CAROLE LOUIS-ROSE and JEAN VÉLIN

On a non-existence result involving the fractional p-Laplacian

Abstract. We consider a nonlocal problem involving the fractional p-Laplacian operator in bounded smooth domains. A non-existence result is obtained via a comparison process. This result extends those done for the fractional Laplacian.

Keywords. Non-existence, weak solution, fractional p-Laplacian.

Mathematics Subject Classification (2010): 35R11.

1 - Introduction

Let $N \geq 1$ be an integer and let Ω be a bounded domain of \mathbb{R}^N. Consider the following nonlinear problem

\[
(E_p^s)
\left\{
\begin{array}{ll}
(\mathcal{A}_p^s) u &= f(x, u) & \text{in } \Omega, \\
u &= 0 & \text{in } \mathbb{R}^N \setminus \Omega.
\end{array}
\right.
\]

The nonlinear operator (\mathcal{A}_p^s) with $p > 1$ and $s \in (0, 1)$ is the fractional p-Laplacian operator which is defined for any $x \in \mathbb{R}^N$ by

\[
(1) \quad (-\mathcal{A}_p^s) u(x) = 2 \lim_{\varepsilon \to 0} \int_{\mathbb{R}^N \setminus B_{\varepsilon}(x)} \frac{|u(x) - u(y)|^{p-2}}{|x-y|^{N+sp}} (u(x) - u(y)) dy.
\]

where $B_{\varepsilon}(x)$ denotes the open ball of radius $\varepsilon > 0$ and center x. System like (E_p^s) can be met in the field of game theory; see [2] for a complete framework of the subject. When $s = 1$, the fractional p-Laplacian becomes the well-known p-Laplacian op-
erator. When $p = 2$, $(-\Delta)^s_p$ is reduced to be the linear operator $(-\Delta)^s$ usually called the fractional Laplacian and we obtain a semilinear problem which has been widely studied mainly to show non-existence results for nonlinear elliptic problems. In [15], X. Ros-Oton and J. Serra proved that (E^s_p) admits no positive and bounded solution if f is such that

$$\frac{N - 2s}{2N} uf(u) \geq \int_0^u f(t) dt, \quad \forall u \in \mathbb{R}. \quad (2)$$

This result is obtained by using a version of the Pohozaev identity for the fractional Laplace problem. Indeed, for $s = 1$, $p = 2$, one retrieves the well-known non-existence condition like (2) established by S. I. Pohozaev in his pioneer paper [14]. So, X. Ros-Oton and J. Serra generalized the results of [14] giving the fractional version of this identity. As an application of their work, they stated non-existence results for problem (E^s_p) with supercritical nonlinearities f in star-shaped domains Ω. The results of [15] are developed in a full paper [18]. More recently, these authors extended their results showing in [17] the non-existence of nontrivial bounded solutions to some nonlinear problems in the form

$$\begin{cases}
Lu = f(u) \quad & \text{in } \Omega, \\
u = 0 \quad & \text{in } \mathbb{R}^N \setminus \Omega,
\end{cases} \quad (3)$$

where L denotes a nonlocal operator in star-shaped domains Ω. An operator is nonlocal in the sense that one needs the value of a function in all Ω and not only in a neighbourhood of a point, to determine the effect of the operator on it. X. Cabré and Y. Sire interested in [1], in the existence, variational properties and asymptotic behaviour of particular solutions to (E^s_p) with $p = 2$. Nonlinear eigenvalues problems have been analyzed by A. Iannizzotto et al. in [10], showing the existence of eigenvalues. They established the existence of non-trivial weak solutions to (E^s_p) with $f = \lambda |u|^{p-2}u$, so demonstrating the existence of fractional eigenvalues λ. Then using Morse theory, they proved the existence of non-zero solutions in the p-superlinear case f. M. D'Elia and M. Gunzburger studied in [3] discretization methods for the nonlocal operator L, the fractional Laplacian operator being a special case of L. The main contribution of their paper is the demonstration of the convergence of the nonlocal operator L to the fractional Laplacian $-\Delta^s$ on bounded domains, under certain conditions. In [9], the eigenvalues of nonlocal operators, of which the fractional p-Laplacian operator is a particular case, were exploiting considering the weak solutions u to the nonlocal problem. Paper [16] is devoted to the Pohozaev identity for the fractional Laplacian $(-\Delta)^s$ with $s > 1$. This paper extends the results of [18] and give as application, a continuation property for the fractional eigenfunctions. We can

When \(p > 1 \), the study of existence of solutions to fractional \(p \)-Laplacian problems with weight was the object of [12]. Indeed, this paper is concerned with the existence of solutions to

\[
\begin{align*}
(-\Delta)^s_p u &= \varphi(x)f(u) \quad \text{in } \mathbb{R}^N, \\
u &\geq 0, \quad u \neq 0.
\end{align*}
\]

In [6] A. Di Castro et al. investigated regularity results for nonlocal problem (3) with non-homogeneous Dirichlet condition, which can be reduced to problem \((E^s_p)\) in some cases. R. Ferreira and M. Pérez-Llanos went further with limit problems for fractional \(p \)-Laplacian. They described in [8] the behaviour of solutions to \((E^s_p)\), as \(p \to \infty \). A crucial paper for the theory of fractional Sobolev spaces \(W^{s,p} \), \(s \in (0,1) \), is [7], where the authors look the role of these spaces in the trace theory.

The present work aims to prove non-existence of nontrivial solutions for nonlinear problem \((E^s_p)\) in the case \(p > 1 \) and \(s \in (0,1) \).

Let \(\Omega \) be a regular bounded open set of \(\mathbb{R}^N \). Recall that

\[
C^{0,s}(\Omega) = \left\{ u \in C(\Omega) ; \sup_{x \neq y} \frac{|u(x) - u(y)|}{|x - y|^s} < \infty \right\},
\]

\[
C^{m,s}(\Omega) = \{ u \in C^m(\Omega), D^\beta u \in C^{0,s}(\Omega) , \forall \beta \text{ with } |\beta| = m \},
\]

where

\[
D^\beta u = \frac{\partial^{\beta} u}{\partial x_1^{\beta_1} \ldots \partial x_N^{\beta_N}} = \frac{\partial^{\beta_1 + \ldots + \beta_N} u}{\partial x_1^{\beta_1} \ldots \partial x_N^{\beta_N}}.
\]

Let \(\beta \) be a strictly positive real, \(k \) is the greater integer such that \(k < \beta \). \([\cdot]_{C^{0,s-k}(\Omega)}\) designates the seminorm on the space \(C^{k,s-k}(\Omega) \),

\[
[u]_{C^{0,s-k}(\Omega)} = \sup_{x,y \in \Omega, x \neq y} \frac{|D^k u(x) - D^k u(y)|}{|x - y|^{s-k}}.
\]

The main result of this paper is as follows.

Theorem 1.1. Consider \(\Omega \) an open \(C^{1,1} \) bounded set of \(\mathbb{R}^N \). \(\delta(x) = \text{dist}(x, \partial \Omega) \). Let \(f \) be a locally Lipschitz function satisfying to

\[
\frac{N - sp}{Np} f(u) u \geq \int_0^u f(t) dt, \text{ for all } u \in \mathbb{R}.
\]

(4)
Assume that \(u \) is a \(W^{s,p}(\mathbb{R}^N) \) function which vanishes in \(\mathbb{R}^N \setminus \Omega \), and such that \(u \) is of class \(C^{0,1}(\Omega) \) and

\[
[u]_{C^{0,1}(\{x \in \Omega, \delta(x) \geq \rho\})} \leq C \rho^{s-1}, \quad \text{for all } \rho \in (0,1),
\]

then problem

\[
\begin{aligned}
\left\{ \begin{array}{l}
(-\Delta)^s_p u = f(u) & \quad \text{in } \Omega, \\
u = 0 & \quad \text{in } \mathbb{R}^N \setminus \Omega
\end{array} \right.
\end{aligned}
\]

admits no positive bounded solution. Moreover, if the inequality in (4) is strict, then problem (5) admits no nontrivial bounded solution.

Corollary 1.1. Assume that the hypotheses of Theorem 1.1 hold. If

\[
x \geq \frac{N(p-1)+sp}{N-sp},
\]

then problem

\[
\begin{aligned}
\left\{ \begin{array}{l}
(-\Delta)^s_p u = u|u|^{q-1} & \quad \text{in } \Omega, \\
u = 0 & \quad \text{in } \mathbb{R}^N \setminus \Omega
\end{array} \right.
\end{aligned}
\]

admits no positive bounded solution. Moreover, if \(x > \frac{N(p-1)+sp}{N-sp} \), then problem (6) admits no nontrivial bounded solution.

The paper is organized as follows. In Section 2, we give the weak formulation to problem \((E^s_p)\). Section 3 is devoted to the proof of the main result.

2 - Weak formulation

Let \(\Omega \) be an open set of \(\mathbb{R}^N \), star-shaped with respect to the origin of \(\mathbb{R}^N \) and let \(W^{s,p}(\mathbb{R}^N) \) be the fractional Sobolev space defined by

\[
W^{s,p}(\mathbb{R}^N) = \left\{ u \in L^p(\mathbb{R}^N) : u \text{ measurable, } \frac{|u(x) - u(y)|}{|x-y|^{N+sp}} \in L^p(\mathbb{R}^{2N}) \right\}
\]

endowed with the natural norm

\[
\|u\|_{W^{s,p}(\mathbb{R}^N)} = \left(\int_{\mathbb{R}^N} |u|^p dx + \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x-y|^{N+sp}} dxdy \right)^{\frac{1}{p}}.
\]
Consider the Gagliardo (semi-)norm of all measurable function $u : \mathbb{R}^N \to \mathbb{R}$:

$$[u]_{W^{s,p}({\mathbb{R}^N})} = \left(\int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dx \, dy \right)^\frac{1}{p}.$$

See [7] for more details on the above notations. Now following [10], define the set

$$X(\Omega) = \{ u \in W^{s,p}(\mathbb{R}^N) : u(x) = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega \},$$

which can be renormed by setting $\| \cdot \|_s = [\cdot]_{W^{s,p}(\mathbb{R}^N)}$. The dual space of $(X(\Omega), \| \cdot \|_s)$ is denoted by $(X(\Omega)^*, \| \cdot \|_s)$. Define for all $u, v \in X(\Omega)$, the nonlinear operator $A : X(\Omega) \to X(\Omega)^*$, by:

$$\langle A(u), v \rangle = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))(v(x) - v(y))}{|x - y|^{N+sp}} \, dx \, dy$$

where here and in the rest of the paper, the notation $\langle \cdot, \cdot \rangle$ designates the duality brackets between the spaces $X(\Omega)^*$ and $X(\Omega)$.

If u is smooth enough, this definition coincides with that of the fractional p-Laplacian (1). A (weak) solution of problem (E_p^λ) is a function $u \in X(\Omega)$ such that for any $v \in X(\Omega)$,

$$\langle A(u), v \rangle = \int_{\Omega} f(x, u)v \, dx.$$

3 - Proof of the main result

Let u be a function in $X(\Omega)$. Following [18], define in \mathbb{R}^N the function:

$$u_\lambda(x) = u(\lambda x).$$

Since $u \equiv 0$ in $\mathbb{R}^N \setminus \Omega$, Ω is star-shaped then for $\lambda > 1$, it follows that $u_\lambda \equiv 0$ in $\mathbb{R}^N \setminus \Omega$. It follows that

$$\int_{\mathbb{R}^N} (- \Delta_p)^s u(x) u_\lambda(x) \, dx = \int_{\Omega} (- \Delta_p)^s u(x) u_\lambda(x) \, dx$$

and so,

$$\frac{d}{d\lambda} \bigg|_{\lambda=1} \int_{\mathbb{R}^N} u_\lambda(x)(- \Delta_p)^s u(x) \, dx = \frac{d}{d\lambda} \bigg|_{\lambda=1} \int_{\Omega} u_\lambda(x)(- \Delta_p)^s u(x) \, dx$$

where $\frac{d}{d\lambda} \bigg|_{\lambda=1}$ is the derivative at $\lambda = 1$. We set $g(x) = (- \Delta_p)^s u(x)$ and taking account to the assumptions on u and f, we refer us to the proof of Proposition 1.6, page
10 in [18] and so, we argue similarly. Hence, the following identity holds

$$ \int_{\Omega} (x \cdot \nabla u) A(u) dx = \frac{d}{d\lambda} \bigg|_{\lambda=1} \int_{\Omega} (-\Delta_p)^s u(x) u(z(x)) dx. $$

Then, we deduce

$$ \int_{\Omega} (x \cdot \nabla u) A(u) dx = \frac{d}{d\lambda} \bigg|_{\lambda=1} \int_{\mathbb{R}^N} (-\Delta_p)^s u(x) u(z(x)) dx. $$

Consequently, using (7) with $v = u_{\lambda}$, and making the changes of variables $z = \lambda^\frac{1}{p} x$ and $\omega = \lambda^\frac{1}{p} y$, we obtain

$$ \int_{\mathbb{R}^N} (-\Delta_p)^s u(x) u(z(x)) dx = \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^{p-2}(u(x) - u(y))}{|x - y|^{N+sp}} (u(\lambda x) - u(\lambda y)) dxdy. $$

More precisely, we have

$$ \langle A(u), u \rangle = \int_{\mathbb{R}^{2N}} \frac{|u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega)|^{p-2}}{|\lambda^{-\frac{1}{p}}z - \lambda^{-\frac{1}{p}}\omega|^{N+sp}} (u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega)) $$

$$ \times (u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega)) \lambda^{-\frac{2N}{p}} dzd\omega $$

$$ = \lambda^{\frac{2N}{p}} \int_{\mathbb{R}^{2N}} \frac{|u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega)|^{p-2}}{|z - \omega|^{N+sp}} (u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega)) $$

$$ \times (u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega)) \lambda^{-\frac{2N}{p}} dzd\omega $$

$$ = \lambda^{\frac{2N}{p}} \int_{\mathbb{R}^{2N}} \left(\frac{|u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega)|^{p-2}}{|\lambda^{-\frac{1}{p}}z - \lambda^{-\frac{1}{p}}\omega|^{N+sp}} \right)^{\frac{p}{p-2}} u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega) $$

$$ \times \frac{u(\lambda^{-\frac{1}{p}}z) - u(\lambda^{-\frac{1}{p}}\omega)}{|\lambda^{-\frac{1}{p}}z - \lambda^{-\frac{1}{p}}\omega|^{N+sp}} dzd\omega $$

because we have remarked that $\lambda^{-\frac{p-2}{p}} N_{sp} + \frac{N_{sp}}{p} + \frac{N_{sp}}{p} = 1$ and $|z - \omega|^{N+sp} (p-2) + \frac{N_{sp}}{p} + \frac{N_{sp}}{p} = |z - \omega|^{N+sp}$.

Thus,

$$ (8) \quad \int_{\Omega} (x \cdot \nabla u) A(u) dx = \frac{sp - N}{p} \int_{\mathbb{R}^{2N}} \left(\frac{|u(z) - u(\omega)|}{|z - \omega|^{N+sp}} \right)^{p-2} \frac{u(z) - u(\omega)}{|z - \omega|^{N+sp}} $$

$$ \times \frac{u(z) - u(\omega)}{|z - w|^{N_{sp}}} dzd\omega + \frac{d}{d\lambda} \bigg|_{\lambda=1} I_{\lambda}, $$
where
\[
I_\lambda = \int_{\mathbb{R}^N} \left(\frac{u(\lambda^{-\frac{1}{r}}z) - u(\lambda^{-\frac{1}{r}}\omega)}{\lambda^{-\frac{1}{r}}z - \lambda^{-\frac{1}{r}}\omega} \right)^{p-2} \frac{u(\lambda^{-\frac{1}{r}}z) - u(\lambda^{-\frac{1}{r}}\omega)}{\lambda^{-\frac{1}{r}}z - \lambda^{-\frac{1}{r}}\omega} \frac{e^{-\frac{c_1}{\lambda^r}}}{\frac{N+sp}{r}} \times \frac{e^{-\frac{c_1}{\lambda^r}}}{\frac{N+sp}{r}} \lambda^{-\frac{1}{r}}z - \lambda^{-\frac{1}{r}}\omega \, dz\,dw.
\]

Then we can write
\[
(9) \quad \int_{\Omega} (x \cdot \nabla u) A(u) \, dx - \frac{sp - N}{p} \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dxdy = \frac{d}{d\lambda} \bigg|_{\lambda = 1^+} I_\lambda.
\]

We have:
\[
\frac{d}{d\lambda} \bigg|_{\lambda = 1^+} I_\lambda = \lim_{\lambda \rightarrow 1^+} \frac{I_\lambda - I_1}{\lambda - 1},
\]

where
\[
I_1 = \int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dxdy.
\]

Let us study the sign of \(\frac{d}{d\lambda} \bigg|_{\lambda = 1^+} I_\lambda\). In view of the Cauchy-Schwarz inequality, we can write:
\[
I_\lambda \leq \int_{\mathbb{R}^N} \left(\frac{u(\lambda^{-\frac{1}{r}}z) - u(\lambda^{-\frac{1}{r}}\omega)}{\lambda^{-\frac{1}{r}}z - \lambda^{-\frac{1}{r}}\omega} \right)^{p-1} \frac{e^{-\frac{c_1}{\lambda^r}}}{\frac{N+sp}{r}} \frac{e^{-\frac{c_1}{\lambda^r}}}{\frac{N+sp}{r}} \lambda^{-\frac{1}{r}}z - \lambda^{-\frac{1}{r}}\omega \, dz\,dw.
\]

Set \(\phi_\lambda(z, \omega) = \frac{u(\lambda^{-\frac{1}{r}}z) - u(\lambda^{-\frac{1}{r}}\omega)}{\lambda^{-\frac{1}{r}}z - \lambda^{-\frac{1}{r}}\omega}\), then
\[
I_\lambda \leq \int_{\mathbb{R}^N} |\phi_\lambda(z, \omega)|^{p-1} |\phi_\lambda(\lambda z, \lambda \omega)| \, dz\,d\omega.
\]

But applying Hölder’s inequality for each \(\lambda > 1\) we get:
\[
(10) \quad I_\lambda \leq \left(\int_{\mathbb{R}^N} |\phi_\lambda(z, \omega)|^p \, dz\,d\omega \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^N} |\phi_\lambda(\lambda z, \lambda \omega)|^p \, dz\,d\omega \right)^{\frac{1}{p}}
\]

since \(\phi_\lambda(\cdot, \cdot) \in L^p\) (then \(\phi_\lambda(\cdot, \cdot)|^{p-1} \in L^{\frac{p}{p-1}}\)) and \(\phi_\lambda(\lambda \cdot, \lambda \cdot) \in L^p\). On the one hand, making the changes of variables \(x = \lambda^{-\frac{1}{r}}z\) and \(y = \lambda^{-\frac{1}{r}}\omega\), it follows that:
\[
\left(\int_{\mathbb{R}^N} |\phi_\lambda(z, \omega)|^p \, dz\,d\omega \right)^{\frac{p-1}{p}} \left(\int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dxdy \right)^{\frac{1}{p}}
\]

\[
= \lambda^{-\frac{N}{r}} \left(\int_{\mathbb{R}^N} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} \, dxdy \right)^{\frac{1}{p}}.
\]
On the other hand, making the changes of variables $X = \lambda^{\frac{1}{p}} z$ and $Y = \lambda^{\frac{1}{q}} \omega$, we get:

$$
\left(\int_{\mathbb{R}^{2N}} |\phi_\lambda(\lambda z, \lambda \omega)|^p dz d\omega \right)^{\frac{1}{p}} = \left(\lambda^{\frac{2N}{p}} \int_{\mathbb{R}^{2N}} \frac{|u(X) - u(Y)|^p}{|X - Y|^{N+sp}} dX dY \right)^{\frac{1}{p}}
$$

$$
= \lambda^{\frac{2N}{p} - \frac{1}{q}} \left(\int_{\mathbb{R}^{2N}} \frac{|u(X) - u(Y)|^p}{|X - Y|^{N+sp}} dX dY \right)^{\frac{1}{p}}.
$$

Coming back to (10), we deduce that:

$$
I_\lambda \leq \int_{\mathbb{R}^{2N}} \frac{|u(x) - u(y)|^p}{|x - y|^{N+sp}} dx dy = I_1.
$$

Consequently, the quantity $\frac{I_\lambda - I_1}{\lambda - 1}$ is negative since $\lambda > 1$ and then, $\frac{d}{d\lambda} \big|_{\lambda = 1} I_\lambda$ is negative too. Since u is a solution of (5), the identity holds

$$
(11) \quad \int_\Omega (x \cdot \nabla u) A(u) dx = \int_\Omega (x \cdot \nabla u) f(u) dx = -N \int_\Omega F(u) dx
$$

where $F(t) = \int_0^t f(\zeta) d\zeta$. And finally, it follows from (9) that:

$$
-N \int_\Omega F(u) dx - \frac{sp - N}{p} \int_\Omega f(u) u dx \leq 0,
$$

from which we conclude that:

$$
(12) \quad \int_\Omega N \left(\frac{N - sp}{Np} f(u) u - \int_0^u f(\zeta) d\zeta \right) dx \leq 0.
$$

Now setting $f(u) = u |u|^p$ in (12) yields

$$
\int_\Omega \left(\frac{N - sp}{Np} - \frac{1}{s+1} \right) |u|^{s+1} dx \leq 0,
$$

which completes the proof of Theorem 1.1.
Now consider that \(f(x, u) \) instead of \(f(u) \). The following result holds

Corollary 3.1. Consider \(\Omega \) an open bounded set of \(\mathbb{R}^N \) of class \(C^{1,1} \). Let \(f \) a function of class \(C^{0,1}_{\text{loc}}(\Omega \times \mathbb{R}) \). Assume that \(u \) is a \(W^{s,p}(\mathbb{R}^N) \) function which vanishes in \(\mathbb{R}^N \setminus \Omega \) and \(u \) of class \(C^{0,1}(\Omega) \).

Then if the domain \(\Omega \) is star-shaped, and the condition holds

\[
N - \frac{sp}{p} f(x, t)u \geq NF(x, t) + x \cdot F_x(x, t), \text{ for all } x \in \Omega \text{ and } t \in \mathbb{R},
\]

then problem \((E_p^u)\) admits no positive bounded solution. Moreover, if the inequality (13) is strict, then problem \((E_p^u)\) admits no nontrivial bounded solution.

Proof. Considering \(f(x, u) \) instead of \(f(u) \), then (11) can be rewritten in the form:

\[
\int_{\Omega} (x \cdot \nabla u) A(u) dx = \int_{\Omega} (x \cdot \nabla u) f(x, u) dx = -N \int_{\Omega} F(x, u) dx - \int_{\Omega} x \cdot F_x(x, u) dx.
\]

Consequently (9) is equivalent to

\[
N \int_{\Omega} F(x, u) dx + \int_{\Omega} x \cdot F_x(x, u) dx + \frac{sp}{p} f(x, u) udx \geq 0,
\]

where \(F(x, u) = \int_{0}^{u} f(x, \xi) d\xi. \)

Our study shows that the well-known classical non-existence results (see for instance \([4, 5, 13]\)) can be interpreted as a limiting case of the diffusion fractional. Moreover, they extend for a non-linear fractional system those obtained by X. Ros-Oton and J. Serra in \([18]\) for a linear fractional operator. However, the tools used in \([18]\) seem fail if we consider the nonlinear case in perspective to the establishing of a typical Pohozaev identity taking account the nonlinearity of the fractional \(p \)-Laplacian operator. This open question is actually investigated by the authors and it will be presented in a next paper. An another open problem is the following: Is it possible to obtain without regularity assumption a non-existence result of any solution belonging in \(X(\Omega) \cap L^\infty(\Omega) \)?

Acknowledgments. The authors would like to present their acknowledgements to the anonymous referee for his advices which helped greatly to improve the presentation of this paper.
References

Carole Louis-Rose, Jean Vélin
Department of Mathematics and Computer
Laboratory CEREGMIA
University of Antilles, Campus of Fouillole
Pointe-à-Pitre, 97159, Guadeloupe (FWI)
e-mail: clouisro@univ-ag.fr
e-mail: jean.velin@univ-ag.fr