TARL J. MICKLE (*)

Some examples in surface area theory. (*#)

1. — Introduction.

1.1. — It is the purpose cf this Note to give some examples showing limi-
tations on certain methods and results in surface area theory. For definitions
and concepts relating to surface area theory we shall use as a general reference
the book Length and Area of T. RaDS. Hereafter this book will be referred
to as LA (see the Bibliography [5] at the end of this Note). Throughout this
Note the term surface will denote a surface of the type of the 2-cell (LA, IT,3.44).

1.2. - Lef:
(1.1) T: @ =a(u,v), y=yuv), z==zu,7), (w,v) €@,

be a continuous mapping from a unit square @: 0 <w <1, 0<v <1, into
Fuclidean xyz-space. We shall be concerned with th"e following properties
for such a mapping.

a) The first partial derivatives 2., @y, Yuy Yos Zus % exist almost every-
where in § and are summable with their squares in @.

by @+ -2 =a) + ¥+ 2, @@ + Yuls + %8 = 0, almost every-
where in ¢.

¢) The functions a(u, v), y(u,v), 2(u,v) are ACT (absolutely continuous
in the TONELLI sense, see LA, IIL, 2.64).

d) The ordinary Jacobians exist almost everywhere and are summable
in Q and the LEBESGUE area A(T) of the surface represented by T is given
by the formula
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1.3. — A representation of a surface satisfying conditions a), b), ¢) of 1.2
is called generalized conformal (LA, V, 2.29) and d) is satisfied for this repre-
sentation (LA, V, 2.30). MoOrrEY [4] (see also LA, V, 2.43) has shown that
every non-degenerate surface (LA, II, 3.2) of finite LEBESGUE area admits

~ of a generalized conformal representation. CESART [2] calls a representation

of a surface satisfying only conditions a) and b) of 1.2 almest conformal and
shows that every surface of finite: LEBESGUE area admits of an almost con-
formal representation for which condition d) of 1.2 holds. The question arises
a8 to why OEsSARI did not use generalized conformal representations, i.e., why
was condition ¢) of 1.2 dropped. Indeed, the answer to this question is that
not every surface of finite LEBESGUE area admits of a generalized conformal
representation. In § 2 we give an example of a surface of finite LEBESGUE
area for which no representation satisfies condition ¢) of 1.2 or even condition ¢)
of 1.2 with ACT replaced by BVT (bounded variation in the TONELLI sense,
see LA, IIT, 2.64).

1.4. — For a continunous mapping T as given in (1.1) and for h == 0 let

h
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(1.2) A(u’ 0 ) = y(u, v -+ h) —y(u v) M(u, v+ Ry —z(u, v -
h h
2(u -+ h, v) — 2(u, v) z(u -+ b, v) — x(u, v)l2
h h T
+ z(:u, v + h) — z(u, v) x(w, v 4+ k) — x(u, v)
h h
w(u + b, ) —zlu, v}yl + b, v)—ylu, v) |2 12
. h h /
+ >
x{u, v + h) — m(u, v) y(u, v + h) — y(u, v) \
: h h /

The. expression (1.2) has been used to obtain far reaching results in the
GrdczE problem for surfaces with a non-parametrie representation by HUSKEY
-[3] and for general surfaces by RADG [6]. Let

11

A, (T) = inf lim inf / / (u, v; h)dudo,
h—0 0 4

11

A*(T) = sup lim sup / / Afu, v; B) dudo .
h—0 00
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It follows from the methods of HUSKEY [3] and RaDO6 [6] that we have the
inequality

(1.3) A (T) > AT,

. Where-A(T).is-the: LEBESGUE. area.of .the surface represented by-T. YOUNG[T]

has shown that in the non-parametric case we have the inequality
(1.4) AX(T) <+/2 A(T).

As can be seen from the definition of A(u, v; k) in (1.2) an inequality such
as the inequality of Youwne in (1.4) in the general case combined with the
inequality (1.3) would be invaluable in determining relationships between the
area of a surface and the areas of its projections on the three coordinate planes.
For such a relationship see CEsA®I [1]. Unfortunately, no such inequality
as (1.4) exists in the general case. In § 3 we give an example of a surface of
LEBESGUE area zero with a representation 7 as in (1.1) for which 4, (7T) = + co.
The writer is indebted to WirriamM Scort for the particular function defined
in 3.1 to satisfy the conditions needed for the surface defined in 3.4.

1.5. — In view of certain objections to current definitions of area Youne [8]
introduces the following definition of area. For a continuous mapping I as
given in (1.1) let M(x, 4, 2) denote the number (possibly -+ oo) of components
in the inverse set 7-(z, y,2). For a CARATHEODORY-HAUSDORFF 2-dimen-
sional measure p let

v

Ap(T) = 2 w(H) ,
n
where F, is the set where M(wx, v, 2) > n> 0.

It is of course to be expected that two different definitions of area should
lead to different properties. However, certain simple properties of the Lk-
BESGUE area are not possessed by A,(T). First, A(T) is lower semi-continuous
(LA, V, 2.6) whereas simple examples show that A(T) is not lower semi-
continuous. Second, T. RAD6 and the writer noted that whereas A(T) is
monotone (LA, V, 1.10) A5(T) is not monotone. That is to say, if R is a
subrectangle of @ and T* is the continuous mapping T considered only on R
then A(T*) < A(T), whereas A, (T*) is not necessarily less than or equal
to Ap(T). A simple example to show this is given in § 4.
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2. ~ A surface of finite area with no generalized conformal representation.

24, For 0 <r<<1 we set

o(r) — 5 (I/n) sin [(r — 1 +1/2% )20, 1 —1/2"1r <L —1/27 (n=1, 2,...),
) [ 0, r=1. ‘

In terms of this funection ¢(r) (using complex numbers w = u + iv) we set

(2.1) & = f(w) == o( [w ‘) , [ wl <1.

Then

(2.2)  f) = {0 for |w|=1, |w|=1—1/2m1, n=12..),
” { I/n for |w|=1—1/2"1 f 1/2m1 (n=1,2,..).

The function f(w) defined in (2.1) is a real-valued, continuous function for
|w|<1. ’

2.2. — We will denote by Z the class of continuous complex-valued functions
w = w(t), 0 <t <1, which satisfy the conditions: a) |w(t)|<1. b) | w(0) |=
=|w(l)| =1. ¢) There is a t for which |w(t) | =1/2. )

2.8, — Lemma. Let f(w) be the function defined in (2.1). TFor each
number & > 0 there is an z(a) > 0 such that if a real-valued continuous fun-
ction f*(w), |w| <1, satisfies the inequality

(2.3) | ) — fw) | < =(a),  |w|<1,

then, for any function w = w(), 0 <t <1, in Z (see 2.2) the length L of
the curve
(2.4) - x = fHw(@)], 0<i<1,

satisfies the iﬁequality L= a.
Proof. Let m, be an integer such that

(2.5) 2a<<1/2 +1/3 4+ ... -+ 1/n,.
Set
(2.6) e(a) = af2n, .

Let f*(w), |w|<1, be a real-valued continuous function which satisfies
(2.3) and let w = w(t), 0<t<1, be a function in Z. For each integer
n =2, 3,..., let ¢, be the largest value of ¢ for which | w()|=1—1/2%1
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Then 0 <<t << ...<1l,<..<<l. Since w(t) is continuous, there are numbers
1y by <t <tpa, (n=2,38,..), such that | w(t)) | =1 —1/2"" + 1/2"% By
(2.2) we thus have the relations: flw(t,)] = 0, flw()] = 1/n, (n=2,3,...).
By (2.3) we thus have the inequalities

o

@7y PRt < ety — R Y s(@) (= 20 8,)
Trom (2.7), (2.5), (2.6), the length L of the curve (2.4) satisfies the inequality

Mg Tty

L> }: | F4ao(t)] — FHlwE)]] > 2 [1/n — e(a) — (@)] > 2a — a2 — a2 =a.
n==2

n=2

9.4. — Let K be the unit disc |w| <1, let K* be the unit dise |w*| <1,
in the w* = w* -+ w* plane, and let I be the unit interval 0 <# <1. Then
for the function f(w) defined in (2.1)

(2.8) T: x = f(w), |w] <1,
is a continuous mapping from K onto I. Let

(2.9) CrEL = g(w®), fw*| <1,
be a continuous mapping from K* onto I. -Set

B — B0 <gw¥) <14, BFf =B[3/4<gw*<I1],
we ) (TiAd

(2.10) S = (distance between E; and EF) >0,
(2.11) K, = E[|w|<1/2].
w

9.5 — Lemma. Assume that the mappings T and T* given in (2.8)
and (2.9) are FRECHET equivalent (LA, IT, 1.25). For 0 <<e<<1l/4 let
w* = h(w), wek, be 2 homeomorphism from K onto K* such that
| f(w) — glh ()] | <%, weK. Then the diameter of h(K,) (see (2.11)) is
greater than or equal to 3 (see (2.10)). .

Proof. For the points w, =0, w, =1/4 in K,, f(w,) =0, f(w,)=1.
Hence h_(w,) e Ef and h,(w,) e BF. Thus the diameter of h (K,) is greater
than or equal to 3.

2.6. — Assume that the mappings T and I* given in (2.8) and (2.9) are
FRECHET equivalent. Let M >0 be given and let a = M/§, where & has the
value given in (2.10). Let ¢ = (a), be the number determined in the lemma
in 2.3. TLet w* = h(w) be a homeomorphism from K onto K* such that

| fw) —glh(w)]| < e, welk.
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By the lemma in 2.5 there are points w;, w} € h(K,) (see (2.11)) such that
| —w]|>8. Let us assume for simplicity that w’ = u* + wy, wf =
= uy -+ iv; and let us further assume that «* < u*. Let A(u*) be the line
segment through »* perpendicular to the w*-axis and extending across K*

from boundary to boundary. For u), w’ <uf <u¥, let w = w*(), 0 <t <1,
b , = 0 1 0 2.2

be a topological representation of the line segment AMur). Tt is easily verified
that the continuous function w = b w*()], 0 <t <1, is in Z (see 2.2).
Hence by the lemma in 2.3 the length L of the curve

z = glhh=(w*(t))] = glw*(1)], 0<t <1,
satisfies the inequality
(2.12) L>a.
Consider the curves

Clw®): = gw*), w*eru*).

Let L[C(w*)] denote the length of the curve C(u*). By (2.12) L[C(u®)] >«
for wf <w*<w'. Hence
!
/ L{Cu*)]du* > ad = M .
~1
Since M >0 is arbitrary and since BVT with respect to one set of axes
implies BVT with respect to any set of axes, we have the following result.
Lemma. No continuous mapping (2.9) which is FrECHET equivalent to
the continuous mapping (2.8) can be BVT.

2.7. — Now let S be the surface given by the representation
(2.13) T: w:f(fw), :l/:f(w); z:f(w)a l'w[<11

where f(w) is the function defined in (2.1). Then the LEBESGUE area of S
is zero. If

T*:  o=ag*ut 0¥, y=gyrut o), o=t 0¥, u* el ,

is another representation of § then z*(u*, v*)= yEuF, o) = 2¥(u*, 0*) and T
and 7* are FRECHET equivalent. Hence the continuous mappings & == f(w),
[w]| <1, and @ = a*(u*, v*), w2 4 pr2 < 1, are FRECHET equivalent. By the
lemma in 2.6 a*(u*, v*) is not BVT,

Therefore (2.13) is a surface of finite LEBESGUE area for which there is
no representation in which any one of the coordinates functions is BVT.
Hence the surface given in (2.13) does not admit of a generalized conformal
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representation. It should be perhaps noted that the representation is given
on 2 unit dise. This is done merely for convenience of notation. The repre-
sentation can be equally well be given on a unit square. '

3. ~ The inequality of Young.

3.1. — For each integer n =1, 2, ..., and integer ¢ =0, 1, ..., 28— 1,
we define a function ¢, .(u) on the interval

(B.1) Ln.: 1—1/201 4520 <y <1 —1/2%1 4 (i + 1)/29m0

as follows. o, () is zero at the end points, n/2" at the mid point, linear
from the left end point to the mid point and linear from the mid point to
the right end point.

On the interval 0 <u <1 we define the function
{ Qui(u), uwel,.,

.(3.2) p(u) = | 0 w=1.

Since lim n/2* = 0, ¢(u) is a continuous function.
Nn—>0c0

3.2. — For a number h, 0 <| k| << 1/64, there is a unique integer such that
(3.3) 1/28m46 < | B | < 1/200+s ’

Let ¢(u) be the function defined in (3.2), let R, 0 << | B| < 1/64, be given, and
let n be the unique integer determined by (3.3). '
Lemma. Under the above conditions

f{cp(u + h) — )

> n16 .
7 du > n?[16

0
Proof. Case 1. h>>0. For each point in the first quarter of the:int:er—
vals I, ; (see (3.1)) we have

[cp(u + k) —<p(u>]z___ <n- 23"“)2 —

h n

Since 1/4 of the sum of the lengths of the intervals I, ;, (i = 0, 1, ..., 231 —1)
is 1/2"+2 we have the inequality :
1
Al h) —olu :
/ [‘E(_q_‘_'*_‘_’]z_cp(“—)r l b I du > (1/2m2)n? - 24n+4(1/23048) = 02[16.
¢ , S
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Case 2. h<C 0. The statement of the lemma follows in the same manner
by considering the points in the last quarter of the intervals I, of (3.1).

3.3. — Lemma. For the function ¢(u) defined in (3.2)

1 )
lim / ORI LIO) du = -+ oo.

h—0 0 I h I

Proof. This follows,from the lemma in 3.2.

3.4. —~ For the function o(u) defined in (3.2) consider the surface given by
the representation ‘

(3.4) T: w=:coslo(u)-+v], y=sin[o(u)+v], 2=0, 0<u<l, 0<o<1

Since the point set determined by the surface is a subarc of a circle, the area
of the surface is zero. Set

A o(u) +v, B: olu+h) +v, C: o) +v +h,
and, for k== 0 (see (1.2)),

1 |cos B—cos 4 sin B — sin 4
h? | cos C —cos 4 sin ¢ — sin 4

A(u, v; h) =

g B4+A  B--4d B+A  B—4
il ) S — ¢0S ———— Bin

4 2 2 2 2

h”, 4+ 4 O0—4 C4+ A4 . C—A|
B Sin Cco8 - sSin

2 2 2
4 B——Ag_ C—A4 . B—
== e e 8 Sin
7 Sin — 1 g Sin 5

For |t]| small enough |sint|>(1/2)|¢| and hence for | k] small' enough

1
(3.5) ]A(u,v;h)[}l-@ B—A||C—A||B—C|= |
1 - .
::iﬁl—h,] (u+71)—cp Vo + b) —o(u) —h| >
1

From (3.5) and the lemma in 3.3 it thus follows that

11

lim / /[ A, v; )| dudy = + c0o—0 = + oo.
h—0 0
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4. — The functional Ay(T).

4.1. — Let

(4.1) p==or), 1/4<r<1/2,

be a topological mapping of the interval 1/4 <r <1/2 upon an OsGoOD
curve C of 2-dimensional LEBESGUE measure 1 in the 2 = » -+ iy plane.

4.2. — Liet @ be the unit square, 0 <u <1, 0 <v <1, in the w = u J v
plane. Seb w, = 1/2 -1 (1/2). Then, for the function ¢(r) defined in (4.1) let
S o(lw—1w,|) for 1/4<|w—w,|<1/2,
4.2) T: z=flw)= { o(1/4) for | w—aw, | < 1/4,
e o(1/2) for |w—aw,| >1/2, we@.
Then 7 is a continuous mapping from the unit square ¢ onto the O8G0o0D
curve C. If M(z) denotes the number of components of T-i(z) then
{1 for zeC,

Miz) = ? 0 for =z e;s C.

"Hence, (see 1.5) B, =C and F,=0 for n>2. Since p reduces to the
LEBESGUE plane measure in the z-plane

{4.3) Ap(T)=1.

4.3, — Let B be the rectangle 0 <u <1, 1/4 <v<3/4 Then
(4.4) T 2= fw), w eR ,

is a continuous mapping from R onto the Oscoop curve €. If M*(z) denotes
the number of components in T+7(z) then

S 1 for z=o(l/4),
2 for zeC—o(l/4),
20 for‘ze:sC.

M*(2) =

Then Ef = C, Ef = C—o(1/4), Bf =0 for n>3. Thus

(4.5) A (TF) =2,
Hence, by (4.3) and (4.5), for this subrectangle R of @
Ap(T*) > Ap(T) .

14 — Rivista di Malematica.
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