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A note on upper ramification jumps in Abelian extensions

of exponent p

Abstract. In this paper we present a classification of the possible upper ramifi-
cation jumps for an elementary Abelian p-extension of a p-adic field. The fundamental
step for the proof of the main result is the computation of the ramification filtration for
the maximal elementary Abelian p-extension of the base field K. This result gen-
eralizes [3, Lemma 9, p. 286], where the same result is proved under the assumption
that K contains a primitive p-th root of unity. To deal with this general case we use
class field theory and the explicit relations between the normie group of an extension
and its ramification jumps, and we obtain necessary and sufficient conditions for the
upper ramification jumps of an elementary Abelian p-extension of K.
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1 - Introduction

Let K be a finite extension of (O,. By Hasse-Arf Theorem ([10, p. 76]), the upper

ramification jumps of a finite Abelian extension L/K are rational integers. The
problem of determining the upper ramification jump sequence of an extension, as
well as the inverse problem of deciding whether a set of integers could be the ra-
mification jump sequence of an extension with a fixed Galois group, is very difficult in
general. However, this problem is completely solved in the case of cyclic extensions:
avery neat result, due to Maus [7]in the case where {, ¢ K, and to Miki [8]in the case
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where {, € K, characterizes the sequence of integers which can be the ramification
jumps of a totally ramified cyclic p-extension L/K. In this case, the ramification
jumps completely determine the sequence of the ramification groups, since the
quotients of the filtration are necessarily cyclic of order p.

In this paper we consider another basic case, namely the case of elementary
Abelian p-extensions of a p-adic field (some results for biquadratic extensions can be
found in [1]). In this case, the ramification subgroup sequence depends upon the
jumps and the order of the subgroups. In Theorem 13, we characterize the sequences
of couples of integers (¢, m), where ¢ denotes an upper jump and m its “size” (see
Definition 3), which describe the ramification subgroup sequence of an elementary
Abelian p-extension of K.

Our main tool is class field theory and the explicit relation, already used in [11] for
cyclic extensions, between the group of norms of an extension and its ramification
jumps. The fundamental step for the proof of Theorem 13 is the computation of the
ramification filtration for the maximal elementary Abelian p-extension of the base
field K. This result is contained in Theorem 12 and generalises [3, Lemma 9, p. 286].

In the case of non-Abelian extensions, Hasse-Arf Theorem can fail and the upper
ramification jumps do not have to be integral. However, one can give a classification
for the lower ramification jumps. In this setting, very few cases are known. One
special case can be found in [4] where, to better understand the counterexamples to
the conclusion of Hasse-Arf Theorem and as a first step towards an explicit de-
scription of wildly ramified Galois module structure, the two authors classify the
ramification break numbers of totally ramified quaternion extensions of dyadic
number fields.

2 - Notation and preliminary results

Throughout the paper p will be a fixed prime number. If K is a finite extension of
(), we shall denote by ex and fx the ramification index and the inertial degree of
K/Q,, and by ng the degree of the extension; hence, we have ng = ex fx = [K : Q,].

We shall denote by O the ring of integers of K, by 7 = ng a uniformizer of K (i.e.
a generator of the maximal ideal My of Ox) and by v the valuation of K normalized
so that vg(nx) = 1. We shall indicate the residue field of K by K; then, |[K| = p/«.

Let Ug be the group of units of K, and consider its usual filtration {U} },., given
by Ui =1+ M fori > 1.

For a finite extension L/K, we denote by Ny, /k, Dy, x and Discy, /g the norm, the
different and the discriminant of L /K respectively. If L/ K is a Galois extension with
Galois group G, we consider the filtration of G given by the ramification subgroups:
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in our context, instead of the more classical lower numbering G; for the ramification
subgroups, it is useful to use the upper numbering, so, for every v > 0, we denote the
ramification subgroups by G’ (see [10, Ch. IV] for the definition and the fundamental
properties of ramification subgroups).

We are interested in studying the filtration of the G" and, more specifically, the
values of v for which these subgroups change.

Definition 1. We say that s is a lower ramification jump for the extension
L/K if G; # G, for every u > s. Similarly, we say that ¢ is an upper ramification
Jump if G' # G* for every u > t.

The lower ramification jumps of an extension are always integers, whereas in
general the upper ones are not. However, the well known theorem of Hasse and Arf
[10, p. 76] ensures that, in case of Abelian extensions, all the jumps of the filtration G*
are integers.

As already observed in the Introduction, the problem of determining whether a
set of integers may be realized as the sequence of upper ramification jumps for an
extension L /K can be very difficult in general. The problem is completely solved in
the case of cyclic extensions.

A necessary and sufficient condition for m natural numbers 8 < --- < " to be
upper ramification jumps of a totally ramified cyclic p-extension over K was given by
Maus [7]in two cases, namely when {, Z K and when, if 7 is the maximal integer such
that{,- € K,vg((,» — 1) #0mod p, and by Miki [8] in the general case. A constructive
proof of the existence part of Miki’s result was given by Sueyoshi in [11].

The general result of Miki is rather technical to state; we at least recall what can
happen in the easier case when (, Z K:

Theorem 2 [Maus, 1973]. Let {t' < --- <t™} be a finite set of integers and
suppose that {, ¢ K; then, there exists a totally ramified cyclic extension L/K of

degree p™ with upper ramification jumps t', ... t" if and only if the following
conditions hold:
e 1<tl< %(de ) = 1;

o ifti< pe—Kl, then t+1 = ptt or pt! < i+l < % and (p,t+1) = 1;

o ift > %, then t1 =t + eg.

Our aim is to characterize the upper ramification jumps and the ramification
subgroups of an elementary Abelian p-extension of K. In this case, ramification
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subgroups are clearly elementary Abelian p-groups, so the ramification group
sequence is completely determined by the jumps and the order of the sub-
groups.

Definition 3. Let L/K be a Galois extension with Galois group G and let¢ > 1
be an upper ramification jump. If |G!/G"*1| = p™, we call m the “size” of the upper
jump t.

Given an elementary Abelian p-extension, we can associate to the ramification
subgroups a sequence of couples of integers (f,m), where ¢ denotes an upper jump
and m its size. We will refer to the couple simply as to the ramification jump.

For the convenience of the reader, we quote the class field correspondence
theorem in a form which easily follows from Theorem 6.2 and 6.3 of [5, Ch. I1I, p. 154].

Theorem 4 [Class field correspondence]. There is a one-to-one correspon-
dence between the finite Abelian extensions of K and the open subgroups of finite
index of K* giwen by L «—— Np,x(L*). This correspondence is an order reversing
bijection between the lattice of finite Abelian extensions of K (with respect to the
wtersection Ly N Ly and the compositum Ly Ls) and the lattice of open subgroups of
finite index in K* (with respect to the intersection N1 N Ng and the product NiNq).

Furthermore, if L /K is the extension associated to the subgroup N and G is its
Galois group, K* /N = G, hence |[K*/N| =[L : K].

It is well known [5, Rm. 1, p. 156] that, if char(K) = 0, one may omit the word
“open” in Theorem 4.

There is a close connection between the ramification groups of an extension /K
and the group K* /Ny, /x(L>). In the case of totally ramified extensions of degree p,
this is given by the following proposition:

Proposition 5. Let L/K be a totally ramified extension of degree p and let t
be its upper ramification jump. Then

t=min{je N | U C Ny x@)}.

Proof. Lett be the upper ramification jump of the extension /K. From [10,
Cor. 3, p. 85], we have that Ul/! = NL/K(UE’“)“) C Ny, /k(L*), where y denote the
inverse of the Herbrand function (see [10, Ch. IV]). Hence,

t>min{je N | U' C Npx@)}.
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We have now to show that ¢ is exactly the minimum. If not, we would have
U% C Np/x(L>). From [10, Thm 1, p. 227] we know that, for % > 0, the canonical map
induced by inclusion and projection U} /Ny, /K(UZ’(")) — K* /Ny, g(L*) is injective,
hence U N Np/x(L*) = Ny x(Uy™). This means that, if U} ¢ Ny, /x(L*), we get
Ui C NL/K(UZ’(")), that is a contradiction if ¢ = n. O

Remark 6. The proposition follows also from [6, Theorem 1.4, p. 74] (see also
[6, Remark 1.6.1, p. 80]).

3 - The compositum of all extensions of degree p of K

Let Ex(p) be the set of all the cyclic extensions of K of degree p within a fixed
algebraic closure of K and let Cx(p) be the compositum of all extensions £ € Ex(p);
then, Cx(p) is the maximal elementary Abelian p-extension of K in this fixed alge-
braic closure. In this section, following [3], we determine the upper ramification
jumps of Ck (p)/K.

Proposition 7.

Pt if G ¢K

C K] = .
Gty K] {W*Z if (eK

Proof. Thisis a classical result that can be easily proved using, for example,
[9, Ch. V, Prop 5.8 and Thm 5.7]%. O

In [3], the ramification subgroups of Cx(p)/K are computed, using Kummer
theory, in the case where (, € K. The use of class field theory allows us to generalize
this result to a general field K. Also in this general case, the ramification groups can
be computed via the study of all the subextensions of degree p.

Let M C Ck(p) be an elementary Abelian p-extension of Galois group G and let
L C M a Galois subextension of degree p over K. Denote by Dy /x = ﬂfL and by
G, = Gal(M /L); hence by Galois correspondence, Gal(L./K) = G/Gy,.

Using the ramification-diseriminant formula [10, Prop. 4, p. 64], v.(Dr, k) =
S (G/GL)y| —1). In our case, |(G/Gr),|=p if 0<v<t¢ and |(G/GL),|=1

v>0
otherwise, hence v.(Dr/x) = (p —D(E+1) and the jump of this extension is

! This result holds for every complete field with finite residue field.
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t= (pD_Ll) — 1. Hence,
. Dy,
7./p7, 1fv§(p_1)—1
(G/GL)" =(G/GL), = .
0 ifvs P4
-1

This information allows us to reconstruct the ramification groups of M /K. In fact, by
Herbrand’s Theorem [10, Lemma 5, p. 75], (G/GL)" = G'G. /Gy, for every v > 0,
hence

(1) G/GL)' =0 =G CGL<=vr>

Dy,
-1
Since Gy, runs over all subgroups of index p of G as L runs over all normal extension
of degree p of K contained in M, it follows that
= (] G
LM
[L:K]=p
Dy, /(p—1) <v+1

This characterization of the ramification subgroups allow us to easily prove the

following proposition:

Proposition 8. Let M/K be an elementary Abelian p-extension; then t is an
upper ramification jump of M /K if and only if there exists a subextension L/K of
degree p with upper ramification jump equal to t.

Proof. Assume that there exists a subextension L C M such that L /K is cyclic
of degree p with upper ramification jump ¢; we prove that ¢ is an upper ramification
jump for M /K. According to the notation introduced before, call G the group
Gal(M/K) and Gj, = Gal(M/L). Since ¢ is the upper ramification jump for L/K,
Gal(L/K) = (G/G)" and (G/G)"™ = {1}, hence G'*! C G1, and G' € G1. By (1),
this shows that ¢ is an upper ramification jump for M /K.

Assume now that ¢ is an upper ramification jump for M /K. From the previous
description, we get

G = ﬂ G, and G = ﬂ Gy.

LCM LCM
[L:K]=p [L:K]=p
D D

<pTL1> <t+1 (p—fh <t+2

Since G! # G'*1, there exists L ¢ M with [L : M] = p and D, = (p — 1)(t + 1) and
the upper ramification jump of this extension is exactly ¢. |
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We want now to construct a subgroup of K* such that the corresponding ex-
tension (via class field correspondence) is a subextension of Cx(p) and its Galois
group over K has a given jump. To this aim, we need to describe the structure of the
group of units Uk.

Let I={icZ|1<i< p”le and (p,i) =1} = {t!,..., 1%}, let K be the re-
sidue field of K and let us fix aset C = {c1,...,cp } of elements of Ok such that the
residues of its elements in K form a basis of K over Iy. If §, € K, denote by r the

maximal integer such that K contains a p"-root of unity.

Theorem 9 ([5], Ch. I, Prop. 6.4, p. 19). Every o € U}{ can be written as a
product

f
=] ﬁ(l + o),

iel j=1
where:

e if{, K, w. =1, a = 0 and the above expression for « is unique, hence Uy is a
free Zy-module of rank ng = ex fr = [K : Qp);

o if{, c K thenw, =1+ c*nggfl§ 1s a principal unit such that w, € KP, ¢, € C and
a € Zyp. Inthis case, the above expression is not unique, and U is a product of
a free Zp-module of rank ng and the p-torsion group i,

Letuscall F = {(w,y) € Z x Z |w €1, 1 <y < fx}; we put 5, ) = 1 + ¢, =" for
every (x,y) € F.

It is known that the maximal unramified extension K, of K contained in Cx(p) is
cyclic of degree p (and it is the one associated to the group (K**, U%)). The following
lemma characterizes the maximal subextensions of Cx (p) with only one ramification
jump:

Lemma 10. Lett €I and let L;/K be the extension associated to the group
Ny = <K><p7 U {”(m,y)}(m,y)eF, x# w*>
Then, L;/K is an elementary Abelian extension of degree ps with only one rami-

fication jump equal to t.

Proof. By Theorem 4, we have [L; : K] = |K*/Ny|. Now, K* /N, = U, JU*
and, since ¢ € I, by Theorem 9 we have that UL /Ui' ~K. It follows that
[L; : K] = |K| = p<. Moreover, since (K*?, ) C Ny, then L;/K is totally ramified.
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Using the previous proposition, it easy to see that ¢ is a ramification jump for L;.
In fact, we can consider the extension L/K associated to the soubgroup

N = <KXP, T, {n(xAy)}(m,y)eF’—{(t,l)}v .);

L is a subextension of I;/K since N; C N, has degree p (because |[K*/N| = p) and
ramification jump equal to ¢ (this follows easily from Proposition 5). By Proposition 8,
we have that ¢ is also an upper ramification jump for L;/K.

We want to show that ¢ is the only possible jump. In fact, let L be any subextension
of L;/K of degree p over K; then, the group N, = Ny, /x(L*) is a subgroup of K* of
index p and contains N, so U ¢ N, C Ny,.

On the other hand, K* = (U%,N;) and N, ¢ K*, so Ul ¢ N;, and, applying
Proposition 5, its ramification jump is ¢. Using Proposition 8, we get that ¢ is the only
ramification jump of L;/K. O

If {, € K, the field Ck(p) has also a totally ramified subextension with jump not in
the set I:

pek
p—1

Lemma 11. If{, €K, lett =
the subgroup

and let Ly be the extension associated to

Ny = <pr77z> {n(x,y)}(x,y)eF>~

Then, Ly /K is a cyclic extension of degree p with ramification jump equal to t'.2

Proof. The argument of the proof is the same of the previous lemma. By class
field theory (Theorem 4), we have that [Ly : K] = |K*/Ny| and |K* /Ny| is a cyclic
group generati:d by @.Ny that has order p (recall that w. is, by Theorem 9, a prin-
cipal unit of UZ’{TZi such that w, ¢ KP). The fact that the ramification jump is exactly ¢’
follows easily from Proposition 5, since U Z Ny (by construction w, ¢ Ny) and
Uit C K*P C Ny.

Theorem 12. If {, K, the upper ramification groups of Cg(p)/K are the
Sfollowing:

L G=G"=(/pr);

2. G'=...=G" =(Z/pZ)"%;

bek

2 We recall that, if L eK,(p—1)|exso 1 is an integer.
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3. G+l = =G = (Z/pZ)"K*ifK foreveryi=1,... ex —1;
4. G+ = {e};

so, the upper ramification jumps are exactly —1 of size 1 and t* ... % of size fx.
If {, € K, the upper ramification groups of Cx(p)/K are the following:

1. G=G1=(Z/pZ)y=%

2. G"=...=G" =(Z/p2)"";

3. Gl = . =G =2/pZ)" VK forevery i =1,... ex — 1;
4. GI*+ = Git = {7/p7);

5. Gl = {e);

so, the upper ramification jumps are exactly —1 and i iK 7
size fx. p

of size Land t' ... % of

Proof. Let us consider the case {, € K (the case {, K is the same without

taking into account the “special subextension” Ly ). As done before, call ' = &KI and

p
I' =T U {t'}. Firstly, we show that Cx(p) = K,,»Ly [ L+. In fact, each extension on
tel
the right-hand side is an elementary Abelian p—exte%sion, so Cx(p) 2 Kyr [ Lt- On

tel’

the other hand, K,, is linearly disjoint from [] L;: in fact, by class field thteeory and
tel’

the previous constructions, the extension K,,/K is associated to the subgroup

(K*P, UL), while [] L;/K is associated to the subgroup () N; = (K*?, z). Hence, the
tel’ tel’
intersection of these extensions is the field associated to the soubgroup

(K*P, 7, U}) = K*, namely K.

With the same argument, one can show that, for every ¢ € I, the extension L; is

linearly disjoint from [] L;. It follows that
tel\{t}

(Ko [ [ Li : K1 = [Kyr : KI] [ Ly : K1 = p"< ™2 = [Ck(p) : K],

tel’ tel’
s0 Ck(p) = Kur [] Ls.
tel’
It is clear that all the integers {—1, t!,..., %, #'} are upper ramification jumps

for the extension Cx(p)/K, as all of them are upper ramification jumps for a cyclic
subextension of Cx(p)/K of degree p (see proofs of Lemma 10 and 11).

To see that these are the only upper ramification jumps, it is enough to prove that
each of the jumpsin {¢!, ..., <} has at least size p/< and ¢’ has size at least one. In this
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case, in fact, we get:

G/GUG" /G TT 16 /G| = pP s = |G,
tel
and this yields |G!/G!*!| = pf« for every t € I, |G* /G'*!| = p and no more jumps are
possible.

We already know that |G/G°| = p. Let t € I and call H = Gal(Cx(p)/Ly); by
Galois correspondence, G/H =2 Gal(L;/K). From the previous lemma, we know that
L;/K has only one upper ramification jump equal to ¢, so (G/H)" = (Z/pZ)fK and
(G/H)""! = {e}. On the other hand, Herbrand’s Theorem ensures that, for each
s>0, we have (G/H)’ = G°H/H; moreover, G°H/H =~ G*/G* N H, so we get
G C H, and

IG'/G™Y = |GY/G' N H| - |G' N H/G™| = [(G/H)| - |G' n H/G™Y| > pk,
p iKl and the extension Ly
constructed in Lemma 11. P O

as wanted. The same argument holds if we take ¢’ =

4 - The General Result

The following theorem classifies the sequence of couples of integers which can be
the upper ramification jumps of an elementary Abelian p-extension of K.

Theorem 13. Let K be a finite extension of Q,. Let (£, my), ..., ", my) be
couples of integers with t' < ... <th; there exists an elementary Abelian p-ex-
tension M /K with upper ramification jumps ", my), ..., (¢, my) if and only if the
Sfollowing conditions hold:

1. foreveryj=1,...,h, we have 1 <tV < peg/(p — 1) and (ti,p) = 1 with only

two possible exceptions, namely t' = —1 and, in the case when { ek,
tih _ bek .
p-1

2. 1<m; < fx for every j=1,...h mi=17ifth =1 and my, =1 iftih:%.

h
In this case, [M : K] =" m,.
j=1

Proof. LetM be asubextension of Cx(p)/K and let (t",m,), . .., (£, m;) be its
ramification jumps. From Proposition 8, we know that the jumps of M /K are among
those of Cx(p)/K, hence t*, .. ., " verify condition 1. Moreover, denoting by H the
subgroup of G = Gal(Cx(p)/K) fixing M, we have that the ramification filtration of
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M/K is (G/H)" forsomej=1,....hand [(G/H)" /(G/H)"*!| = p™. Arguing as in
the proof of Theorem 12, we have

@/ H)tif Gt /thfﬂ P&

(G/H)t?:fﬂ s ﬁ[—[/G’fij'*‘1 nNH| |Gtij ﬂH/GtL”l N H| 7
hence 1 <m; <fx if t% €I and m; =1 if ¢t" = —1. Moreover, if {, € K and
tin = 130%[{1’ then |G /G'"+1| = p as seen before, 50 m;, = 1, namely, the m; verify

condition 2.

On the other hand, let (¢, my), ..., (t",my,) be a sequence verifying conditions 1
and 2; we construct an extension M /K with these ramification jumps. For each
J=1,...,h et M;/K be any subextension of degree p"i of L, /K, where L,; is the
extensmn defined in Lemma 10 when i € I, L, = Ly (the extensmn deﬁned in
Lemma 11) if t# = pp K and Ly, = Ky, if th = 1. Put M = H M;; then, using the

—1
same techniques apphed in Theorem 12, it is easy to see that the ramification jumps

of M/K are exactly ", my), ...t my). O

Remark 14. If{, € K, we can prove the same results using another approach,
namely using Kummer theory (see [2, p. 89]). This method is more explicit as, in this
way, we can construct an extension with fixed ramification jumps giving explicit
generators.

In fact, by Kummer theory, we know that every p-extension is Galois and of the
form L = K(¥/a), where a can be chosen as a p-power free representative of a class in
K*/K*P. With this choice of the generator, the K-valuation of a gives the ramifi-
cation jump of the extension L/K. More precisely, the following proposition holds:

Proposition 15. Let L = K(¥/a) with a € K*, a p-power free; call t the
ramification jump of L/K. Then,

o if0<vg(a)<p, thent = ppiKl;
o if vg(a)=0 and vgla—1)=1 with 1<I< peKl and (,p) =1, then
pex . p-=
t= — 1
p—1
o if vg(a) =0 and vg(a —1) = %, then t = —1 (and the extension is un-
ramified).

Proof. If 0<wg(a)<p and z is a p-th root of a, then, for every % such that
(h,p) =1, K(z) = K(z"). We can restrict to the case vg(a) = 1.
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In this case, we can choose 77, = z as uniformizing parameter for O; if, moreover,
g is the generator of Gal(L/K) defined by n;, — {,n,, we have vy (g(nz) —nz) =

e e
vy, — ) = vy — 1) + o) = % +1, hence ¢ = pp -

If anﬁf\Ué{“, from the proof of [3, Lemma 6, p. 15], vy (Dr/kx) =

as wanted.

(pp eKl -1+ 1> (p —1). On the other hand, from the ramification-diseriminant
formula used in Section 3, v7,(Dy, k) = (p — 1)(t + 1). Comparing this with the pre-

peK peg

vious expression, we have ¢ = 1~ l. Finally, if @ € Uy ', using Hensel’s Lemma

[2, p. 84], it is easy to see that the extension L /K is unramified, hence the ramification
jumpist=—1. O

With this relation between the upper ramification jump and the valuation of the
generator, one can easily give generators for the subextensions L; C Cx(p) con-
structed in Lemma 10. Hence, the following proposition holds:

pex

p—1
K (\"/ My, Y=1,... ,fK) is an elementary Abelian extension of degree p's over K
with just one ramification jump equal to t.

Proposition 16. Take t€l and call | = —t; the extemsion L;=

Ift = %, the extension Ly = K(Y/T) is a totally ramified extension of degree p
with ramification jump equal to pp iKl.

Ift = —1, the extension L_1 = K({/®.) is the only unramified extension of K of
degree p and has ramification jump equal to — 1.
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