MARsTON MORSE (*) and WiLriaM TRANSUE (%)

The Fréchet variation and a generalization
for multiple Fourier series of the Jordan . test. (=)

1. - Introduction.

Recent discoveries by the authors of certain new properties of the FrRECHET
variation of a function f defined over a p-dimensional interval I make it
" possible to give a more natural generalization of *the JORDAN test for the
convergence of a simple FOURIER series of a function f. The function f is
.éupposed defined in a Cartesian p-space R and to have the period 2=
in each coordinate. Moreover f is supposed to satisfy conditions F over the
closed p-interval I®[0, 2xi] with vertices 0 = (0,...,0) and i = (1,..., 1).
Conditions F require that the FRECHET variation PEg, I®] of g over I»
be finite, and that the FRECHET variation be finite over a set of seetions
of I® which includes an r-section parallel to each coordinate r-plane
(r =1,..., p) ’

A first consequence of these hypotheses is as follows. See MoRSE and
TRANSUE (5) [hereafter referred to as MT(5)]. Let s = (s(0,..., s(»)) be the
coordinates of a point in R(®. TLet a be a particular point in R®. The
(p —1)-planes [0 = a] 4 = 1,..., p separate R into 27 open sectors S,
(generalizing octants in 3-space). The above function f tends to a definite
« sector limit » as s — @ in any one sector S,. These 27 limits may all be
different at a given point a.

The theorem generalizing the JoRDAN theorem follows.

TBEOREM 1(a). If f has the period 2w in each coordinate in R and satisfies
conditions F -over 1910, 2%i] then the FOURIER series for f:converges in
the sense of PRINGSHEIM to the mean f(s) of the sector limits of [ at any given
point s. (b) If in addition f is continuous the FOURIER series converges wumi-
formly to f. '

(*) Address: Institute for Advanced Study; Princeton, New Jersey, U.S.A..
(**) Received July 29, 1949,
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The condition that PY(f, I(l')] be finite is much less restrietive than the
condition that the VirAwnr variation VO [f, I®] be finite. See ADAMS and
CrLARKSON, and MT(7). Thus our conditions are less restrictive than the
classical conditions of HARDY-KRAUSE. See GERGEN where the (,lamcxl

tests-are- oampfu‘vd and-extended....The: plO]JELflLS 0
established in MT(5), (7) and (9) pernm. a lightening of the 2-dimen
tests of DINI-YoUNG, YOUNG-POLLARD, DE LA VALLEE POUSSIN-YOUNG,
LEBESGUE-GERGEN, ToNELLI and GERGEN. In MT(10) we prove that our
modification of the GERGEN test is definitely less restrictive than each of the
above tests. This is somewhat surprising since the classical theory, using
the VITALI variation, includes a proof by GERGEN that his conditions are
not more restrictive than those of ‘thé three other LEBESGUE type tests
admitted, but there scems to be no proof that the GERGEN test is less

sional .

restrictive. .

The classical bound 2:- for the absolute values } @y | ba| of the
FouriEr coefficients when p =1, has here its appropriate generalization
when p > 1 and when the FRECHET variation replaces the JORDAN variation.
For the case p =1 see ZYGMUND, p. 19.

The advances made in the theory of the FrEcHET variation in MT(5)
which appear essential in the application of this theory to multiple FOURIER
series center around the following topies (See § 2)’.

(1). The property that PO[f. QW] — 0, as an arbitrary r-segment Q9 tends
o a point « € R, QW remaining in a sector S, with vertex at a.

(2). The existence of the sector limits of f.

" (3). The ewistence of a transform g of f which equals | on the maximal
open subinierval IV of I and which has « canonical » boundary values.

(4). The existence of a left decomposition g = Z ¢, of the transform J of f

(5). The existence of a «wvariation modulus » Ucommon to the abo*vc fun-
ctions ¢,, when g is continuous.

(6). An inequality replacing the second law of the mean when maultiple
integrals of the DIRICHLET type are concerned.

We shall enlarge on these points in § 2.

9. - The Fréchet variation.

The space R is referred to coordinates s = [s(,..., sM]. Let K, re-
present. an interval for s chosen from one of the intervals

(2.0) (a, b0, (@, B],  [a, b, [al, BO]

[ the FR¥E e ——
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with @t < b9, including (excluding) an end point adjacent to a square
(round) parenthesis. We shall permit K, to reduce to the point a’. By an
n-segment in R is meant the set of points s in a Cartesian product

(2.1) Q) = K, X K, X... xX,

where nis the number of the K; which are intervals and not merely points a(?,
‘We suppose that 0 < n = p. o :

When # = p we term Q@ a p- mtm val in R(P) Vthl n = p and each
interval K, is of the form (a®, b®) .or [a, B], Q) is open or closed
respectively and we write '

QW = I, by, QW = I0)[a, b] .

‘Tt Z,Q" denote the orthogonal projection of @), as represented by
(2.1), onto the (p—1)-plane [s¢) = a®]. By the left boundary of QW is
meant the : S

12.2) Union 2.0

‘where » ranges over the integers for which K, in (2.1) is an interval and
not merely a point. C

By an m-face, m >0, of the n-segment (2.1) is meant an m-segment Irm)
(0 << m < n) of the form

(2.3) ’ - F(m) = K; X...x K,

in which K, = a® if K, = a", while K/ is either an end point of K, or
one of the intervals (2.0) in case K, is onc of the intervals (2.0). In parti-
cular @ is included as one of its own faces. It will also be colli’ellient to
term a vertex of Q™ a 0-face of Q). , P , \

Suppose that g maps @ into RMW. We refer the reader to MT(5) for the
definition of the FRECHET variation Pt[g, Q] of g over Q. We say that g
satisfies conditions E’\ovm QM it Pi[g, QW] is finite, and if to an arbitrary
p-face of Qi) 0 < r< n there (orlesponds a parallel s-section H® of. Q)
such that PWig, H® is finite.

We shall summarize those results of MT(5) which are needed.

THEOREM 2.1. If g satisfies F over a g general interval I'? < R the follo-
wing is true. (1). The values | g(s)| are bounded over I and ¢ is L-measure-
_able. (2). The points of discontinuity of g lie on at most a countable set of
(p — 1)-sections of 1w parallel to the coordinate planes. (3). If a is any point
in IV and S, a sector (open) which intersects IO then as s — a in Sy g(s)
tends to a wnique Limit. (4). The variation PO[g, Q0] is wniformly bounded
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over r-segments Q0 c IV, » = 1,..., p. See MT(5), Theorems 3.1, 5.1, 8.4, 8.7
and Cor. 3.1. ;

Most of the results in MT(5) are stated for an interval determined by
the points
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in R, It is clear that there exists a 1-1 linear transformation mapping
I'9[a, b] onto IM[0, i] with 0 and i the images of a and b respectively. By
virtue of such a mapping the results of MT(5) can be carried over to the
more general intervals determined by the vertices ¢ and b.

Before defining canonical left boundary values the limit ¢~ must be de-
fined. Let

gy, U1 0 fogp, ster1) el
be defined for a fixed point s, with » on a l-interval (0, ¢). We then set

(2.5) L (s, sOD, sl gt )y — () (r=1,.., p)
whenever the limit implied in (2.5) exists, regardless as to whether g(s) is
defined or not. o ‘

DEr. Let g satisfy F over IDa, b). Then g will be said to have canonical
left boundary velues if, for v = 1,..., p,

7s) = g(s)  [for s € 2,10

and null left boundary values if g7(s) = g(8) = 0 for these same values of s.

THEOREM 2.2. If k satisfies F over the open interval I“') I(”)(a, b) there

ewists “an extension g of k over (*) I“” such that g(s) = k(s) -over Ii™, while g
has canonical left boundary values and ‘

(2.6) P(r)[g’ (Q(T)] — P(r)[g, Q(r) n I‘()Il)] ] . - (1' :‘1’“_, P)

Sfor any r-segment QW c I“” indersecting Im.  As a consequence g sa.ti.s’]‘ies/i?i
over I, MT(5), Theorem 6.4. ‘ '

Let 6 be any closed r-face (p= r= 0) of Ifl’)[a,,‘ b] incident with a. Let s
be any point of I® and s, the orthogonal progectmn of ¢ into o, with
$, = a if ¢ = a.

DEF. A function g which satisfies F over IP[d, b] and has canonical left
boundary values will be said to be a left o-function g, over I") if g(sy = g(s,)

(*) 1P is the closure of I(¥,
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for s eI and if g(s,) =0 for s on the left boundary of 6. If c=a
4a(8) = g,{a) for s e I,

THEOREM 2.3. A function g which satisfies F over I0[a, b] and has
canonical left boundary values admits a unique decomposition

(2.7) g=> Yo,
in which g, is a left o-function corresponding to an arbitrary closed face ¢ of
I®a, bY incident with a, including a and I'"[a, b] as faces. MT(5), Theo-
rems 7.1 and 7.2,

We term the sum }: g, of the theorem the left decomposition of g¢.

Der. Let ¢ satisfy F over a general interval I(. A function o with
values po(7) > 0 defined for 4 > 0 is called a variation modulus of ¢ over It¥
if () =0 as 1 — 0+, and if for any 7-segment Q0 c I

“fg, Q9 < p(n) (r=1,.,p)
whenever the maximum length of the 1-faces of QU is less than 7.

TororeyM 2.4. A function g which satisfies F and is continuous over
I, b] admits a variation modulus p. Moreover 27o is a variation modulus
common to the functions g, in a left decomposition of g. MT(3), Theorem 7.3.

We shall now give an inequality 'lpplicablle to the multiple DIRICHLET
integral and which acts as a leplacement (when p > 1) for the second law
0f the mean when p = 1.

 Let o, = 1,...,, p, be in L with values o,(t) over the 1-interval (a®, b0},
Set
. ) b(')
(2.8) M, = maxi / (fu)duf : (r =1,.., p)

¢
¢

for aW< ¢ < bW, Lot ¢ satisty F over I® = I®(a, b). The L-integral
(1) p()
(2.9) o= ... / o (8) L o (sMg(s L, sty ds L dste
‘ o) 4l -
“is well defined by virtue of Theorem 2.1 (1). Theorem 9.2 of MT(5) gives
the following. :

o

TaEoREM 2.5. If. ¢ satisfies T over "Ia, b] and has nall left boundary
values then

{2.10) | 7o | < PUg, 100a, B)I, ... M, .
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%

The conclusion of this theorem holds equally well if ¢ satisfies " over
I a, b) = I{" and if ¢"(s) = 0 for each point s € ZIP, » = 1,..., p. But
a g which satisfles this modified set of conditions has an extension over I
which satisfies the conditions of the theorem so that no essential advantage
comes from the modified form of statement.

THBEOREM 2.6. If ¢ satisfies _/F\m,r(%~ IO, i) then as 7 — 0 with 0 < <1
PU[g, I6N0, 7i)] — 0 [Cf. MT(5), Cor. 6.2].
3. - The Dirichlet integral. -

We shall need certain known formmnlas. For brevity set

. b )
sin (-r - ’«)t . N . .
e = oy 1) (r=0,1, 2,...; t = 0)

sin é
and recall that
. X d } :
(3.1) ‘ gj(;nm»< 1(%wj O<e<d< 7).,
B Ec .

(3.2) . (or, )t = = .

. 0./ c IR PRI .
‘Cf. Hossox, Vol. II, p. 510. - KESTERMAN gives the formula
(3.3) : ‘ ‘ }/q )m‘<rz 0= ¢<d< )

established as follows. On setting ¢ = 2% and 2r 4+ 1 = m in the integral
(3.3), when r=1, 2,..., ‘ L '

d K T T
. :.’. - m . L M m
. ’ . n . n
- & *sin ”l'lt i S11L N B mu .
(3.4) 2 / <2 / —— du =< 2 | < du< / mrdu = =2,
sin 8N Josm o
¢ 0 - 0
5 y

Let [af9, b)) be a subinterval of [0, =], i = 1,..., p. Suppose that g is.
in L over IW[0, =i]l. Let n represent the set of integers [n,..., n(?] with
nd =0, Set ‘

1,(1) b(n)
(3.3) (2m)*DOa, b, n, ] = / , g, 1N (atd), t“)) e o(RE, 3y AED L age) |

o) o)

We state a major lemma.
3]
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LEMMA 3.1, Suppose that g satisfies F over IO, =i] and has null left
boundary values. If =4 is any constant such that 0 <rn<w then - ~

(3.6) | DO, i, n, ]| = Ci(p)PUg, 190, ni)] +

e Ca(92) CO%-(-’—Q/ e PO, N0, i)}
ETE min [2e @]
, i
where CO(p) and Cy(p) are constants depending only on p.
The utility of the lemma depends upon the following. The first term
on the right of (3.6) tends to zero as n — 0 in accordance with Theorem 2.6,
while for fixed ’q> 0, the second term on the right of (3.6) tends to zero

as min 2@ ¢
L

Lt [a9, 9] be chosen as [0, 7] or as [, =] for each i = 1 .y p. One
t}mskhas 2» choices of the pair of points «, b, in RO, To establish (3.6 "
observe that
(3.7) D“’)[O, wi, n, gl = >, D a, b, n, _/]

a, b
smmming over the above 27 choices of the pair of points a, b. We write (3.7)
in the form
(3.8) DO, =i, n, g) = DW[O, ni, n, g1 + >} DVa, b, n, 4]

a, b

where the prime mdlcates that tho integral D0, 4i, n, g} has been omitted

~from the sum, 2'. On maklno use of (2:10) and (3.3) we sece that

(3.9) C 2r)nDO0, i, , g1 < w2 POg, 1000, 7i)]

Consider a typical integral D®[a, b, n, g] in the sum > in (3.8). We
shall use (2.10) to evaluate this integral. For at least one value of » on the
range 1,..., p [, b"] = [, =] for a given choice of a, b. We apply (2.10)
as follows. Let k be the characteristic function of the interval [a®), b].
Identify the funetion o, of (2.9) with (*) ko(n®, ). With M, defined as in
(2.8) and for each 7 on the range 1,.. p ' o

(3.10) i, = W {when [, b)) = [1, ‘1'5]} ,
(31007 M,<w= [when [a®), b} = [0, "q]]

by»v‘bi‘]‘“tue of (3.1) and (3.3) 1'v.spccbive'1y. ‘ \Vl}enﬂm poinf.s a and b are such

(*) The function over (0,x] with values g(n{?, 1) for fixed 27 is denoted by
(P(/n(l’)’ ‘)' e . B B
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that there is at least one integer » = 1, 2,..., p for which [al)) b)) = [4, ]
our generalized law of the mean (2.10) gives the result: for this »

B11) @m)DOLa. b, m, )< 2SI oy plifg, 1000, 7i)) .

Telation(3:6) follows from (3.8), (3.9) and (3.11).

Leyya 3.2, Under the hypothesis of Lemma 3.1

DO, =i, n, g] - 0 as-min [a® . 2] 4 oo .

Let d be a prescribed positive constant. Let >0 in (3.6) be chosen
50 small that the first term on the right of (3.6) is less than /2. This is
possible by virtue of Theorem 2.6. With 7 80 chosen we require that
min [#Y,..., n?] exceed an integer N so large that the second term on the
right of (3.6) is less than d/2. For min [a™,..., n] > ¥

DUNO, =i, n, g] < d
and Lemma 3.2 follows.

4. — Proof of Theorem 1(a).

-The funetion f is supposed to satisty F.over I%[0, 2wi] and to have
‘the period 2w in each of its arguments. With n =— [#,...; 9] as previously,
let S8%)[n,s) denote the sum at the point s of the terms of the FoURIER
series of which involve sin 75 and cos ms® for r, m = 0, 1,..., ¥ (i=1,..., p).
To represent S(*)(m, s) by the DIRICHLET integral let ¢ be a set e, [, e

of constants ¢ = 1, ({ = 1,..., p). For arbitrary points s and ¢ € R get
(4.0) | 2 FIsO f ey o) )R] = JG)(g)

[+
summing over all admissible ¢. The classical formula for S8®)(n, s) becomes
4.1) S0 (n, s) = DW[O, =i, n, FO],

From the fact (*) that f satisfies F over 1[0, 2xi]it follows that F9 satis- -
fies F over I'9[0, =i]. It follows from Theorem 2.1 (3) that F@() tends to
a definite limit FO(0+), as t — 0 with #4> 0 (i =1,..., p). From the
definition of F@ we see that” F@(0+) = 27f(s) where f(s) is the mean of

(*) One uses the periodicity of [ as well.
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the 27 gector limits of f at s. To show that S%(n,s) converges to ﬂs) as

min 2 § oo it is accordingly sufficient to prove the following lemma.
i

Leyma 4.1, If a function L satisfies F over I = 1IN0, =i) then as
" min 2 1 co

T

(4.2) 22 DW[0, =i, n, k] — k(0+)

where 1(0+) is the limit of k() as ¢ — 0 with {) >0 (i = 1,..., p).

According to Theorem 2.2 there is an extension g of k over IP = @
such that g(s) = k(s) for s € I{P while ¢ has canonical left boundary values
and satisfies F over Q. Since

E(0+) = g(0+) = ¢(0),

DON0, =i, n, k] = D0, =i, n, ¢]
© it is sufficient to establish the relation .

{4.3) 22DN0, i, n, g] — ¢(0)

as min 79 1 co.
Cd
According to Theorem 2.3 ¢ admits a left decomposition over ¢

9= ¢

where g, is a left o-function over @ and o ranges over all closed faces of @
incident with 0. Let 7(c) be the dimension of g. In case #(c) = 0,
¥,(8) = ¢(0) so that in this case

(4.4) © 22D, =i, n, g,1= g(0) - [r(c) = 0]
as one sces with the aid of (3.2). Moreover
_{4.5) DG, wi, i, ¢,] — 0 [when 7(c) = 9]

by virtue of Lemma 3.2, since o = @ in this case, and g, has null left
boundary values.

In the case in which 0 <'r(c) < p we shall refer to the DIRICHLET integral
DW in the coordinate »-space R in which o lies, understanding that the
coordinates in R are those in s = [s(),..., s®] which vary over 5. To avoid
ambiguity let 0, and i, represent the origin and point with unit coordinates
in R and let n, be the orthogonal projection into RY’ of n = [a0,..., nt]
regarded as a point in R®. TRecall that the fanction g, is independent
over ¢ of those coordinates s(? which are constant over ¢. Let g,| o be the
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funetion defined by g, over o. It follows directly from the definition of
the DIRICHLET integral that

T

(4.6)  (2m)»DWI0, =i, n, ¢, = (2=)" DN0,, =i,, n,, g, o111 / o, u) du

(A

[}

where the-product IT is taken over those integers ¢ for which st is constant
over ¢. Moreover
ST

Il /’.9(?‘1/“), w) dae = zr-r

Y

in accordance with (3.2).
The specific values of these constants is immaterial. TFor

DO, =i,, n,, g, 6] =0 [r > 0]
as min i 1+ oo, since g, o has null left boundary values relative to ¢ and
.Len"n':'\a 3.2 applies with p = ». Hence
(£.7) DG, =i, n, g,] — 0 0 < (o) < p)
as min nd 4+ co. Thus |

" 20 D0, =i, n, g] — ¢(0)

in accordanee with (4.4), (4.5) and (4.7). The Lemma follows.

5. — Proof of Theorem 1(b).

Recall the definition of the function F©, For ¢ = - 1, for fixed a e R
and t € 1?0, =i}

(5.1). Fl(t) = E fla + n o aln b))
P .
- 'We shall prove the:following,

(A). For fixed « and ¢ as above let o be the function with values

1) = fla® 4 oM., @)+ o)

with- ¢t € IV[0, =i]. A variation modulus of f over IV[0, 4xi] is a variation
modulus of of. '
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Let G be the group of translations of R®. under which a point s is
replaced by a point
(5.2) (500 = 2900, ., 7 4 2plix)

where n{? is a rational integer. Given ¥ there exists a constant o) such

that .
< W< B

and b = ¢ mod 2x. There accordingly exists a transformation of &
under which ¢! = ¢. . As ¢ ranges over IV¥[0, =i] the point ‘

[b(l) -+ c(‘)t“), bia) (;(n);:(n)] ,
'ra:nges over a p-interval
JP. < 10, 4] .

It is clear that a variation modulus of f over Jy’. is a variation modulus
of % and hence of ¢f. This implies (A).
‘We continue with the following.

(B). Let p be « variation modulus of f over 1[0, 4wi). The functions
F9 i a left decomposition of F over ID[0, =i} have 4%p as a common
pariation modulus. .

It follows from (A) that 27¢ is a variation modulus of F, since there
are 2 functions ¢f summed in (3.1) to obtain F. According to Theorem 2.4
27(270) is then a variation modulus common to the functions Ff,"> of a
left decomposition of F( This establishes (B).

To prove the uniform convergence of 8 (n, s) to the mean f(s) we make
use of (B) and (3.6). , * ' '

Recall that when ¢ is the -origin 0

DO, =i, n, Y] = f(s) [Cf. (4.4)].
Hence from (4.1)
(5.3) | S0(n, ) — () | = | 3 D00, =i, n, P

“where 2' is a sum over all closed left faces ¢ of I?M[0, =i], omitting the

G

face 0. Let N, be the number of such faces. It follows from (3.6) and (B)
that for 0 <+ <<w,

Cy(p) cosec (1/2) . (
min [2r® -+ 1] A
i .

|

=

(5.4) | 80)(n, §) — f(s) | £ Cop)nly) + )
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where A(n) == N, [470(n)]. Relation (5.4) clearly implies the uniform con-
vergence of S®(n.s) to f(s). ‘
This completes the proof of Theorem 1(b).

6. — Bounds for the Fourier coefficients of k.

Suppose. that % satisfies F over I¥ = I(0, 2xi). Let the integers
1,..., p taken in an arbitrary order be written in the form
Mopyeeey Mi3 Ryyeeey Wj5 Fryuey Ty
where i, j, v are non-negative infegers with ¢ -~ j -+ v = p. Let

M(my),ye.., Mimg); N(nyg),..., N(n)

be positive integers. The coefficient of the produet (¥)

(6.1) : Pan(s) = IL cos M(m,)stma) sin N (ng)stp)
2= 1,..,1; & = 1,.., j, in the FOURIER series of k will be denoted by
(6.2) Ap[M(my)ye, Mms): N(ny,..., N(ny)]

and will be given by the p-fold integral

2 2
, G
(6.3) o ‘/» .,/ R(s)p,, o (8) st .. ds)
0 ]

S

THEOREM 6.1. In case v = 0 the coefficient (6.2) satisfies the relation

2.2 PO, IP

" , o = 1,7
(()4‘.) ;1k é (7’%) ﬁﬂ[(ma)N()ﬁ) (3 — ]”“’ , é .
a, B

To establish (6.4) let g be the extension of %k over I, as given in
Theorem 2.2, and let

9= Y

(*) We take the produet (6.1) as 1 when t==j=0. When {=10 and j=p
o ranges over a null set, while cos M(m,)s") in (6.1), and M(m,) in (6.4), is to be
replaced by 1. Similarly when §j = 0 and i = p.
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value if % is veplaced by g. Let 7(c) be the dimension of 5. If k is replaced.
by g, in (6.3) the resulting integral will vanish unless r(c) = p; in fact, in
every case in which r(g) << p, ¢,(s) is independent of at least one of the
coordinates s, and corresponding to this coordinate, (6.3) has a null factor
of the general form of one of the two integrals

2 2a
/ ¢os [ M (m,)s@] ds | / sin [N(n,)s@]ds( |
0 0
When »(¢) = p, an application of (2.10) to (6.3) gives (6.4) on recalling that

2

max : / cos me. do
1

¢ N =m
4
0 (0 < ¢ = .21}
p24
s 2
max | / sin node g -
I Y : !
14

~for m and n arbitrary positive integers, and that
Pg,, ID] = p(p)[g [un] = POk, I\ [Ci. (2.6)]
when r(s) = p.
The ease p > v > 0. In this case we introduce the v-fold integral

2 2
[ B0,y s dsted . dstr)
0 0

1

(6.5) =

noting that this integral defines a function J» over an interval I(” i
peoints with coordinates

[0, s s s (+f+vep)

such that
0 <s@ < 2% (0 == Myyuuey My) s
0 < sf < 2 | (B = Mgy ceey M) .

The function JG™) satisfies F over I¢™". This can be seen as follows.
Let @ be any r-segment in 1§, Let B be a bound for the FRECHET
vaua,tlon Pk, H™Y for all m-segments H" e I and for all m on the
range 1 .,y p.  If one forms the general finite sum >’ whose sup. by defi-
nition is P( [JO=1), @], [Cf. BEquation (2.10) of MT(5)] operating on (6.5)
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under_ the integral sign, one finds that

2 2« )
IE} = ‘(271:)1,6[...6[}3ds(fﬂ c}s("r) = B .

On-talking-the-appropriate-sup.we-coneclude-that
PO[Je-, QU< B.
Thus J-9 satisfies F over 1877,

THEOREM 6.2. In case 0 << v<<p, for fixed i, j with i — i+ v=1p the
coefficient (6.2) satisfies the relation

PAVEEY ! oy Ly
(6.6) ; Ay [ _g-_’ I 3[(,"1‘6‘)37(72//{) é B — 1" ]
. . w, f : P

Referring to (6.3) and to the definition of the integral J7—* we find that
wr-v 4, is given by the (p — v)-fold integral

22 2z

(6.7) / / Jr=r[slmd oslmdy glu) L s0n)] cpMN(s)ds('”L) .. dsted dste) L, dst)

0 0
(i -7 +v=p). Apart from the notation for the variables of integration,
the integral (6.7) has the form of the integral in (6.3) with & replaced by
J» and p replaced by p —v. Reasoning as previously we infer that the
integral (6.7) is at most in absolute value :

o pl-npgr-», I‘()’)L.T)] (o =T1., ]
I;) B (m )N (i) {8 =Ty ji-
@, h .

Relation (6.6) follows.

In case v = p we naturally suppose that ¢, () == and that 4, is the
constant term in the FOURIER series. Its value J® is given by (6.3) with
p = v. If one understands that PO[JO, JO] = {.J*|, (6.6) holds even in this
extreme case. If on the other hand one understands that J& = k, (6.6)
Tholds even when v = 0. Theorems 6.1 and 6.2 can thus be combined.

THEOREM 6.3. If the values of J@=) are given by (6.5) when 0 <<v=yp
and if J@ =k, then for fized integers i=0, j= 0 with i +-j 4+ v=1p the
value of the FOURIER coefficient (6.2) (taken as the constant term when i=j=0)
satisfies (6.6).

The case p = 2. TFor simplicity suppose that & has the values k(s, ?).
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In case v = 0 the coefficient of any one of the products cos ms sin «uf,
-cos ms cos nf, sin ne sin mi, sin mscos at  has an absolute value at most

, 22 POk, 1]
(6'8) ’ (’Fz‘) ['mn :

“in~gecord--with—Theoren—6-L—When—m->>-0--the—coeflicient-of---cos-msy-or
sin ms  has an absolute value at most

9 T .
(6.9) 5‘;5” (m>0) [from (6.6)]
where from (6.5)
2
() = o [ s, )t
0.

and F(J) is the JorpAN variation of J over the interval (0,2w). The
special Hinit (6.9) also results from the classical theory as a bound for | a, |
or }b,,, in the FOURIER expansion of J. One can naturally interchahge
‘the roles of s and t.
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