). The
integral homology groups of § will be denoted by H;. S TFor each dimension p,
we have then obvious homomorphisms :

Cp . C’f — Cf, 7, OY — (‘R
defined as follows. For p < 0, we have of course the trivial zero-homomor-
phisms. For p= 0, we have

Tollyy ooy dpy TN = (dyy ..oy dy, )"

Op(Day wres Dyy T)R = (dyy ...y dyy, T[Vg5 ..., Uﬂ])S

il remain-fixed throughout-the-discussion;-and-will-not-be-displayed-in-the-
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It is easily seen that ¢, is a chain-mapping. Owr main result is contained in
the following statement.

Theorem. The induced homomorphism ¢, H - H is an isomorphism
onto, for every dimension p.

1.4. ~ The proof consists in showing that ¢, is a chain-equivalence in a
certain restricted semse (¢f. the comments in 4.6).  Accordingly, we shall en-
deavor to exhibit homomorphisms

F,: 5~ CF

2

such that o/, ©1, Fo,01. A first difficulty arises from the obvious and
regrettable fact that the most plausible mate to Oy, namely the 7, introduced
in 1.3, is not a chain-mapping, However, we shall construct homomorphisms
F, :0‘5 > C’,{" which are chain-mappings and do satisfy the relation ¢, F, v 1.
- A second difficulty arises from the fact that the relation F,o, ©21 does not
hold in the standard sense. The crucial issue in the proof is precisely to find
a weaker but still adequate homotopy relation, and to construet an appro-
priate chain homotopy operator, in a properly restricted sense. Fundamentally,
the proof is based upon certain properties of the barycentric subdivision.
Some of these properties may be of independent interest and may lead to
further relevant applications.

§ 2. - The auxiliary complex K.

2.1. — Points of HILBERT space E, will be treated as vectors in the usual
manner. The origin (O; 0,0,...) will be denoted by 0, since it’ plays the role
of a zero-vector. A system of p + 1 points v, ..., v, of E., where p=0,
is termed linearly dependent if there exist real numbers 2y, ..., 4,, not all zero,
such that Aw, +... + Av, = 0, 2o + .o 42, =0. Otherwise v, ..., v, are
termed linearly independent.

2.2. — Let ,, ..., z;, where p= 0, be arbitrary points of E., which may
be linearly dependent and which are not required to be distinct. Their linear
hull I, ..., »,) is the set of all those points x which can be written in the
form = A, + ... - »¥y; Where the real numbers 4, -y A, satisfy the ve-
lation 4, + ... - 1, = 1. Then Llxy,y ..y ;) is the smallest linear subspace

of . containing a, ..., x,.

2.3, ~ Now let ¥,,..., ¥, be arbit ary points of F., and let a, ..., x, be
linearly independent points of E,. Then there exists a unique linear
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transformation ¢ L(2,, ..., #,) = L(#,, ..., ¥,) such that #{&,) =y, 2 =0, ..., p.
Explicitly, ¢ operates as follows. A point z € L(w, ..., #,) can be written uni-
quely in the form z = Ay - ... + A,2,, where 4, ... = 4, =1. One has
then #(®) = Ao + -.. + Ay, The linear transformation ¢ is continuous.

The following situation will arise in the sequel. Let d,, ..., d,, p =0, be
the vertices of the fundamental p-simplex (see 1.3), and let #y, ..., 7,, ¢= 0,
be ¢ + 1 points in F.. such that the system d,, ..., d,, 7o, ..., 7, is linearly inde--
pendent. Let .., 2, 0=<7=<p, be linearly independent points. in
L{dy, ..., d,). Tt is easy to see that the system @y, ..., %, 7o, ..., 7 18 linearly
independent. Hence, if we take points ¥, ..., ¥, in L{y,, ..., %), Which need
not be distinet or linearly independent, then we have a unique linear trans-
formation

U0 Ly eeey Try Nos oy M) = LlYos oeey Yoy Moy ey 77,,) = L{ngy ..y M)

such that t(x,) =vy;, 1 =0, ..., 7 and #n;) = »;, j =0, ..., ¢. This unique ¢
will be denoted by oy, ..., Zry Yos -ors Yo)o - Of course, o depends also upon
Yoy -y Mo, DUt in the application 7, ..., 7, (and of course dy, ..., d,) will be
fixed, and hence need not be diplayed in the notation. The following facts
are easily verified. ‘

(@) ooy weey Try Yoy ooy YY) =, for y & Ly, ..., 5,). In particular,
this applies to ¥y =¥,, i =0, ..., 1. '

B) oy vy Biy ey Loy Yoy oens Yoy -ons Yr) ALTCES Wit ot(@g, <oy Bry Yoyeery Yr)
ON L(%yy oevy @iy eeey By Noy oory No)-

2.4, — We associate with F. a complex K as follows (K is identical with
the formal complex of a set A, in the sense of [4], for the case when 4 = E..).
For p= 0, a p-cell of K is a sequence of p -+ 1 points (v, ..., v,) of E. which
need not be distinet, and are not required to be linearly independent. For-
mally, a p-cell of K may be defined as a mapping from the set of integers
0,..., p into B.. Thus the order of the points w,,..,7, is essential:
(055 veey V1) = (Vg ..y ¥2) if and only if 0] =0}, i = 0, ..., p. In terms of these
p-cells, one defines the group C, of integral chains of K. For p <0, C, is
defined as consisting of a zero-clement alone. For p = 1, the boundary homo-
morphism :

2:C,—C,
is defined by the formula

»

Wy oy Bp) = D (— 1) (Vg ceny iy anes Uy) -

i=0

“For p=<0, d is defined as the trivial zero-homomorphism. Clearly 2d =0,
and thus K is a manifestly closure-finite abstract comples.
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If » is an assigned point of E., then for p=0 one defines the
cone-homomorphism
P

h? N Gp -5 (/,,..;.1
by the formula ) ‘

BT, cvey ) = (— 1) 10, s By, 1) .
For p=1, one has then the identity
| Dk + ﬁ;;q,a =1.
The barycentric homomorphism
B Co— 0,

is defined as follows. For p <0, 8, is the trivial zero- homomorphism.
For p = 0, fo =1. For p >0, B» is then defined recursively by the formula

ﬁmw"’ ey Up) = hl’,(_'"i’ ""N”)ﬂwlb("’o: vy Dp)

where b(v,, ..., vp) is the barycenter of the points Voy ...y Up. One verifies the
identity : - : ‘ ‘ '
Dﬁm = /322—13 .

In other words, 8, is a chain- mapping. Fmthelmme, B» is chain- homotoplc
to the identity. 'The couespondmo chain-homotopy. operatm

Op. 10, — Coa

is constructed as follows. For p < 0, g, is trivial. For p = 0, one sets 0o =0.
For p=1, @ is defined recursively by the formula

Qm(/vm seny 'l),,) = hz(""' m'%)(ﬂﬂl—" 1~ 92)"13)(7)07 LA 'Uﬂ) .
One verifies the relation ' '
DQW —(L Qﬂ‘"lb = ﬂp—‘l >

which shows that , 1.

2.5. — Now 1ét A be a conveXx subset of E.. Whe shall write (v, s ey ,) cA
to state that v,€ 4, i =0,..,p (as a consequence, |2 .. Wl d). Ife,
is a p-chain of K, then we shall write ¢,c A to state that every ‘p-cell
(Vgy .0y ¥,) OCEWrTing in ¢, satisfies the inclision (1;.,, . ¥p) € A.  One verifies
the inclusions : ’

BalVoy vy ©3) €| Vgyoery 05|y 000, ..., B,) © | Doy evey 0] -

2 6. — We shall. discuss presently in some detail two properties of f» which
are important for our purposes. ~To state and prove ‘these properties, we
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introduce homomorphisms

ty 0, —~>C,y pz=l, 0=5j=p—1,
by the formula

Lpi(Dgy cevy Vsy Uity ormy Up) == {Vgy ory Vjtas Ujy eoey Vpj -

Thus t,; effects a transposition.of v; and v,,. Furthermore, we introduce, for
every pair 4, p of integers such that p=1, 0<7 < p, the homomorphism

iv . Gp - G»~1
by the formula

. N
’Lp('voy-“,va)) = (Vgy oeey Uiy oeny Up) p=1.

The following formulas are then obvious.

Q. Mgy oy By) = (éﬂ(—l)? z‘,,)(@o, ), P 1.

2) Tabpioy wovy V) = byr soaln(Doy ey D), 0 E<<F< .

(3) Gt (Boy vey Vp) = Tyy n(Boy ooy Vp) 0<j<i—1<p—1.
4) Iobpi(Voy vy Tp) = ( + 1)p(0g, ..oy ¥p) 0=sji<p.

(8) (G + DaboilVoy ey 05) = Jo(Voy ..oy V) 4 t=j<p.

(6) ey ey 1) = — B0y ey 0), - P, O=iZp.

For f, we have then the identity '

(@ BBy -vey ) = — Bl -3 05) 0sj<p,
which implies of course, for eifery p-chain ¢, of K; thé identity
(8)° ~~ BotniCs = — Butn s =<y,

To prove (7), one verifies it directly for p = 1 (the only admissible value of §
is then j = 0). TFor p >1, (7) follows then readily by induction, using the
identities (1)-(6) and the recursive definition of B,.  Incidentally, the iden-
tities (1)-(6) hold for every p-chain ¢, of K, by virtue of the linearity of homo-
morphisms. Finally, we have the identities

(9) ifse, =0, 0si<p, .
(10) ’ pm@b’)cp = (— 1)213/311671 3 Y4 2‘1 )

forqevery p-chain e, of K. Of course, (9) implies (10), in view of (1). The
formulas (9) and (10) are verified directly for p = 1, and for'p >1 one obtains
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them readily by simultaneous induction, using the previous identities and
the recursive definition of f»- As a corollary, we obtain the formulas

(11) tyrffamrde, = 0, t=i<p—1,
(12) ' =100, =0, p=2.

The formula (11) is a direct consequence of (9), while (12) is obtained as follows:
‘ (P —1 )p-*lﬂn—-la(’n = (— :I»)p“lb/jvﬂbﬁp ’
by (10). As p, , = Bu-2d, (12) follows since 2 = 0.

§ 3. — The complex R = R(X).

3.1. — The following device, employed in [4], will be useful. TLet 4 be a
convex subset of K., and let C4 denote the subgroup of (), generated by
those p-cells (v,,...,v,) of & which satisfy the relation (v, ..., v,) < A. For
p<0, C:is defined as consisting of a zero-element alone. Lot T 4--X
be a continuous mapping. We can then define homomorphisms

- R
T,.08 — cr .
by the formula

1171(/1;0?"'71:7?) == (’UU)"'S ?)1,7 T)Iff pzo’ ('Do, o2 {Uﬂ)eg;:l‘

T

For p <0, T, is the trivial zero-homomorphism. For ¢, € 04, Tye, is obtained
by linearity, since the p-cells (Toy vy ¥,) € 4 form a base of C;’ It will be
convenient to use the symbol (¢,, T)® to denote T,c,, where of course it is
assumed that ¢, € ¢, The following statements are then obvious.

(@) If ¢, is the zero p-chain of C:, then (c,, T)¥ is the zero p-chain
of CF. In symbols: (0, T)% — 0. ‘

(b) %(e,, TV® = (d¢,, T)E, where e, € C4,

3.2. — In terms of the Preceding notations, we define now homomorphisms
R. qr R
By O — OF,

Q;-;R 05 . Olt‘.

Pp+1?

by the formulas
Ry \ R R
@ay ey Oy TV = (Byfva,y ooy 0,), TV, p=0,

0B (s uey v,y TYE = (@0(voy -.vy v,), %, p=o0.

TFor p < 0, B and ¥ are of course defined as the trivial zero-homomorphisms.
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Since fuoy ..ey ) €| oy -eey Uoly 0o(Voy ooy By) €| Voy ooy V| DY 2.5, the homo-
morphisms pZ, of ave well defined. The identities stated in 2.4 for §,, o, yield

Fd

then easily, by means of the technique deseribed in 3.1, the identities

() — AR = pE HF,
2) ol - oF F =pF 1.

The identity (1) states that ﬁf is a chain-mapping, while (2) states that
BE w1,

3.3. — In terms of the homomorphisms %,;, 4, introduced in 2.6, we now
define homomorphisms

8. C¢F - CF, p=1, 0<j<p—1,

if. OF o OF p=1, 0<igyp,

£ p-17?

by the formulas (cf. 3.1)
tﬁ(vv(,, ey Uy T = (t,,,.(»vo, ey V) 1’)”,

4 . pid [ " R
%y ('U()) ceey Upy T) C = (\%('vm '2/,,), T)) .

3.4, — The homomorphisms considered so far in the complex R are of a
simple and familiar character. However, we shall need a set of further and
more complicated homomorphisms, related to the well-known prism
construction. Let p=0, ¢= 0 be given integers. Let d,, ..., d, be the vertices
of the fundamental p-simplex, and let #,, ..., %, be ¢ + 1 points in K. such
that the points dy, ..., dy, 79, ...y 7, are linearly independent. The integers p, ¢
and the points do, ..., d,, 7o, ..., 7, are cansidered as fixed, and will not be
displayed in the notations, unless needed for special reasons. For every integer
r= 0, let I', denote the subgroup of CF generated by those »-cells (%o,..., ¥, T)F
which satisfy the condition (¥, ..., ) € I{ne, ..., 74). Now let z,,..., @, be
linearly independent points in L(d,, ..., d,); thus 0<r< p. TFinally, let %
be an integer such that 0 < k< ». In terms of x, ..., z,, k (and of the fixed
points dy, ..., dyy 79, ..., 7,), We define then a homomorphism

ety n R
l il;"n Ir‘l“r,_>07+l
by the formula

?' ...‘a-,(yo’ cees Yoy T)H =

k s
= z (_1)J($0, vy Biy Yy vers Yoo ToUgy weey Zry Yoy ooy '!/r))R:
i=o ,

where o(Zyy ...; Try Yoy -+, Y,) 18 the linear trasnformation described in 2.3, and
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of:-eourse (¥, ..., ¥y, TV € I'.. Since Oy vury Try Yoy ooy Yr) CALTIES Xy ..., 25,
Yiy ooy Yo ANEO Yoy ooty Yy Yig enny Yy 1jespectively, the convex hull of a;o,- ey By,
Yiy -y Yr is mapped by ainto | y,, ..., ¥, |, and thus Za: | @oyeery @iy Ysporey Y | =X
is a Well defmed continuous mapping. Thus the homomorphisms T ale well.

denned

3.5. — The proof of our main theorem will depend upon a set of identities
mvolvmg the various homommphlsms introduced above. These identities
will be listed presently for convenient reference. :

I 1. RBE = R HE.
I. 2. ol L oFf A —pE_1.
I. 3. Bty =—pr, - 0=j<p.
TR — ¢, 0<i<p.
I 5. pEBE = (— 1)"2Ep%, p=1.
I. 6. ‘ i BE F =0, 0<i<p—1.
I 7. (p—1F BF " =0, p=2,

II. 1. . : Gip=1.

IL 2. | o = g,_,0%7,.

I'I:: 3. o aRzé (— 1)ii®, p=1

I 4 j Oyrd"7,0, = 6,10

TII. 1. apﬁRr,,o,, = o‘,,ﬁR .

HI. 2. ' o‘,,ﬂgpr,,oﬂ = cr,,ﬂgp .

IT1. 3. k Tp-10p-10’ ﬂR = DRT,,G,,/?,, .

IV. Let dy, ..., d;, 19, ..., 1y, I, have the meanings assigned to these symbols
in 3.4. Then, for p =1, and for every p-chain cf € I',, we have the identity

p

DRHZ,,, eodpy o 1 7"110'1’_——.20 (__ 1), ;i)u—,-.l...di, sl ,if .
i=

3.8. — The experienced reader will have little difficulty in Veufymg these
identities, and we restrict ourselves to brief hints about the proofs. The iden-
tities in group I follow readily from the analogous identities, noted in § 2 for
Bos 0wy tpsy 4y, DY means of the technique described in 3.1. The identities in
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group IT are immediate consequences of the definitions of the symbols involved.
The identities IIT. 1, ITIT. 2 are best verified first for p =0, and then established
by induction on p, using the recursive definition of f, and g,. The identity
IIT. 3 follows readily by using on its right-hand side the expression for 2% in
~terms-of-the-homomorphisms-iZ,-as-given-in-I1..3.— The-identity IV.is. mani-.

festly closely related to the familiar homotopy identity concerning the prism
construction, but since the present writer had some little trouble initially in
first thinking of and then dealing with the homomorphisms TT; a few comments
will be made about the proof. It seems best, to avoid trivial complications,’
to verify IV directly for p = 1. For p = 2, the following procedure may be
employed. Using for % the expression I11.3, one finds that the task consists
in finding convenient explicit expressions for terms of the general form

iRv (_])5(([07 e d’jy Yiveeor Yns T‘x(dny cery s Yoy oons ?/n))l{ P

pa-1 « « ? ? bR * ’ N
where p= 2, 0<i=p +1, 0= 5= p, and (Yo, ooy Yoy 7Y% is a p-cell belonging
to the group I,. If we set o

>

cees 1
A == 7»«1 Hdu D(Yoyeees Yoy TN s

then straightforward calculation yields the following formulas for the various
values of i (in deriving these formulas, the reader will have to use the remarks
{a@) and (b) in 2.3.).

»n-1

A : (fI/OJ ey Yy T)R"’ T e d 05(1’/07 voos Yns T)R for 1= (? -
' WA o ‘(H;Zn.d:-“.. a, (?‘u; oy ves (l,,) ]f(?/na Yos T)H' for i :,1 "

Pt
A == T g -2 82(p — 1)y ey 90 DY for i =p.
‘A :( ;lg‘]""d”‘???f{ 'T’“ ('— ]»)1171)0'11)(?/09 EEER] 7/)>'T)R f()l‘ 7 =P "%‘ 1.
A == ( {Ii.ou.. r/f;_l..f »(i _] ~> + H (1177/11’

*H ‘714 Yo - U e for g i< p——l

In vm\\ of the 1dent1tv II 3 summahon neld% ﬂlen the dosned result

8.7. — Those of the identities in 3.5 which contain o,, irl,‘_show & comumon
feature “’hl(‘h may be worth pointing out. Let us first recall that EILENBERG
and STEENROD, in' 3], introduce for then complex 8 = S(X) a Dbarycentric
homomorphism g5 which in our terminology is given bv the formula

= Upﬂ,, T

One finds readily that the formula 2585 = 5 0% stating that 5 is a chain-

mapping, follows immediately -from our identity. IIT. 3. In a similar manner,
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one finds that the identities in 3.5 represent, in a sense, anfecedents of various
well-known formulas in algebraic topology.

- §-diProof-of -the-niain-theorem:

1. - Let us first note that the homomorphism 0,. C¥ — 0% is a chain-
mapping. Indeed, the identities I1. 2, IT. 4 in 3.5 yield directly 35¢, = 05— .
To show that g, is a chain-equivalence in a certain weak sense, we introduce
now a «mate» F, to ¢,. The homomorphisms

F, 05 - CF

are defined by the formula

P, = v,0,p%z,.
We first verify that F, is a chain-mapping, that is,
(1) P, = F, 5.
Using the identity III. 3 in 3.5, we find
(2) AR, — bRt,,a,,ﬁfrﬂ = r,,_lo,,_lbl"‘/)’fr,,. :
On the other hand, the identities ITT. 1, I.1 in 3.5 yield
3) F,.d° = Tﬂ_lo,,_.lﬁf‘_lf,,_laﬂ_ler,, == 't,,_la,ﬂﬁfﬁlb]zr,, = Tﬁ_lcp_lbﬁﬂfrm .

The formulas (2), (3) imply (1).

4.2. ~ Next we verify that o,F, 21, by establishing the identity
(1) Dsaﬁlgfr,, - o’,,gf_lr,,..lbs =0, F, —1,
We find, by using the identities 11.2, 11.4, I11.2, 1.2, II.1 in 3.5,
bsm,ﬂgfr,, -+ apgf_;r,,_lbs ::‘ a],bnr,,ﬂa,,ﬂgfrp -+ Gpgf_lrp_lop_lbﬂr,, =
= o’z,bkgfr,, -+ aﬂgf_lbl‘?r,, = 0,(fF —1)7, = crprwa,,ﬂfr,,—— OpTp = o, B, —1 .

Let us note that EILENBERG and STEENROD, in [3], introduce a barycentric
homomorphism ﬂf and a corresponding homotopy operator gf by the formulas
(in our terminology)

ﬂf = Umﬂfrﬂn Qy;s = O‘nﬂgfrm ’
and note the homotopy identity V

@ , %) + el =g —1.
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In view of the identity o,7, = 1, clearly (1) and (2) ave equivalent. In other
words, the relation ¢,F, 21 is equivalent to the relation 5«2 1. On the
other hand, inspection reveals that the relation d%F, = F, 2% is stronger-
than the corresponding relation 3985 = g5 % in the BILENBERG-SIEENROD-

-1
theory.

4.3. — The relation ¢,F, ©21 implies, by a familiar argument, that the
induced homomorphism
. R S
o, H -~ H 5

is onto. We complete the proof of our main theorem by showing that this.
induced homomorphism is also an isomorphism into. This would be certainly
so if we could show that F,o, @1. Actually, we shall only show that a
certain weak version of this relation holds, or rather, this will be the leading
idea in the concluding portion of our proof (cf. 4.6). Let zf be a p-cycle in
the complex R, and let us suppose that

1) 0,,25 = Bf .
We have to show that

2) #f e BE

7 )
where B}, BY denote the groups of p-boundaries in the complexes S, R respec-
tively. The proof will be made in several steps.

4.4. — To avoid trivial discussions, we first consider the casep = 0. We
shall make use of the following facts.

(@) Tpoo—1~0 (in the complex R). Indeed, let d, be the funda-
mental 0-simplex (see 1.3) and let (v, T)% be a 0-cell of R. On | v, dy |, define
T*: |v,d,| - X by setting T*(y) = T(v) for all y €| v, dy|. Then clearly

3w, dyy, T*)F = (dy, T*)* — (v, T*)F = vy00(v, T)E— (v, T)E,

and our assertion is proved.

(b) 1,05 ~0 (in the complex R). Indeed, let (dy, d,, T)° be a 1-cell
of the complex § (see 1.3). By IL.2 in 3.5 we have then

70 (dys dyy T)S = 1,000%7,(dy, dyy T)S = To00o(dy, T)E — 7400(dy, T)E .
Hence, by the preceding remark (a): ,
70%(doy diy T)% ~ (dy, TYF — (doy T)F = 3%(dy, dy, TYF ~0 .

Now guppose that for a certain zf we have the relation aozf - Dscf . By (a)
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and {(b) above we infer that
2F ~ 1,00eF = r(,b* S~0,

and thus the case p =20 is settled.

4, 5 — Now let us consider the situation deseribed in 4.3 for P =1. Since
the z occunmg in 4.3 (1) is a finite ¢hain, we can select in B a finite number
of hned:rly independent points 7, ..., 7, such that zf < Ly ..y ). We have
to distinguish two eases, depending upon the relative position of the points
Moy -y N and of the vertices dy, ..., d, of the fundamental p-simplex. .

Case 1. The points do, ..., d,, 9y, ..., 5, ave linearly independent Then
we are in the situation deseribed in 3. 4 The assumption 2% < L%y ..y 7,)
means, in the terminology of 3.4, that z €TI,. Hence, by 2.5, we have also

BRcTI,, and hence the 1denhtv IV in 3.5 applies to p%", yielding

pn D
R onnrd, — R R, R os wvesdye oy sRAR R
(1) a ij ﬂv » T 1) TpOp, 7 D z ].—I y -1 ’ 7 1’ D 1) *

In view of 1.4 in 3.5, the summation on the right reduces to its last ‘rerm
and by 1.5 in 3.5 this last term is equal to

dye o dp1)EpR R
Pl @r=13 /377"1) :

On the other hand, by 1.1 in 3.5 we have 28l = pZ 3%l — 0, since 2 is
a cycle. Thus the summ"ztlon on the right-hand side of (1) vamshes Thus (1)
implies that

2) ﬂ” D' ~ T,0, fzf

From ITI.1 in 3.5 we infer that ’

(3) P2t = r,,a,,ﬂfr,,quf‘) = 1,0,8%F .
From (2) and (3) it follows that

(4) . ) /37; &y 1)anf"

Now U,,sz ~ 0, and F, is a chain-mapping (see 4.1). Hence ]f,,a,,~ "~ 0, and
thus (4) yields ,S’fz,{"'NO. ‘But ¥ w1 (see 3.2), and hence it follows that

Case 2. We now drop the assumption that the points d,, cooy Doy oy oeny m

‘are linearly independent Since dy, ..., d, are linearly independent, we can

choose ¢ + 1 points 770, o 7F in B, such that the points dy, ..., &y, 7, ..., n
are hnearly mdependent Consider now in L. the linear subspaces
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L = Lo, s ma)y L* = L], ..., n}). Since the systems 1,...,7, and
Ny ey 17:‘ are linearly independent individually, we have unique linear trans-
formations ¢! L — L% t*:L* - L, such that #n,) =97, t%n) =y,
4==0,..,q and #* =1, t*1 =1. We denote, for each dimension », by I

thesubgroup of C “generated by ~those r=eells( Jo... 7/,, Ty of "R wlnch
satisfy the condition (¥, ..., ¥,) € L, and we assign a similar meaning to I'*
relative to L*. We have then homomorphisms

tr:rr"’>F§=,

defined by Yoy ey ¥ry T)% = (HHo); ..y t(y,) Tt*)%.  Similarly, we define the
homomorphisms t7: ™ — I',. Whe shall need the following simple facts.

(a ) Obviously %, =t,,2%, r=1. Hence, if we take a cycle zfe]’,,
the t,z is a cycle contained in I'*, and viceversa.

(b) Take a cycle z r=1, in I', and suppose that t,z” ~ 0. We assert
that 2¥ ~ 0. Indeed, by 1ssumpt10n we have an (r -+ 1)-chain CW "1 such that
1,2l = dfef, | (note that ¢, may not be contained in I'* ). Since ¢F , is a
finite chain, we can choose in ., a finite number of further points 7;:‘“, oy
such that (i) the points #F, ..., %) are linearly independent, and (ii) cF
c L(n;",...,n;"). We then choose points #,4y,..., 7, such that the system
Moy ---y Yn 18 linearly independent. Then the linear transformations ¢, t* can
be extended uniquely to the linear subspaces L{1o, ..., 7.), L%, ..., 7¥) so
that 73 n; are mated points, j = 0, ..., n. We extend similarly the groups
I, T# as well as the hOmommphlsms i,, 7, preserving notations for sim-

plicity. The assumption t,z =% feﬂ yields then
zf = tftrz =1, Fofe f+1 - DRtrq-l(”:wu
Thus 2¥ ~ 0, as asserted.

.
{¢) Obviously, for every r-chain cf‘E I, we have the relation

Grcf = a,t,cf

Now let us return to the cyc.le z of 4.3, (1). By assumption there exists

a (p -+ 1)-chain c,, .1 such that cr,,z, = % f“ By.the remark (e), this implies
that .
@ ooty = 055, | .

Now, by the remark (a), t,,zf is a p-cycle in the complex R, and tz,zfc
< Ly, ...y n)). Since the points do, ..., d,, 77, ..., 7 are linearly independent,
the cycle tg,zf‘ comes under Case 1 above, and hence we can infer from (1)
that t,2% ~0. By remark (b), it follows finally that %, R L0, and the proof
of our main theorem is complete. '

2 ~ Rivisia di Malematica

rel
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4.6. — In the course of the preceding discussion, we made repeatedly state--
ments to the effect that o, is a chain equivalence in a certain weak sense, as
far as shown by our method of proof. In this connection, the writer is indebted
to 8. EILExBERG for a reference to a remarkable general theorem occurring

in[41"Tet M, N be MAYER “complexes such that the co11espond1ng chain-
groups C,', O are free Abelian groups. Let f,: 0)F — ¥ be a chain-
mapping such that the induced homomorphisms f,:HY — HY for the
homology groups are isomorphisms onto in each dimension p. Then f, is a
chain equivalence in the strict sense. That is, there exists a chain- -mapping
hy: CN — OM such that f,h, ©1 and h,f, 21 in each dimension p. In view
of our main theorem stated in 1.3, application of this remarkable result of
EILENBERG and STEENROD yields the fact that there exists a «mate »
hy: 05 — CZ to o, such that o,h, L1, h,o, L1 in the strict sense. Tt would
be interesting to determine whether the proof of the EILENBERG-STEENROD
theorem could be used to obtain explicitly such a mate b, to ¢,. In particular,
it would be interesting to determine whether the «mate» F, to o, used by
us (see 4.1) satisfies the relation F,o, ©21 in the strict sense (note that the
relation o,F, 21 does hold in the strict sense by 4.2). .

4.7. — As regards further literature on wunessential identifications in singular
homology theory, let us mention (beyond the work of EILENBERG already
referred to) a paper by TUCKER [5] who showed, in fact, that the identification
of the so-called degenerate chains with .zero does not affect the homology
groups. A systematic study of unessential identifications is contamed in a.
paper of the present writer, to be published elsewhere.

The Ohio State University.

Biblography.

{11 8. Lerscurrz, dlgebraic Topology. -Amer. Math. Soc. Colloquium Publications,.
. Vol. 27, 1942,
[2] L. SEIFERT und W. THRELY ALL, Lehrbuch der Topologie. Teubner, 1934.
{3] 8. EwLeNBERG, Singular homology theory. Ann. of Math. 45, 407-447 (1944).
[4] 8. EnLeNeerG and N. E. Steexrop, Foundations of Algebraic Topology (unpu--
blished).
[8] D. G. TUuCBER, Degenerate cycles bound. Rec. Math. (Moscow) 8, 287-289 (1938)..



