Riv. Mat. Univ. Parma, Vol. 9, No. 2, 2018

Giuseppe Buffoni [a]

On the structure of matrices with positive inverse

Pages: 191-226
Received: 5 July 2018
Accepted in revised form: 24 January 2019
Mathematics Subject Classification (2010): 15B48, 65F30.
Keywords: Monotone matrices, nonnegative and nonpositive perturbations, monotonicity properties of the inverse, preserving monotonicity.
Author address:
[a]: CNR - IMATI, Via Bassini 15, 20133 Milano, Italy

Full Text (PDF)

Abstract: This paper focuses on how monotone+ matrices, i.e., real nonsingular matrices with positive inverse, can either be perturbed or decomposed in such a way that the inverse-positivity is preserved and proved. Let a real matrix \(A\) be split into its components: diagonal entries \(D\), nonpositive \(-B\) and nonnegative \(C\) off-diagonal entries: \(A=D-B+C\). Monotone+ matrices with only two components and their perturbations are identified by investigating the properties of the splittings \(D-B\), \(D+C\) and \(D-B+C\). Monotone+ matrices characterized by three components are identified by means of more involved decompositions of \(A\) or suitable transformations of \(A\), preserving the inverse-positivity, that emphasize the basic properties leading to inverse positivity. Special complex monotone+ matrices are described. The analysis is strongly based on some monotonicity properties of nonpositive and nonnegative perturbations of a monotone+ matrix preserving the inverse-positivity. The results are illustrated by numerical examples.

References
[1]
A. Berman and R. J. Plemmons, Nonnegative matrices in the mathematical science, SIAM, Philadelphia, 1994. MR1298430
[2]
A. Berman and R. J. Plemmons, Eight types of matrix monotonicity, Linear Algebra and Appl. 13 (1976), 115–123. MR0395185
[3]
D. A. Bini, G. Latouche and B. Meini, Solving matrix polynomial equations arising in queueing problems, Linear Algebra Appl. 340 (2002), 225–244. MR1869430
[4]
F. Bouchon, Monotonicity of some perturbations of irreducibly diagonally dominant \(M\)-matrices, Numer. Math. 105 (2007), 591–601. MR2276761
[5]
J. H. Bramble and B. E. Hubbard, New monotone type approximations for elliptic problems, Math. Comp. 18 (1964), 349–367. MR0165702
[6]
J. H. Bramble and B. E. Hubbard, On a finite difference analogue of an elliptic boundary problem which is neither diagonally dominant nor of non-negative type, J. Math. and Phys. 43 (1964), 117–132. MR0162367
[7]
G. Buffoni and A. Galati, Matrici essenzialmente positive con inversa positiva, Boll. Un. Mat. Ital. (4) 10 (1974), 98–103. MR0374165
[8]
G. Buffoni, Nonnegative and skew-symmetric perturbations of a matrix with positive inverse, Math. Comp. 54 (1990), 189-194. MR0995208
[9]
G. Buffoni, Perturbation of a matrix with positive inverse, Riv. Mat. Univ. Parma (4) 16 (1990), 251–262. MR1105747
[10]
L. Collatz, Aufgaben monotoner Art, Arch. Math. 3 (1952), 366–376. MR0053603
[11]
J. E. Dennis, Jr., J. F. Traub and R. P. Weber, On the matrix polynomial, lambda-matrix and block eigenvalue problems, Computer Science Technical Reports, Cornell Univ., Ithaca, N.Y., and Carnegie-Mellon Univ., Pittsburgh, PA, 1971. URL
[12]
J. E. Dennis, Jr.,J. F. Traub and R. P. Weber, The algebraic theory of matrix polynomials, SIAM J. Numer. Anal. 13 (1976), 831–845. MR0432675
[13]
J. E. Dennis, Jr., J. F. Traub and R. P. Weber, Algorithms for solvents of matrix polynomials, SIAM J. Numer. Anal. 15 (1978), 523–533. MR0471278
[14]
K. Fan, Topological proofs for certain theorems on matrices with non-negative elements, Monatsh. Math. 62 (1958), 219–237. MR0095856
[15]
L. Farina and S. Rinaldi, Positive linear systems: Theory and applications, Wiley-Interscience, New York, 2000. MR1784150
[16]
M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J. 12 (1962), 382–400. MR0142565
[17]
G. Frobenius, über Matrizen aus nicht negativen Elementen, S.-B. Preuss Akad. Wiss. Berlin (1912), 456–477. zbMATH
[18]
F. R. Gantmacher, The theory of matrices, Vol. I, Chelsea Publishing Co., New York, 1959. MR0107649
[19]
F. R. Gantmacher, The theory of matrices, Vol. II, Chelsea Publishing Co., New York, 1959. MR0107649
[20]
A. V. Gavrilov, A sufficient condition for the monotonicity of a positive-definite matrix, Comput. Math. Math. Phys. 41 (2001), 1237–1238. MR1869888
[21]
F. Goldberg, On monotonicity-preserving perturbations of \(M\)-matrices, arXiv:1308-0844, preprint, 2013.
[22]
R. D. Haynes, M. R. Trummer and S. C. Kennedy, Persistently positive inverses of perturbed \(M\)-matrices, Linear Algebra Appl. 422 (2007), 742–754. MR2305154
[23]
J. Huang and T.-Z. Huang, The inverse positivity of perturbed tridiagonal \(M\)-matrices, Linear Algebra Appl. 434 (2011), 131–143. MR2737237
[24]
J. Huang, R. D. Haynes and T.-Z. Huang, Monotonicity of perturbed tridiagonal \(M\)-matrices, SIAM J. Matrix Anal. Appl. 33 (2012), 681–700. MR2970225
[25]
T. Ikeda, Maximum principle in finite element models for convection-diffusion phenomena, Mathematics Studies, North-Holland, Amsterdam, 1983. MR0683102
[26]
W. Kratz and E. Stickel, Numerical solution of matrix polynomial equations by Newton's method, IMA J. Numer. Anal. 7 (1987), 355–369. MR0968530
[27]
S. C. Kennedy and R. D. Haynes, Inverse positivity of perturbed tridiagonal \(M\)-matrices, Linear Algebra Appl. 430 (2009), 2312–2323. MR2508297
[28]
M. A. Krasnoselskii, Positive solutions of operator equations, Noordhoff, Groningen, 1964. MR0181881
[29]
G. I. Marčuk, Metodi del calcolo numerico, Editori Riuniti, Roma, 1984.
[30]
T. Netzer and A. Thom, About the solvability of matrix polynomial equations, Bull. Lond. Math. Soc. 49 (2017), 670–675. MR3725487
[31]
J. M. Ortega and W. C. Rheinboldt, Monotone iterations for nonlinear equations with application to Gauss-Seidel methods, SIAM J. Numer. Anal. 4 (1967), 171–190. MR0215487
[32]
A. Ostrowski, über die determinanten mit überwiegender Hauptdiagonale, Comment. Math. Helv. 10 (1937), 69–96. MR1509568
[33]
J. R. Rice, Numerical methods, software and analysis, McGraw-Hill, New York, 1983.
[34]
E. E. Tyrtyshnikov, A brief introduction to numerical analysis, Birkhäuser, Boston, MA, 1997. MR1442956
[35]
R. S. Varga, Factorization and normalized iterative methods, Boundary problems in differential equations, R. E. Langer, ed., Univ. of Wisconsin Press, Madison, Wis., 1960, 121-142. MR0121977
[36]
R. S. Varga, Matrix iterative analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR0158502
[37]
T. Vejchodský, Necessary and sufficient condition for the validity of the discrete maximum principle, Proceedings of Algoritmy 2012, 1–10. URL


Home Riv.Mat.Univ.Parma