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0 - Introduction

The central theme of this course is the introduction and study of Asymptotic-
Preserving schemes for the numerical simulation of singularly perturbed problems,
arising in the description of systems composed of N charged particles, evolving in an
electro-magnetic field. The schemes presented here can be applied in various (other)
physical contexts, as for example for neutral gases, quantum mechanical systems or
other multiscale problems, however we shall focus in the present course on plasma
physies.

The word “plasma” has been introduced for the first time by the Czech medical
scientist Johannes Parkinje (1787-1869), to describe the blood, when cleared by its
various corpuscles. It comes from the grec word 7 A o o o, which signifies “modul-
able substance”. In 1927 the physicist I. Langmuir used this term firstly to describe
ionized gases. A plasma gas is, at first glance, a gas of charged particles (ions,
electrons). 99% of the universe is constituted of plasmas, as for example the stars, the
solar wind, the intergalactic gas, the ionosphere, the lightnings, the aurora borealis,
the tails of comets, etc. One may say that the earth is completely surrounded by a
plasma gas, which is trapped within its magnetic field. In contrast to this, in our close
environment plasmas are rather rare (1%) and occur (very often under artificial
form) for example in plasma screens, fluorescent lamps, electric discharges, particle
accelerators, nuclear fusion, etc. The rest of our nearby environment occurs under
solid, liquid or gaseous form. But, even if the plasmas are fairly rare in our close
environment, we are, without knowing it, in permanent contact with them. Indeed,
all the electromagnetic fields around us come from some object constituted of
plasmas, as for example the stars or the fluorescent lamps, and even for commu-
nication on earth and with the space (satellites), plasmas (and their interaction with
the magnetic fields) are of crucial importance. Thus the study of this fourth state of
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Fig. 0.1. Natural plasmas: sun, lightening, aurora borealis.

matter, which is the site of quiet a large variety of physical phenomena, is interesting
not only for its own, but also for lots of important applications, like semiconductor
technologies, plasma lasers, controlled nuclear fusion, ion propulsion rockets, gas
discharges, etc.

The fact that the plasma is constituted of charged particles changes completely
its physical behaviour as compared to the dynamics of neutral gases.

Firstly, in aneutral gas binary collisions between the particles determine entirely
the global behaviour of the gas, leading to a thermodynamical equilibrium via dif-
fusion and convective transport. These collisions are of short range, called also “hard
sphere collisions”. In contrast to this, in a completely ionized plasma, the collisions
are of electromagnetic type, hence of long range (Coulombian force decreases as
1/7%). These are collectives interactions, fundamentally different from hard sphere
collisions. One particle is interacting with its close neighbour but also with all other
particles by means of the (mean) electromagnetic fields, created by them. If the
plasma is partially ionized, then also short range collisions may occur between the
charged particles and the neutrals.

Other physical phenomena, such as the electromagnetic screening, instabilities,
turbulence, waves, chaos etc contribute to the fact that the plasma constitutes a
remarkable domain of study. Indeed, a sufficiently high energy is needed in order to
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create a plasma (from neutral atoms) or to maintain it. This energy can be furnished
by heating, radiation (absorption of energetic photons) or ionization by impact with
energetic electrons. Without this energy, the plasma will recombine and become a
neutral gas. Hence, being so energetic, plasmas are far from a thermodynamical
equilibrium and are the site of high instabilities and turbulence. This turbulence
concerns, apart from the density and velocity fluctuations, also the electromagnetic
fluctuations.

Moreover, while in neutral gases only one type of wave occurs, the acoustic wave,
in plasmas several types of waves develop, thanks to the collective behaviour of the
plasma. These waves can be divided into two categories: the transverse electro-
magnetic waves, as for example the Alfén waves, and the longitudinal electrostatic
waves, as the Langmuir or ion acoustic waves. All these phenomena lead to very
intricate plasma dynamics and it is not surprising that much of the research is de-
voted to the description and understanding of wave propagation in plasmas.

Finally, another complexity of plasmas consists in the fact that they are highly
anisotropic, the particle dynamics as well as the propagation of the fluctuations are
very different if considered in the parallel respectively perpendicular direction to the
magnetic field lines.

To briefly summarize this discussion, plasmas are much more than a gas con-
stituted of charged particles. Collective effects play an important role and the un-
derlying physies is very different from that of neutral gases. The behaviour of a
plasma is very complex, the main reason being the nonlinear and self-consistent
nature of the coupled system charged-particles « fields.

Let us now come to the particular field of magnetically confined fusion plasmas,
which are studied today in order to try to find solutions for longer-term, clean
energy production. The concept of nuclear transformations, like fusion and also
fission, is to create high binding energy nuclei, from lower ones, such that the
energy difference is released. The thermonuclear fusion is a process which joints
together two (or several) light atomic nuclei to build a heavier nucleus, the re-
arrangement resulting in a reduction of the total mass, which is transformed in
energy via £ = mc?. In contrast to this, the nuclear fission is a process which splits
a heavy nucleus in lighter ones, releasing again energy according to the mass-
energy equivalence. Fission reactors are the common type of today’s nuclear re-
actors. Fusion reactors, which try to mimic the physical phenomenon occurring in
the centre of the sun and other stars, are in intensive study today, with the hope to
develop a reliable, illimitable, clean power production system. The ambition is to
construct a reactor which does not produce greenhouse gases, whose waste pro-
ducts are non-radioactive (ideally) and which comprises/possesses no explosion
risk (no runaway reactions).
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Fig. 0.2. Fusion (left) and fission (right) reactions
(http://www-fusion-magnetique.cea.fr).

The following Deuterium (D = H?)-Tritium (T = H?) reaction
D+ T — He* +n+17,6 MeV

is retained at the moment for the fusion reaction, as it has the highest probability of
fusion if compared to other fusion reactions, and as it reacts at lower temperatures
also. As a result of this reaction, an a-particle is produced and a neutron released.
The energy of the a-particle is used to sustain the necessary reaction temperature of
the plasma, while the energy of the neutron is captured to produce energy.

The main difficulties in this fusion process are the following:

o the energy has to be high enough, in order to overcome the Coulomb repulsive
force between the atomic particles, such that the attractive nuclear force can
bind them into the new nucleus (~ hundred million kelvin, ~ 15 keV)

e the confinement has to be strong enough, in order to avoid the dispersion of the
energetic plasma and thus to permit the fusion process to occur

e more energy has to be produced than it is furnished to the system and more-
over the process has to be self-sustained.

In summary, the essential physical challenges with fusion consist in finding the
manner to sustain through time a far from equilibrium, unstable plasma gas.
Confinement is determined by the balance between the magnetic and pressure
forces, however the occurrence of instabilities can generate a plasma transport
across the magnetic field lines, leading to a loss of energy as well as high surface
temperatures. Thus, one has firstly to understand and control the high turbulent
transport processes, in order to avoid the deconfinement of the plasma gas, and
secondly to control the plasma edge (understand the complex plasma-wall interac-
tions), in order to prevent the introduction of impurities in the core of the plasma and
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Fig. 0.3. Fusion reactors, tokamaks (http://www-fusion-magnetique.cea.fr/).

besides to avoid the deterioration of the wall materials. The most promising fusion
reactor in study at present is the ITER tokamak (International Tokamak
Experimental Reactor) in Cadarache, France.

The just deseribed thermonuclear fusion process occurs naturally in stars, in
particular in our own Sun. The Sun is a “dwarf” star of average size, temperature and
brightness, held together by its own gravity, in other words it is a self-gravitating
sphere of plasma. The interior of the Sun s divided into three regions, defined by the
different processes that occur there (see Fig. 0.4). First, there is the core, where the
nuclear fusion reactions take place, turning hydrogen nuclei into helium nuclei.
These reactions release the energy that escapes from the sun surface as visible light.
On its way towards the Sun’s surface, this energy is firstly transported by radiation
(photons) through the radiative zone, a phenomenon which takes about a million
years, due to the high density of the Sun’s interior. As the temperature gets lower,
the radiation becomes less significant and another process is set into motion in order
to transport the energy, the convection. It is thought that most of the magnetic
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activity of the sun is driven by turbulent flows, rotation and shear in this convective
zone and the origin of the magnetic field is believed to be in the tachocline, which is
the thin interface layer between the radiative zone and the convective one. Anyhow,
the dynamics of the Sun’s interior is up to now still poorly understood. Given the wide
range of temporal and spacial scales coexisting in the physical processes in the Sun, it
is a great challenge to model self-consistently the solar interior and the dynamo
effects. All these phenomena require state-of-the art numerical schemes supported
by rigorous mathematical results.

Fig. 0.4. Schematic representation of the Sun’s interior (http://www.futuretimeline.net).

0.1 - Different mathematical descriptions

Different approaches can be used in order to describe the evolution of charged
particles in an electromagnetic field, as for example:

e the particle description, based on the motion of individual particles in an
electromagnetic field

o the kinetic description, based on a collective plasma description via the particle
distribution function f ;(¢, x, v)

e the fluid description, describing the plasma in terms of averaged macroscopic
quantities, depending only on ¢ and .

These successive models differ in complexity and precision. They are in-
creasingly simplified, in the sense that they can be obtained from one another by
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decreasing the number of degrees of freedom, hereby becoming less accurate.
Depending on the physical phenomenon one wants to investigate, one has to
choose within all these models the one which is the most accurate with respect to
the particular physical situation, paying attention at the same time to the nu-
merical costs.

The first model, the particle dynamic model, is the most intuitive one and the
physiecally most accurate one, but also the most inadequate/heavy from a numerical
point of view. The evolution of each particle is described by means of Newton’s law,
F =ma, coupled to Maxwell’s equations for the electromagnetic fields (&, B). A
complete dynamical description of the whole system is however out of reach, as the
system contains 6N degrees of freedom, where N is the number of particles, which is
of the order of Avogadro’s number, i.e. 1023, No computer today can deal with such
high dimensionalities, such that this approach remains purely theoretical.

But one is usually not interested in all the microscopic information, such that it
can be averaged out and we can consider a second approach, based on a statistical
picture of the gas of electrons/ions. The plasma dynamics is described via a dis-
tribution function f'(¢, x, v), with f (¢, ¢, v) dv dx representing the number of particles
occurring at the moment ¢ in the phase-space volume dvdx around (v,a). The
equation governing the particle distribution evolution is a kinetic equation, like the
Vlasov, Boltzmann or Fokker-Planck equation, coupled self-consistently with
Maxwell’s equations for the electro-magnetic fields (£, B). Although the precise lo-
cations of the individual particles are lost in the kinetic theory, detailed knowledge of
the particle motion is still incorporated. However, even if the kinetic models are
simpler than the particle models, they are used at the moment mainly at a theoretic
level, as the numerical costs are still rather high, the system being 6 dimensional.
They are generally the starting point for the derivation of more tractable macro-
scopic models, via asymptotic limits or moments methods.

A rather new and powerful approach consists in simplifying further the kinetic
model, in order to obtain a 5-dimensional gyro-kinetic model. Indeed, the Vlasov
equation is still too difficult to solve numerically, as it includes the very rapid gyro-
motion of the particles around the magnetic field lines (see Fig. 0.5). One idea is now
to average over the rapid gyro-phase motion, in order to get a guiding centre motion,
which signifies nothing else than that the particles follow the field lines, at lowest
order in the gyro-radius. The turbulent fluctuations, which one wants to describe
accurately, are at much lower frequencies than the cyclotron motion, such that this
approach provides today the deepest insight in plasma dynamics. However, high
performance computing techniques are still necessary to solve the 5D gyro-kinetic
equations, the employed numerical schemes being either the Lagrangian, the semi-
Lagrangian or the Eulerian methods.
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Fig. 0.5. Gyration of the electrons/ions about a magnetic field line
(http://www.scidacreview.org/0601/html/fusion.html).

The third approach is the macroscopic or fluid approach. The fluid models
constitute a further simplification of the above kinetic models, and are hence
numerically more attractive, but poor from a physical point of view. They deal
with averaged quantities, like the particle density n(f,x), the current density
j(t,x), the velocity v(t,«), the temperature 7'(t,x), which only depend on the
position and the time variable. Even if physically not accurate, fluid models are
still of wide use at the moment in plasma simulations, as they permit more easily
to make use of the physical intuition one has and are numerically less de-
manding. Moreover, they permit to use the knowledge and the numerical codes
from the fluid domain, adapting them however to the new “gas”, as the plasma
lacks the high collisionality of the fluids as well as their isotropy. However, one
has to keep in mind that the extraordinary varied plasma behaviour (as for
example plasma waves and oscillations) can only be fully captured in a kinetic
framework.

0.2 - Multiscale problems

Plasma dynamics is characterized by a multiscale nature. Magnetism creates
anisotropy, which means that the properties of the plasma are rather different when
considered in the parallel or in the transverse direction with respect to the magnetic
field lines. This anisotropy contributes, jointly with other phenomena, to the multi-
scale dynamics of the plasma, in particular a very large variety of time and space
scales occurs (see Fig. 0.6). As an example, concerning the temporary scales, one can
pass from the fast electron plasma frequency w,, to the fast Larmor gyromotion w,,
further to the collisional frequencies v;, and finally to the confinement time 7z .
Concerning the spatial scales, it ranges from the small Debye length ip, to the
electron Larmor radius p,, further to the mean free path of the particles and finally to
the spacial extent of the tokamak L.
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Fig. 0.6. Different time and space scales occurring in a fusion plasma.

Many other problems in nature exhibit multiscale behaviours, which can be rather
different in character. One can divide these problems in two categories. On one hand
we have problems which exhibit local singularities, like for example boundary or in-
ternal layers, shocks, dislocations and so on. On the other hand we have problems,
where microscopic and macroscopic scales coexist in the whole domain, as for example
porous media flows, turbulent flows, highly oscillating problems etc. A general, uni-
fied treatment of all these problems is impossible, such that a lot of techniques have
been developed in literature, each one being adapted to a particular situation.

When several scales occur in a physical problem, it is no more adequate to use an
approach which describes the phenomenon on a single scale. Describing the problem
on a microscopic level is physically very accurate, however from a computational
point of view unfeasible. Using a macroscopic description, which means a model
which uses explicit equations for the macroscopic scale, eliminating the other scales,
is also inappropriate. Indeed, this procedure uses often empirical closures for the
elimination/description of the microscopic scales, that are not justified nor well un-
derstood, as for example the viscosity tensor terms in turbulent flows. In all these
cases, one has to go to multi-scale modelling, for example using different models,
which describe the phenomena on the different scales, and taking care to achieve a
balance between accuracy of the numerical results and efficiency of the numerical
method. Briefly, the main goal of multiscale techniques is to design microscopic-
macroscopic numerical schemes, which are more efficient than solving the full mi-
croscopic model and at the same time furnish the desired accuracy.

In more details, suppose we are interested in the evolution of a macroscopic
quantity, say U, but we do not have an explicit macroscopic model for the description
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of U, which is valid everywhere. This can be either because we lack the constitutive
relation or because the macroscopic model is invalid due to the presence of localized
singularities for example. However, we dispose of a microscopic model, describing
the dynamics of a microscopic quantity u, which is related to U by a relation
F(u) = U. Our goal is to accurately approximate the variable U, using a macroscopic
grid, in order to be efficient from a computational point of view. A standard method
would require to use a fine grid, in order to resolve the small scales of the problem,
obtaining thus %, and computing then the correct macroscopic solution. However,
this is usually a computationally phenomenal and unfeasible work. Moreover, for
most engineering purposes, it is even unnecessary to know all the details of u.
Engineers are often contented with accurate time-averaged properties of the flow,
as the averaged velocities, pressures etc.

Multi-scale methods were thus introduced in literature, based on different ideas,
however with the same aim, which is to capture the macroscopic evolution, using the
necessary/required microscopic information, without however having to resolve in
detail the microscopic behaviour. Some analytical techniques to cope with multiscale
problems are for example the “matched asymptotics method”, used for problems
which undergo rapid variations in localized regions, or the “homogenization meth-
ods”, employed in the case of problems with oscillating coefficients and based on
asymptotic expansions. Among the numerical approaches can be counted the mul-
tigrid methods and the adaptive mesh refinements, which are efficient techniques
for the resolution of the small-scale behaviour of the solution. Furthermore, domain
decomposition methods aim to couple different mathematical descriptions, corre-
sponding to different regions of the domain, where the physics is distinct. And fi-
nally, multiscale finite element methods employ basis functions, which incorporate
the small-scale information, permitting thus the use of coarse grids. For a detailed
description of all these methods, we refer to the book of C. le Bris and M. H. Holmes
[40, 34] as well as all the references therein.

0.3 - Asymptotic-Preserving methods

The solutions of singularly perturbed problems reveal also a multiscale character,
and their numerical resolution presents some major difficulties. Singular pertur-
bation problems are characterized by the occurrence of one or several small para-
meters, denoted in this section by 0 <¢ < 1, and the mathematical as well as nu-
merical difficulties arise due to a change in type of the equation as ¢ — 0. The so-
lutions of the singularly perturbed problem show a non-uniform behaviour as the
parameter tends to zero, for instance the character of the limiting solution is dif-
ferent in nature from that of the solutions for finite values of ¢ > 0. Examples of such
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singularly perturbed problems are viscous flows with large Reynolds numbers,
convective heat transport with large Peclet numbers, low Mach number flows, dif-
fusive relaxation in kinetic models and so on.

The Asymptotic-Preserving schemes are efficient procedures for solving singu-
larly perturbed problems P¢. The solution of P* is supposed to converge, as the
perturbation parameter tends to zero, towards the solution of a limit problem P°,
which is a well-posed problem. However, the fact that the singular limit P* —s P°

leads to a change in the type of the equation, explains somehow the difficultige;soen-
countered when trying to solve P¢ for too small ¢-values. The use of standard nu-
merical schemes for the resolution of singularly perturbed problems requires very
restrictive time and space discretization step conditions, of the type 4t, Ax ~ O(e) or
At, Ax ~ O(2), due to stability reasons. This becomes rapidly too costly from a nu-
merical point of view and consequently a numerical asymptotic study and even nu-
merical simulations for small e-values, are out of reach. Moreover, standard implicit
schemes (even if computationally heavy) may be uniformly stable for 0 <¢< 1, but yet
provide a wrong solution in the limit ¢ — 0, which means the scheme is not consistent
with the limit problem P°. Thus the design of robust numerical methods for singu-
larly perturbed problems, whose accuracy does not depend on the parameter ¢
(hence on the local scales of the singularity), allowing even to capture the limit ¢ — 0,
becomes an important task.

In order to tackle such problems, several methods were introduced in literature.
One approach can be to solve directly the limit problem P° instead of P?, if ¢ is small.
However, in some situations, the parameter ¢ can vary within the simulation domain,
making thus this approach unusable. Indeed, ¢ is the ratio of two characteristic
lengths, which can vary in space as well as in time. In this case, hybrid techniques can
be employed, solving P? there where ¢ ~ O(1) and P° where ¢is rather small. Several
difficulties can be encountered with this approach, for example how to locate the
interface between P* and P’ and what type of interface conditions to use. Thus, this
approach can be difficult to implement in practice.

Asymptotic-Preserving schemes were introduced the first time by S. Jin [36] with
the aim to cope with such singularly perturbed problems, in particular in the fra-
mework of kinetic models in a diffusive regime. The construction of these AP-
schemes necessitates the existence of a well-posed limit problem P°, which has to be
identified beforehand. The main feature of these schemes is that they permit a
precise, e-independent, resolution of the problem P* as well as of its limit problem P°,
with no huge computational effort. The main idea for the construction of AP-schemes
is based on asymptotic arguments and consists in a mathematical reformulation of
the singularly perturbed problem P¢ into an equivalent problem (AP)°, which is a
regular perturbation of the limit problem P°. The equivalent reformulation of P* into
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(AP)*is a sort of “reorganization” of the problem into a form which is better suited for
the numerical discretization, in particular which is a regular perturbation of P°. The
same numerical scheme is then used for the discretization of P¢ as well as for P°,
which means that they allow for an automatic numerical transition from P¢ to P°.
Remark that the AP-reformulation is by no means unique, and several AP-schemes
can be conceived/designed for the same problem. It is necessary to underline here
that the asymptotic preserving techniques are not used to derive a simplified
“macroscopic” model, which is then solved numerically. Rather the objective is to
construct a numerical scheme, using asymptotic techniques, whose solution does not
deteriorate as the singular limit is approached.

To summarise, the essential properties of AP-schemes are (see diagram in
Fig. 0.7):

o for fixed ¢ > 0, the AP-scheme, denoted in this diagram P*", is a consistent
discretization of the continuous problem P, where h = (4t, Ax)

o the stability condition is independent of ¢

o for fixed discretization parameters h = (4t, Ax), the AP-scheme P*” provides
for ¢ — 0 a consistent discretization of the limit problem P°.

Thus, the asymptotic-preserving approach consists somehow in trying to mimic
on the discrete level the asymptotic behaviour of the singularly perturbed problem
solutions. It is thus very important to have a full understanding of the solutions
behaviour. Remark that the AP-techniques have to be distinguished from the mul-
tiscale techniques, as the former solve the micro-scales when the (spacial or/and
temporal) mesh-sizes resolve these scales and automatically switch to the macro-
scopic behaviour when the mesh-sizes do not resolve the micro-scales. In other
words, the AP-schemes catch the numerical transition from microscopic to macro-
scopic scales, in some difficult situations as singularly perturbed problems, however
their primary focus is not to reduce the computational costs, as the multiscale
methods do.

h—0

Ps.h Ps
™ ™
4 4

PO.h h—0 1')0

Fig. 0.7. Properties of AP-schemes.
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0.4 - Outline

The present work is a review of several Asymptotic-Preserving schemes, con-
structed in the kinetic and fluid framework. Inevitably, the choice of the model
problems is related with the author’s knowledge and with the concept of providing
the reader with the most important features of AP-schemes. These schemes can be
designed for several other singularly perturbed problems, that admit asymptotic
behaviours/regimes.

An overview of the subject of this manuscript is:

Section 1 deals with the Boltzmann equation in the drift-diffusion limit
Section 2 discusses the Vlasov-Poisson system in the quasi-neutral limit
Section 3 treats the subject of the Vlasov equation in the high-field limit and
considering variable Larmor radii

Section 4 introduces an Asymptotic-Preserving scheme for a highly elliptic
potential equation
Section 5 deals finally with a highly anisotropic, nonlinear, degenerate para-

bolic temperature equation.

PART I
Kinetic models

This part addresses the plasma modelling and simulation based on a kinetic ap-
proach. The phase-space particle distribution function £, (¢, x, v) (where « stands ei-
ther for the electrons « =e or for the ions « =1) evolves accordingly to the
Boltzmann equation

(L1) aufy+v-Vaf +%‘<E +vxB)-Vofy = QL)

where e, = +e resp. m, are the particle elementary charge resp. mass and E(f, x)
resp. B(t,x) are the electric respectively magnetic fields, determined self-con-
sistently from Maxwell’s equations

1
E ==
\Y% 80p
1 .
(1.2) ~ 2 OE+V X B =]

GB+VXxE=0
V-B=0,
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where ¢, 1, and ¢ := (g #0)71/ 2 are the free-space permittivity, permeability resp.
speed of light and the charge and current densities are computed via

ptx) =Y e, Jfa(t,x, v dv = en; —ne), jt,@) =) e, Jvfa(t,x, v)dv.
R R

The right hand side of (I.1) describes the collisions between the particles and its form
is given by the particular physical phenomena one wants to investigate. Some ex-
amples of collision operators are the Boltzmann, the Fokker-Planck, the BGK col-
lision operators and so on. In the electrostatic case (B = 0), Maxwell’s equations (1.2)
have to be replaced by Poisson’s equation

(I1.3) —gdd =p,

where @ is the electrostatic potential, related to the electric field £ by £ = -V @,
where the sign comes from the convention that the electric field points in the di-
rection of the ion motion.

As mentioned in the introduction, fusion plasmas exhibit a large amount of
temporal and spacial scales, which make the numerical treatment of the plasma
dynamics very challenging. Some of the main parameters characterizing the plasma
are the Debye length, the particle Larmor radius, the mean free path, the plasma
frequency, the cyclotron frequency, the relaxation time and so on. Depending on the
physical phenomena one wants to study, different of these parameters can be con-
sidered as small in comparison to others, and various asymptotic regimes can be
considered. Some of these different scalings are briefly sketched here:

e Hydrodynamic limit [28, 29, 25, 26, 14]:

8tf+v~me:%Q(f),

where ¢ < 1 stands here for the particle mean free path or Knudsen number.
This kinetic equation is a diffusive (or collisional) equation and in the limit
& — 0, one gets the compressible Euler equations.

¢ Drift-Diffusion scaling [38, 39, 42, 16, 37]:
1 1

where again ¢ < 1 stands for the Knudsen number. In the diffusive limit ¢ — 0,
one obtains the Drift-Diffusion model.

e Vlasov-Poisson system in the quasi-neutral limit [4, 19]:
atf“l"v'vxf‘f'vx@'vvf:o
—J2AD =1—n,,
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with 4 < 1 the rescaled Debye length. The 4 — 0 limit of this system, is still
poorly understood from a mathematical point of view.

e High magnetic field limit [8, 9, 10, 31, 32]:
1 1 B
3tf+gv(p) : fo—;(E-&-v(p) X E) -Vof =0,

where this time ¢ < 1 corresponds to the cyclotronic period. This particular
non-collisional kinetic equation is no more diffusive, and the asymptotic be-
haviour of the solutions f; is rather different from the above ones (highly os-
cillating).

In this part of the review we will be concerned with some of these asymptotic
regimes, in particular we are interested in constructing Asymptotic-Preserving
schemes for some of these singular limits.

1 - Boltzmann equation in the drift-diffusion limit

Section based on the articles of:
N. Crouseilles, M. Lemou ?
M. Lemou, L. Mieussens 2

In this section we shall consider the linear Boltzmann equation in a diffusive
scaling ((t, %) — (t/2,x/e)), i.e.

(11) (P 8tf+%(v-wf+E-Vyf):812Q(f), (@,v) e R®x R teR".

This equation describes the state of a gas constituted of ions, evolving in a given
electric field £. The distribution function f(¢,x,v) stands for the density of the
particles located at the position 2 € R® with velocity v € R? at time ¢ > 0. The low-
density collision operator @ is defined as follows

(12) Q) = Ja(v, M@ — MW)gw)] o |

where g belongs to a suitable functional space and M is the Maxwellian distribution

L An asymptotic preserving scheme based on a micro-macro decomposition for colli-
stonal Vlasov equations: diffusion and high-field scaling limits, Kinet. Relat. Models 4
(2011), 441-477.

2 A new asymptotic preserving scheme based on micro-macro formulation for linear
kinetic equations in the diffusion limit, STAM J. Sci. Comput. 31 (2008), no. 1, 334-368.
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function, given by

1

2
e

The cross section ¢ satisfies the following positivity, boundedness and symmetry
(micro-reversibility principle) property

(1.4) 0<o1 < o@,v) =0c(,v) <os.

The small parameter 0 <e¢ < 1 measures the distance of the system to the thermo-
dynamical equilibrium defined by M, and is related to the particle mean free path. In
other words, this Boltzmann equation models the dynamics of charged particles,
evolving in a given electric field £ and a highly collisional framework. It is obtained
from a many-body problem under the mean-field approximation. The special linear
form of the collision operator is widely used, for example in semiconductor or plasma
applications, the model considered here being associated with a linear, low density
approximation of the electron-phonon collisions. However, the Asymptotic-Preserving
procedure presented in this section can be adapted also for other collision operators, as
for example the Landau, Fokker-Planck or Boltzmann collision operators.

In the limit ¢ — 0, the dominant operator in (1.1) relaxes the system towards an
equilibrium state, described by a function belonging to the kernel of @, the Maxwellian
(1.3). The numerical resolution of the Boltzmann equation (1.1) is however rather
arduous from a computational point of view, firstly due to its high dimensionality and
secondary due to the supplementary difficulty coming from the smallness of ¢. Indeed,
(1.1) is a singularly perturbed problem and letting formally ¢ go to zeroin (1.1) leads to
an ill-posed problem, i.e. Q(f) = 0. A direct resolution of the Boltzmann equation, via
standard schemes, will hence have to cope with this ill-posedness of the problem if ¢
becomes too small. Refined temporal and spatial grids (dependent on the e-parameter)
are consequently required to allow for an accurate resolution, a procedure which
becomes rapidly too costly from a numeriecal point of view.

Hence, in order to study numerically the asymptotic behaviour of (1.1), one has to
try to mimic the asymptotics of the continuous solutions. For this, we will thus firstly
investigate the dominant operator and identify the Limit model, when ¢ — 0.

1.1 - Mathematical framework

Let us keep all over this section the variables (¢,x) as fixed (parameters) and
consider the Hilbert space

H = LAR* M ‘() dv) = {f e LAR?) / J If@FM () dv<oo} ,

R3
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associated with the following scalar product
(Fom = [ 1090 M 0 do.
R3
Then one can show the following properties of the collision operator Q:
Proposition 1.1.1 [49,5]. Under the assumption (1.4), the collision operator
Q, defined by (1.2), satisfies the following properties :

(i) The linear operator @ : H — H is bounded, symmetric and non-positive.
(ii) The kernel of Q is given by

Ker(@Q) := {pM®) / p € R}.

(iii) The orthogonal to the kernel of @ is

Ker(Q)" := {f cH/ Jf(v)dv = 0} .

R3
(iv) —Q is coercive on (Ker(Q))™, i.e.
—(@QN.F) = ClIf I3 Vf € Ker@)*.

) The range I(Q) of Q is closed and coincides with (Ker(Q))l. We have
moreover the one-to-one mapping

Q : (Ker(@)" — (Ker(@)" .

Proposition 1.1.2. Let IT be the mapping defined by

(15)  I:H—Ker(Q, II(f)w) ;:J f@)dv M) = (fYM®), YfeH.

R3
Then, we have

(f=H(),9n=0, YfeH,VgcKer@Q,
which means that IT is an orthogonal projection on Ker(Q).

All these properties permit now to identify the limit problem of the
Boltzmann equation (1.1) when the perturbation parameter ¢ tends to zero,
which means for vanishing particle mean free path. This limit leads necessary to
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a macroscopic description of the particle gas. Indeed, inserting the Hilbert-
Ansatz

f=fhtefi+éfot -

in the Boltzmann equation (1.1) and equating the terms of the same order in ¢,
yields first that fy(¢, x, -) € Ker(Q). This means that there exists a density fune-
tion py(t,x) such that fo = pyM. Moreover, the second equation permits to com-
pute the unique fi(t,, ) € (Ker(@))" via

v Vefo+E-Vofo = QL) = fi=Q 'WM)- (Vupy — 2pyE) .
The third equation finally yields the limit model (L-model)
(1.6) (L) 0wy — Vi [D(NVppy —2p,E)] =0,

with the diffusion-matrix given by D := —(v ® @ '(vM)). This is the so-called
Drift-Diffusion model, describing the evolution of the macroscopic density
function p, in the limit of vanishing mean free path. Remark that the microscale
information is contained in this equation in a homogenized way, via the diffusion
matrix D.

When the parameter ¢ is very small, one prefers to solve the macroscopic Drift-
Diffusion equation (1.6) instead of (1.1) due to the inherent numerical difficulties
detailed in the introduction. However, the DD-model describes well the physics close
to the equilibrium and is thus not suited to describe non equilibrium phenomena. If
the mean-free path of the particles (~ &) varies within the computational domain, one
has to adopt a hybrid strategy in order to get accurate results, solving the Boltzmann
equation in regimes where ¢ ~ O(1) and the Drift-Diffusion equation when ¢ < 1.
Hybrid strategies are however very laborious from a practical point of view, due to
the difficulty to obtain coupling conditions and also to locate the interface between
the two regions. The aim of the present section is to avoid such a hybrid strategy and
to propose a numerical scheme which switches automatically between the Boltzmann
and the Drift-Diffusion equations.

1.2 - Micro-Macro decomposition

We have seen above that the solution of the kinetic model (1.1) tends, in the limit
of vanishing mean free path ¢ — 0, towards the solution of a macroscopic model (1.6).
Trying to capture this asymptotic behaviour numerically is a very challenging pro-
blem. The idea of the construction of such Asymptotic-Preserving schemes is to
reformulate the Boltzmann equation in such a manner that it becomes a regular
perturbation of the limit problem (1.6).
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In more details, the AP-scheme we propose in this section is based on a decom-
position of the unknown f into a macroscopic part belonging to Ker(®)) and a mi-
croscopic part belonging to (Ker(Q))". This decomposition is inspired from the fact
that in the limit ¢ — 0, the solutions f; tend towards a function belonging to the kernel
of the collision operator, hence inspired from the Hilbert-expansion done above and
the obtained Limit-model. A coupled system of equations is then obtained for the
micro- respectively macro-components, which degenerates in the limit ¢ — 0 to-
wards the Drift-Diffusion limit model.

Let us thus decompose 1 as follows

FepMsG. pM = 1() € Ker@. G i=2(f ~ I1(f) € (Ker(@)".

This unique decomposition into an equilibrium and a non-equilibrium part is illu-
strated in Figure 1.1. Inserting this Ansatz in the kinetic equation (1.1), yields

Op)M + €0,G + % (Vap-vM +ev - V.G —2pE - vM + ¢E - V,G) = 1Q(G) )

&

Applying now the projection /7 on this equation, and performing the subtraction
I — IT permits to get a micro-macro system for (pM, G) (called in the sequel MM-
model)

Op+ V- (vG) =0
DG+ — I VaG) + B - VG2 [QG) — (Vap — 2pH) - vM].

&

(1.7) (MM){

This formulation is by construction equivalent to the initial equation (1.1). Moreover,
in the limit ¢ — 0 it permits to get immediately the macroscopic diffusion model,

0.5 T T T T T T T
04 gf
03 i oA M A =
0.2 NS N\ .
0.1 F -
04 s Ane R
-0.1 1
-0.2 -
03 : =
-04 1 1 1 1 1 1
8 6 4 -2 0 2 4 6 8

velocity

f.g, M-fct.

Fig. 1.1. Micro-macro decomposition of f.
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allowing thus for a uniform transition between the kinetic and the macroscopic
models. Indeed, one obtains from the second equation, as ¢ — 0, that

Q(G) = (Vup — 2pE) - vM |

which admits a unique solution G € (Ker(Q))", as the right hand side belongs to
J(Q). This solution has the form

G=—(V.p—2pE)-0, where Q) =—vM, 0 ¢ ((Ker(@)")’.

Thus, defining the diffusion coefficient-matrix D := (v ® 0), and inserting this G in
the first equation of (1.7), yields the ¢ — 0 limit model

(1.8) L) 0p— V- [D(Vap —2pE)] =0,

which is exactly the Drift-Diffusion model, we obtained in Section 1.1.

To summarize, the micro-macro decomposition of the unknown f, permits to
reformulate the singularly perturbed Boltzmann equation (1.1) into an equivalent
system (1.7), which is a regular perturbation of the limit problem (1.8). Thus solving
numerically (1.7) instead of (1.1) will permit to shift automatically to the limit pro-
blem, if the perturbation parameter ¢ is too small. No temporal or spatial e-grid-
restrictions are any more required to get accurate results, as it would be the case for
standard schemes.

This just introduced micro-macro procedure is rather general, and can be simply
adapted for a large class of collision operators.

1.3 - AP-scheme

To construct an efficient numerical scheme for the resolution of the Boltzmann
equation (1.1), we will discretize the equivalent reformulation (1.7) and search for the
unknowns p(t, ) respectively G(Z, x, v). One has to pay attention not to loose, during
this discretization-procedure, the AP-property we have established in the con-
tinuous case. For simplicity reasons, we will restrict in this section the presentation
of the AP-scheme to the 1D case, the generalisation to multi-D cases being
straightforward, but computationally more resource demanding.

1.3.1 - Semi-discretization in time

For simplicity, let us introduce a homogeneous discretization of the time-
interval [0, T1]

O=ty< - <tp<---<tg=T; t,:=kat, k=0,---,K; Ke N,
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with the time-step 4t:=T/K. We will denote by p*(x) resp. G¥(x,v) the
approximations of p(f;,x) resp. G(t;,«,v). Then a semi-discretization of (1.7)

writes
k+1 k
rF__-r (kL —
L Ve G =0,
k+1 _ Yk 1
(1.9) : % FU - 0 V.09 + B 9,65 = QG
1 2
—E(Vmpk) oM + EpkEk oM ,

with p° and G° given by the initial conditions. Remark that only the flux in the
first equation and the collision term in the second one are taken implicitly. The
time-discretization is a hard part in the construction of AP-schemes, in parti-
cular the determination of the terms which have to be taken implicitly is ar-
duous and not unique. The important point is that one has to try to implicit only
those necessary terms, in order to guarantee the AP-property of the scheme, in
particular to recover the correct diffusion limit for ¢ — 0. However, the level of
implicitness has to be kept low, in order to minimise the computational costs.

Let us now investigate, at least formally, if the just proposed discretization (1.9)
tends for ¢ — 0 towards a time semi-discretization of the limit model (1.8). Letting
thus ¢ tend to zero in the last equation of (1.9) leads indeed to

QGHY) = (Vopl) - oM = 2p"E* oM = GM' = (V" — 2"E") - Q' (vM),
which, inserted in the first equation, yields indeed a discretization of the limit pro-
blem

F v, DV~ 20EN] =0,

with the diffusion matrix again given by D := —(v @ Q' (vM)).

1.3.2 - Fully discrete system

Let us now introduce a homogeneous discretization of the phase-space interval
[0, L] X [Vpin, Vmasl- Remark that we will consider the macroscopic equation of (1.9)
at x; := idx for 1 =0,---, N, where N, € N and 4x := L/N,, is the space-step. In
contrast to this, the microscopic equation of (1.9) will be considered at
w12 = (1 —1/2)dxfori=1,---,N,and at vj := vy, +jdvforj =0,--- N, where
N, € Nand A4v := Wae — Vmin)/ Ny is the velocity-step. We denote in the sequel by
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pi? resp. G’;QI /2.j the approximations of p(ty, ;) resp. Gy, x;_1/2,v;). Moreover we
shall denote by pﬁ{l Jp = (péc + p’f_l)/Z and evaluate the electric field £ at x; /s,
denoting Ei&uz = E(tk, 902',1/2).

Aswe are dealing with transport equations, we will use the upwind scheme for the
transport terms and the centred difference scheme for the rest of the terms. Then a
phase-space discretization of (1.9) writes: Find (p; e+1 Gk 12, ) solution of

k+1 k+1
Pf“ /)i-“+< Gm/z; Gz 1/2,j
7

At Ax >:O7 ?':07"'aNxa

G{LC+11/2 ] Géc—l/z,j (I H)@k Ylk
(1.10) T +U - im1/2 T itz

1 ket 1(pf =k, 2 4 k
= EQJ G2+1/2 ) — . (# viM; + E/)i—l/ZEi—l/Z viM;,

i:]-a"'vNﬁfv j:07'”5ND7

where the fluxes are defined by

1 _
@ 12 = (” G} 125~ 1573/2,]') +; (Glfﬂ/z.j - Glffl/z,j)) .

. 1/, .
‘Pi‘luz,;‘ = (E’7 +1/2(Gi'671/2,j - G§71/2,j71) JrEiil/Z(Gi?fl/Z,jwtl - Gi'c—l/lj)) )

+ Er . +|Ef
2L |v]|aswellasEkj§/2- LT Tile 2' . 1/2|.

In the discrete case, the bracket (-) and the collision operator ; are defined by

and where we used the notations v]-i =

N,-1

(6)) = M Z 0;, Qig) =M Z a(v;, ) [M(v))g; — M)y -

7=0

Again, let us formally verify that in the limit ¢ — 0, we get a discretization of the
limit problem (1.8). Putting formally in the microscopic equation ¢ = 0 yields

e
P =rk .
QJ(Gk 12.) = ( ’ sz 1>vaj _2P§—1/2E§—1/27)J'Mj7 Vj=0,--+,Ny
which gives
k+1 /)/l'c _/){? 1 K k 1
Gilijpy = ( L AwF _2pi1/2Ei1/2>Q M), ¥j=0,---,N,.

Inserting this in the macroscopic equation yields a discretization of (1.8).
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1.3.3 - Boundary conditions

To solve numerically the Boltzmann equation (1.1), we need a bounded domain
and hence realistic boundary conditions. Usually inflow boundary conditions are
prescribed for the distribution function f, i.e.

(111) f(tvoav) :fL(v)a v > 07 f(taLav) :fR(v)a v<0a

and f(¢,x,v) = 0 for all v € (Vyin, Vmas)- The problem now is that it is rather hard
(or even impossible) to translate the boundary conditions for f in boundary
conditions for the micro-macro unknowns (p(t,x), G(t,x,v)), which are indis-
pensable for our computations via the developed AP-scheme (1.10). This problem
was treated in [16], by introducing artificial boundary conditions, which lead to
some unsatisfactory boundary layers, but are more simple to present in the
current framework. We will thus expose here this strategy, however, a more
realistic approach is proposed in [41], based on a more appropriate micro-macro
decomposition, which takes from the beginning better into account for the
boundary conditions.

The inflow boundary conditions (1.11) can be rewritten for the micro-macro un-
knowns as follows

L12) p(E, o) M; +%(G(t7%1/2,vj) + Gt x_12,v)) = fr(v), ifv;>0
1.12
&

P, 2N, )M; + 5 (G, e, 11/2,v) + Gt an,—1)2,v)) = frl)), if v;<0.

For the other velocities, artificial Neumann boundary conditions are imposed, i.e.

G, x_1/2,v) = G, 12,0, if v;<0;
(1.13) )
G(taxNx-‘rl/Zavj) = G(tv'%.Nx—l/27vj)a if 'U]' > Oa

as well as G(t,x,v) = 0 for v € (Vyin, Vmas)- This altogether shall permit to get suf-
ficient information from the boundary, in order to solve the system (1.10). Indeed,
these formulae permit to compute the remaining “ghost”-points, via

2
k+1 k+1 k+1 . ]
G ey = ;,(fL’j —py M) -Gy if v; > 0;
k+1 k+1 . )
Gf1/27j = Glfz.j if v; <0;
(1.14) ,
fot1 k41 k+1 . )
Grpjey = S URj—PN M) =GNy, i 05<0;
k+1 k+1 .
Grozs = ONlap if v; > 0.
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1.4 - Numerical results

For a numerical analysis of the Asymptotic-Preserving scheme introduced so far,
in particular for a detailed stability and consistency study, with a special regard on
the ¢-independent error estimates, we refer to [44]. In the present section, we shall
only compare, for validation, the numerical results obtained via the AP-scheme in the
one-dimensional case (d = 1), with those obtained via :

e a time explicit upwind scheme for the original Boltzmann equation (1.1),
referred to as the “Vlasov-scheme”, and where the discretization step sizes
are chosen so that the standard transport CFL condition is satisfied, i.e.

. Ax Av
At = Cmin (ef,, e8,,6%), f, = c Bo=g

UWLU,.%' max

e a standard explicit discretization of the diffusion equation (1.8), referred to as
the “LIM-scheme”, and where the discretization step sizes are chosen so that
the standard diffusion stability condition is satisfied, i.e.

At = Cmin (Ux/Epqy, A7)

Remark that the time-step size for the Asymptotic-Preserving MM-scheme is
linked to the space-step size as follows [16]:

@M = Cmgin(min [Cep, /max(0;1 — Cf,/¢e),Cef,/ max (0;1 — Cp,/e)])
C min (4(0@)2, 4(C/fv)2) .

IN

This stability condition is a combination between a transport CFL-condition and a
diffusion stability condition, and has the essential advantage of being ¢-independent.
The aim is to present some numerical tests in order to validate the asymptotic-
preserving property of the micro-macro scheme. For comparisons in the kinetic
regime ¢ ~ O(1) we use the Vlasov-solver described above. As this scheme is no more
AP in the diffusion limit ¢ — 0, we shall compare for ¢ < 1 the MM-scheme results
with those obtained by the DD-model.

We coupled our AP-system with the Poisson equation, to be physically more
realistic. The initial conditions for the three models are set to

Vlasov) folx,v) := Lexp‘”z/ 2(1 + o cos(xw)) in [0, 21 /1c] X [Vmins Vmax] »
V2n

MM) po@) == (1 + acos(kx)), golx,v) =01in [0,27/Kk] X [Vnin, Vinaa] ,

(LIM) po(@) := (1 4+ acos(xx)), « € [0,2n/k].



[27] ASYMPTOTIC-PRESERVING SCHEMES. MODELING, SIMULATION AND MATHEMATICAL ETC. 291

Table 1. Parameters used in the numerical simulations.

o 0.05 N, =N, 128
K 0.5 —Vmin = Umax 6
€ 1,---,0.01 o 1

This test case, corresponds to the Landau damping problem and consists in a
small perturbation of a Maxwellian equilibrium distribution function and the re-
establishment of this equilibrium (for more details see next section).

We are plotting in Figure 1.2 the density p(, x), computed via the Vlasov and
the MM-scheme, for a large e-value. As one can observe, the MM-scheme gives
results which are very close to those obtained with the “reference” Vlasov-solver.
As ¢ becomes smaller, the computational time for the Vlasov solver becomes
prohibitive, such that we can no more compare the MM-solutions with this re-
ference solution. However, we compared in Figure 1.3 the density-function p(t, x),
computed via the MM-scheme with the results of the limit diffusion model. As
one can see, for small ¢-values, the MM-results are in good agreement with the
Limit-model results.

To compare we also plot in Figure 1.4 the damping (in time) of the electric field
|E@®)| 2, obtained with the three different schemes, i.e. Vlasov, MM and LIM-
scheme. As one can observe, for ¢ < 1 the details are no more captured with the MM-
scheme, as the plasma oscillations are no more resolved. However, the macroscopic
behaviour is well recovered.

In other words, the MM-scheme is uniformly stable and accurate along the
transition from the kinetic to the macroscopic regimes, in particular it is consistent
with the Drift-Diffusion model as ¢ — 0.

103 — 1.0004 ———— T
vo2 Y . Looos - VISRy ; y
— Lot - sy SRO002Y; i
B | 5 1.0001 | -
S S L
< 09 09999 F B
098 | - 0.9998 |- 3
0.97 1 09997
096 L——u—1 11 09996 L——0 111
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

T T

Fig. 1.2. Density function p(t,«) for ¢ = 1 and ¢ = 5. Perturb. parameter ¢ = 1.
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1.015 T T T T T T 1.0001 T T T
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Fig. 1.3. Density function p(t, ) for ¢t = 1 and ¢ = 5. Perturb. parameter ¢ = 0.01.
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Fig. 1.4. Linear Landau damping. Electric field evolution ||E()||;. (in log scale) for ¢ = 1
(left) and ¢ = 0.01 (right).

2 - Vlasov-Poisson system in the quasi-neutral limit

Section based on the articles of:
P. Degond, F. Deluzet, L. Navoret, A-B. Sun, M-H.Vignal 3
R. Belaouar, N. Crouseilles, P. Degond, E. Sonnendriicker *

The objective of this section shall be to investigate the following Vlasov-Poisson

system
21) ) Of+v-Vof +V,@-Vof =0, (x,v)eT3xR?, teRY,
' "l =1—p, xeT? teR"

in the quasi-neutral regime 0 < . < 1. Here T2 denotes the torus (periodic boundary

3 Asymptotic-preserving particle-in-cell method for the Viasov-Poisson system mnear
quasineutrality, J. Comput. Phys. 229 (2010), 5630-5652.

4 An asymptotically stable semi-Lagrangian scheme in the quasi-neutral limit, J. Sci.
Comput. 41 (2009), 341-365.
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conditions in x-space) and 4 := /p/L is the rescaled Debye length, which measures
the typical length of charge unbalances and is of particular importance in plasma
modelling. It can be seen as the typical length below which charge separation occurs.
The asymptotics we are interested in, 0 < 4 < 1, means that we are considering large
scales as compared to the Debye length, such that the plasma appears to be elec-
trically neutral. A second parameter is important in this context, the plasma fre-
quency wp, which characterizes the plasma oscillations which occur, when a per-
turbation of the quasi-neutrality is introduced.

The electron density p is given in terms of the electron distribution function
f(t,x,v) as follows

p(t, x) = Jf(t,x,v)dv, reT®, teR".

I {3

The ratio of the electron’s to the ion’s mass is very large, such that one can assume
that the ions are at rest and distributed uniformly on a regular grid, with density
Pion = L.

The numerical resolution of equation (2.1) can be challenging for example when
describing plasmas evolving in the edge region of a tokamak, where the Debye
length / may vary by several orders of magnitude and where one has to match quasi-
neutral regions (where a macroscopic model is adequate) with non-neutral regions
(where a microscopic model is necessary). The aim of this section shall be to in-
troduce a numerical scheme which should be able to describe accurately situations
where both quasi-neutral as well as non-neutral regimes coexist in the simulation
domain, and this on a grid independent on the small perturbation parameter A.

The problem (2.1) is singularly perturbed, and is hence not well-suited for nu-
merical simulations in the limit 2 — 0. Indeed, the limit model obtained formally for
A—0is

Of+0-Vof +Vo@-Vof =0, (x,v)eT3 xR, teR",

(2.2) (Po) X
p=1, xeT? teR".

The Poisson equation degenerates into the quasi-neutrality constraint p = 1, such
that the possibility to compute the electrostatic potential @ via this Poisson equation
is lost. The electrostatic potential gradient V,® becomes the Lagrange multiplier
corresponding to the quasi-neutrality constraint. Mainly due to this difficulty of a
constraint Lagrangian multiplier structure of the Limit problem, it is not adequate
to use the P,-problem to study numerically the quasi-neutral limit regime 4 — 0.
The aim of the present section is to present an AP-scheme which is consistent
with the P;-problem when the discretization parameters At, Ax resolve the scales
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associated to the parameter A (4t < w™!, 4x < 1), and which allows stable simula-

tions even if the time and space scales do not resolve the plasma period and the

Debye length. Moreover, if the limit P, P Py is justified mathematically, the AP-
A—

scheme shall be at the same time consistent with the asymptotic problem P, when
A — 0 and for fixed 4t, Ax. In other words, this AP-scheme shall permit to handle
situations with strongly varying parameter A in a uniform framework, without the
severe requirements of standard schemes, consisting in reducing the space and/or
time steps with vanishing 1.

2.1 - Instabilities of the Vlasov-Poisson system

With reference to the mathematical study of the Vlasov-Poisson system P,
(well-posedness, stability of equilibria, etc) rigorous results are still incomplete.
The existence/uniqueness of global weak solutions (f;,®;);-o is for example
firstly due to Arsen’ev [2] and several other works deal with these problems, a
non-exhaustive list being [3, 35, 48, 43, 50, 27]. Furthermore, the asymptotic
limit 4 — 0 is also rather difficult to investigate and only partial results are
obtained till now, for example [11, 33]. The reason for these mathematical dif-
ficulties lies in the (linear or non-linear) instabilities of some equilibrium dis-
tribution functions.

Briefly, the Vlasov equation has infinitely many equilibria, such as spatialzly homo-
geneous ones f(v) or functions of the total energy f(¥) with E(x,v) := % + &D(x).
These equilibria are so important as they are the only physical situations we en-
counter in reality. Important questions arise now, as for example: Are these equilibria
stable? Which of them are attractive and so on. A stability criterion due to Penrose
mentions that if the initial condition f; is a small perturbation of an increasing/de-
creasing distribution function, for example a Maxwellian with a small secondary
bump, then linear stability follows. However, if the bump gets larger, there will be a
linear instability which will develop, like the bump-on-tail instability or the two-
stream instability. All this is valid in a space domain with periodic boundary conditions
Q, = T3. The situation is completely different when considered on the whole space
Q, = R3.

Accordingly, the formal limit P, — Py, we performed above is not justified in
general cases, but only valid for well-prepared initial conditions, like for example
small perturbations of Maxwellian distribution functions, or mono-kinetic distribu-
tion functions as

Jo(@, ) := po(X)p—yg(a) -
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For this special initial conditions, one can get a rigorous asymptotic study, and it is
this case which shall be investigated in the present study. We would like to underline
here that the construction of AP-schemes requires a well-posed mathematical fra-
mework, in particular the solutions f; of the singularly perturbed problem have to
converge towards the solution fy of a limit problem, which has to be identified and
also be well-posed. In the opposite situation no AP-scheme can be constructed and
the problem remains unsolved.

The above quasi-neutral limit can be seen as the kinetic counterpart of the in-
compressible limit in fluid dynamics. Indeed, integrating the Vlasov equation with
respect to v and taking furthermore the velocity moment, leads to a non-closed
system of two macroscopic equations, corresponding to the conservation of the mass
p respectively momentum pu

Op + V- (pu) =0,
(2.3) Opu) +Vy-S—pV, @ =0,
—EAD=1—p,

where the momentum pu and the specific (momentum) flux S are given by

pu = Jvfdv, S:= va@vdv,

R? R3

and ® is the tensor product. Letting now formally 4 tend to zero, yields

p=1
2.4) 8tu+Vx-Jv®vfdv—qu§:0
R3
Ve u=0.

For mono-kinetic distribution functions f(¢, x, v) := p(f, )dp—y ), One passes in the
fluid framework and obtains for A — 0 immediately the limit from the compressible
to the incompressible Euler equations

o+ - -Vou —V@=10
Ve -u=0.

For this reason, the limit problem (2.2) can be seen as the kinetic counterpart of the

incompressible Euler equations. Thus, the AP-scheme constructed in the sub-

sequent section, can be equally applied for the Euler-Poisson system in the quasi-
neutral regime.
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2.2 - AP-Reformulation of the Vlasov-Poisson system

In order to construct a numerical scheme, which shall permit to solve (2.1) uni-
formly accurate in 1, hence being better suited for the quasi-neutral limit 1 — 0
simulations, we will reformulate in this section the problem (2.1) such that it does no
more degenerate in the limit / — 0. The idea is to try to replace the constraint p = 1
in the limit with an equation allowing for the computation of @.

For this, let us make the same manipulations as above, in order to obtain the
macroscopic system (2.3). Differentiating now the first equation of (2.3) in time and
the second one in space, yields after subtraction of the two resulting equations

Fp =V (Vu-8)+ Vo (pVe®) =0.
Denoting now by : the contracted product of two tensors, in this case
Vi :8:=370;0;8; =V, -(V,-S) and substituting in this last equation the

i.j
Poisson equation, yields the reformulated Poisson equation

V.- [P0 + V.0 = —VE:S.
To summarize, the reformulated Vlasov-Poisson system writes now

Nf 40 -Vof +Vo®-Vof =0, VY(,v)eT? xR, vteR"

25) (RP),
25) ){—vx-[(faﬁp)vx@]—vizs, Vo e T3, Vte RY.

The original Vlasov-Poisson system (P,) is equivalent to the reformulated system
(RP);, if and only if the initial data @t = 0,x) =: @, as well as G, P(t = 0,x) =: &,
satisfy the two Poisson equations

—224,®0 = (1 - p)y,

(2.6) . ,
—A A, Dy = 1- P)o = V- (powo) -

This comes from the fact that differentiating in time and space (2.3), we lost some
information, which has to be recovered by fixing some initial conditions.
Letting now 2 tend to zero in the reformulated system, one obtains the system

Of +v-Vof + V@ -Vof =0, Vx,v)eT? xR, vte R

2.7)  (RP) ) )
V. (pV,®d)=-V2:S, veeT?, vieR",

associated with the initial constraints (2.6).

This system is equivalent to the limit problem (P), introduced above, as one can
immediately verify. The main difference of the reformulated limit problem (RP), as
compared to (Py) is however, that the constraint p = 1 has been replaced by an el-
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liptic equation for the computation of the electrostatic potential @, which is an es-
sential advantage, as it allows to investigate numerically the quasi-neutral limit
A — 0 in a straightforward way. It also permits to treat, in a unified framework,
problems where / varies from O(1)-values to 4 <« 1 within the computational domain.
The construction of an AP-scheme will hence be based on the discretization of the
reformulated Vlasov-Poisson system (2.5) and will be the aim of the next section.

2.3 - Discretization of Vlasov-Poisson systems

The development of precise, fast and not memory demanding numerical schemes
for the resolution of Vlasov-Poisson systems is a very hard task, due to several as-
pects. Some of the problems one has to face are the high dimensionality of the
problem (3 space +3 velocity +1 time variable), the restrictive small time steps to be
chosen and the preservation of the positivity and other conservation quantities.

Several approaches have thus been introduced in literature to approximate nu-
merically Vlasov-Poisson systems, each of them having their advantages and dis-
advantages. Three of them are the PIC (Particle-in-Cell) methods, the semi-
Lagrangian methods and the Eulerian methods.

The first two methods rely on the characteristics method. The characteristic flow,
agsociated to the Vlasov equation is given by the solution of the following ODE

%(s;x,v, 1) =V(s;x,v,1),
(2.8) qv
E(s;x, v, t) = V,D(s,X(s;2,v,1)),

associated with the following initial conditions
Xtx,v,t)=x, VEx,vt)=v.

Knowing these characteristic curves, the solution of the Vlasov equation is simply
constant along them, such that one has

ft,,v) = foXO0; 2,0, 8, VO;2,v,8), V(2,0 € RT x R¥ x R?,

where fj is the initial condition for the Vlasov equation.
The PIC method consists in approaching the initial particle distribution function
by N macro-particles, as follows

N
fol,) ~ 3 f 8 — X9 6w - VD),

J=1

where (X]Q, V]Q) are the initial positions respectively velocities of the macro-particles.
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Then, it can be shown rigorously that the solution of the Vlasov equation has the form
N
ft,x,0) ~ > f o — X)) 6w — Vi),
=1

where the trajectories (X;(f), V;(t)) follow the characteristic curves of the Vlasov
equation, starting in (X]Q, V]Q). The Poisson equation (original or reformulated) is then
solved on a grid of the x-space via standard finite difference or finite element
methods, and by assembling the charge density as

N
pt) = | oo =3 fiow - X)),

R? =
Remark that for this trajectory-mesh coupling-procedure one needs to interpolate
the values of the density p on the x-mesh and inversely the value of the electric
potential @ on the characteristic curves.

The PIC-method is well-suited for large 3D computations, since only the space
variable x has to be discretized, and it has also the advantage of conserving the mass of
the distribution function f. Moreover, as the particles evolve along the characteristic
curves, no CFL-condition has to be imposed (more precisely, the stability conditions
can be largely relaxed), such that the restrictive choice of small time-steps is avoided.
Unfortunately the PIC-methods produce large numerical noise, which makes the
method of rather low precision, insufficient to capture detailed structures. The in-
troduction of a finite number of macro-particles is responsible for this noise creation.
To reduce the noise, the number of macro-particles has to be increased, however the
reduction is rather low, ~ 1/v/N, and leads to higher computational costs.

For lower-dimensional problems (2D or 1D), the semi-Lagrangian methods are
preferred. The backward semi-Lagrangian method consists in advecting the con-
served quantities, like f, along the characteristic paths (updating thus f at £,,,.1 from
the value at £,,) and solving then the Poisson equation with a standard discretization
scheme on the x-grid. Given the value of f at time level n and at each phase-grid
point, the first part of the semi-Lagrangian procedure for updating f at ¢,,.1, consists
in two steps:

e determine for each grid point (x;,v;) the origin of the characteristic
curve ending at this point, i.e. (X(,;xx, v, t011), V(Ey; @k, vy, t011)) and set
S @i, 2,00 = [, Xz 5,015 8 1), Vs @, V15 Eig1)

e compute an approximation of the distribution function at this origin point by
interpolation (B-splines) from the known neighbouring mesh-point values at
time level n.
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cubic spline interpolation
f known on the mesh

Fig. 2.1. Backward semi-Lagrangian method.

Figure 2.1 illustrates one step of the backward semi-Lagrangian procedure in
order to get the new value f(t,,.1, 2k, V7).

An essential feature of the semi-Lagrangian method is that it releases the time
step restrictions (analogous to the PIC method), and it can be rendered conservative.
However, as the method is grid-based (phase-grid), it is very memory demanding
and time consuming, hence being used for the moment only in low dimensions. The
great advantage anyhow is that no numerical noise is generated, such that the
method is largely more precise than the PIC method.

The Eulerian methods are classical time-space discretizations of the Vlasov-
Poisson system (2.5) in the phase-space (x, v), like for example finite difference, finite
element or finite volume methods. As these method are not using the characteristic
curves to evolve the distribution function f, a sever CF L-condition has to be imposed,
which makes these methods very costly, even if they are rather accurate.

2.4 - Numerical results

In order to validate the AP-methodology introduced in Section 2.2, let us present
here some numerical results performed in the 1D framework and extracted from the
works [19, 4]. Two approaches are considered for the discretization of the Vlasov
equation, the PIC- and the semi-Lagrangian methods, in their classical or asymp-
totic-preserving version when regarding the coupling with the Poisson equation.
Remark that as no explicit solutions are known for the Vlasov-Poisson system, we
shall compare the obtained AP-results with standard simulations, and this on very
fine grids (resolved case). In the unresolved case however, when the standard
schemes are no more accurate, the accuracy of our AP-method shall be checked, by
comparing the numerically obtained damping of some small perturbations or growth
of some instabilities, with the analytically computed decay/growth rates. The test
cases we shall consider here are rather standard:
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e slight perturbation of a Maxwellian, with particular consideration of the
Landau damping phenomena
e bump-on-tail instability.

The intention behind all these tests is the understanding of the long-time beha-
viour of the solutions, when the initial data corresponds to a small perturbation of a
spatially homogeneous equilibrium.

24.1 - Slight perturbation of a Maxwellian/Landau damping

The first test case deals with the simulation of the Vlasov-Poisson system, with an
initial condition of the form

folw,v) == V21 + sin(enx)) e,

which corresponds to a small perturbation of a Maxwellian, with amplitude 6 = 102
and frequency x = 2220. This is a slight perturbation of a stable equilibrium. What is
expected is that the electric field converges in times towards zero, and the equili-
brium is recovered in the long-time asymptotic.

Two different tests are performed with the PIC approach, in the standard and
AP-approach. The space-simulation domain is (0,1), with N, :=1/4x + 1 and 100
particles per cell. Periodic boundary conditions are imposed in space for the Vlasov
equation, whereas homogeneous Dirichlet boundary conditions for the Poisson
equation. The rescaled Debye length is 4 := 107, such that the plasma frequency is
w:=1/)=10%

In the first test, both time and space scales are resolved, as we are taking
Ax = ). = 10~* and 4t satisfying the CFL condition of the Vlasov equation as well as
resolving the plasma period, i.e.

A =17, oMt <1, vVpygdt<dx,

where v,,q, is the maximal electron velocity at each time step. In Fig. 2.2, we present
results obtained with the classical PIC, and two different PICAP-schemes. These
two PICAP-schemes correspond to two slightly different time-discretization stra-
tegies of the reformulated Vlasov-Poisson system (2.5), which conserve both the
asymptotic-preserving property, but which shall not be detailed here (see [19] for
more details). Fig. 2.2 (left) gives the electric potential as a function of the position at
an instant ¢ = 10w~!. The electric potential is almost identical with the three
schemes. In Fig. 2.2 (right) we plot the electric potential after a large number of
plasma periods (t = 2000 »~1). We can see that the amplitude of the plasma waves is
of the same order of magnitude as previously when using the classical PIC scheme,
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Fig. 22. Perturbation of a quasi-neutral Maxwellian plasma. Resolved case:
Ar =7 =10"* and At<w™' =107% Electric potential with Classical PIC, PICAP-1 and
PICAP-2. Left: at time ¢ = 10w~ = 10~3; Right: at time ¢ = 0.2 = 2000w~ !.

while it has been strongly damped out with the PICAP-1 and PICAP-2 methods. The
reason for this is numerical dissipation due to the implicit treatment of some terms.
This shows that the AP strategy damps out (rather rapidly) the energy of the plasma
waves and allows hence to capture phenomena which occur on longer time scales.

The second test case corresponds to the case, where both time and space scales
are under-resolved, which means

A >0, M>o ) Ve dt < Ax.

We choose 4x = 10~2 while 2 = 10~* and the total number of particles is kept un-
changed. For both PICAP-1 and PICAP-2 schemes, we use a time step determined
by the CFL condition: vmax4t < Ax. This constraint still allows 4¢ of the order of 30
times the plasma period w~!. Simultaneously, we use a uniform time step for the
Classical PIC scheme, with 4t = 30cw~!. Remark that the CFL condition is not sa-
tisfied for the classical PIC scheme, because the instability generates very large
particle velocities and enforeing this CFL condition would generate very small time
steps, which is unfeasible.

Fig. 2.3 depicts the electric potential at time ¢ = 2000 1. The left Fig. shows a
result using the classical PIC-scheme. The instability of the scheme is clearly visible
since the amplitude of the potential oscillations are of the order of four times those of
the initial potential (see Fig. 2.2), which is physically unrealistic. With the PICAP-1
or PICAP-2 schemes, these amplitudes are very small, showing that the schemes are
stable and have damped out plasma waves, as in the resolved case.

Let us now come to the Landau damping, which is a relaxation property near
stable equilibria, driven by conservative phenomena. The idea is to investigate how,
starting from an initial perturbation of a Maxwellian, the electric field converges to
zero at a rate, which is exponential. This phenomena occurs due to the interaction
between plasma waves and particles. Particles gain energy from the wave or lose it to
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Fig. 2.3. Perturbation of a quasi-neutral Maxwellian plasma. Under-resolved case:
Ar=10"2 >/ =10"* and 4t > w~! = 107, Electric potential with Classical PIC scheme
(left), and PICAP-1, PICAP-2 schemes (right), at time ¢ = 0.2 = 2000w~ 1.

the wave, such that in the Maxwellian case, energy is finally transferred from the
electric field to the particles, resulting in an “exponential” collisionless damping of
the electric field.

The initial condition of the Vlasov-Poisson equation is now given by

(29) fi)(%, Q)) = (27‘()_%(1 + 5Sin(K9€))eXp_v2/27

on the space-interval (0,27/k). The perturbation amplitude is taken equal to
6 = 1072 and x = 1. The target of such a test case is to measure the accuracy of the
numerical schemes for capturing nonlinear Landau damping, which is a phenomenon
occurring on the time scales of the plasma oscillations.

In the first test case, the PICAP-1 and PICAP-2 schemes are compared to the
classical PIC scheme in the resolved case. We take Ax = 2 x 10~2 and we consider
10* particles per cell (in average). Thus, the total number of particles is of the same
order as in the previous test case. Fig. 2.4 (left) shows the results corresponding to
case, when time and space scales are resolved, i.e.

Ar=2x102<)=1, wdt<1, vmudt=094.

The L?-norm of the electric field evolution (in log scale), obtained with the classical
PIC, PICAP-1, PICAP-2, is plotted on the left. The three schemes give identical
results. The measured slope is about 0.64, which has the same order as the theore-
tical estimates. However, due to the noise which is inherent to particle simulations,
this value is not as precise as for semi-Lagrangian simulations (see below). For the
same reason, the damping is stopped at ¢ ~ 4w~ instead of going on. The oscillations
observed in Figure 2.4 (left) and in the following figures, come from the fact that the
electrons bounce back and forth several times in the potential well, before the wave is
damped.
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Fig. 2.4. Linear Landau damping. Time evolution of log (||E(?)||;2) via classical PIC,
PICAP-1, PICAP-2. Left: Resolved case: 4xr =2 x 1072</ =1 and At<w™! = 1. Right:
Under-resolved case: Ax =2 x 102> 1=10%and 4t > 0w ! =107%.

The second test case is devoted to the results for an under-resolved case, 7.e.

A =2x102>1=10"*, At>w ' =107, vpudt=0.94c.

For the classical PIC we use a uniform time step 4t = 30w !. For the other schemes,
the time step is determined by the CFL conditions: vmax4t = 0.94x. Fig. 2.4 (right)
shows the time evolution of | £ ()| ;- (inlog-scale) for the different schemes. Asin the
previous study, the classical PIC is unstable. This is because plasma oscillations are
not resolved at all in this situation. Moreover none of the tested schemes is able to
provide a reliable estimate of the damping rate, the fine scale details being ignored.
What can be also remarked is that both PICAP methods provide an over-damping of
the plasma waves.
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Fig. 2.5. Resolved cases, comparison of the two methods: space distribution of the electric
field E(x) at (a) t = 2- w, ' as well as (b) t =10 - w, !, for 2 =102 and 4 = 2- 1072,
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In order to compare the PIC and semi-Lagrangian approach, we illustrate in
Fig. 2.5-2.8 some similar results concerning the Landau damping effect and the
electric field, obtained via the semi-Lagrangian AP-scheme. The semi-Lagrangian
AP-scheme is compared here (in the resolved case) with a classical semi-Lagrangian
discretization scheme, called Ampere-method. As for the PIC-method, the rescaled
case permits to validate the AP-scheme, called here RPE, with respect to classical
schemes. One can remark again (see Fig. 2.5) that the AP-schemes are more dis-

'5 T T T
Ampere ——
RPE -
slope A: -10
10 1 slope B:-1.73 h
A5k
2 i
30 L . - -25
0 5 10 15 20 0
t t
(a) (b)

Fig. 2.6. Resolved cases, comparison of the two methods: time evolution of log (||E(?)||,)
with 4z =2-1072 for (a) A =1 and (b) A = 10~2. The slopes correspond to the numerical
Landau damping rates (dispersion relation roots).
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Fig. 2.7. Under-resolved case, numerical results for the RPE approach: electric field at
t=2 cu;l (a), and at t = 10 wljl (). dx=2-10"2, A =10"*
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Fig. 2.8. Under-resolved case, numerical results for the RPE approach: time evolution of
log (|E®)||3). 4x = 2-1072, ] = 107%. The slope —1.73 corresponds to the numerical Landau
damping rate (dispersion relation roots).

sipative as the classical schemes. In the under-resolved case, the classical schemes
give rise to unstable results and are thus not plotted here. The numerical damping
coefficients obtained via the AP-scheme, are in a good agreement with the analytical
ones, fact which validates somehow the AP-schemes in the under-resolved cases.

What can be observed in all the following semi-Lagrangian figures, in comparison
with the PIC-approach, is the lack of numerical noise. This permits to see more
clearly some details/phenomena, as for example the oscillations.

For the following semi-Lagrangian tests, the same initial condition was chosen,
however with some slightly modified parameters: & = 1073, 4t = 0.54x/vy0z,
Ny = 128, V0 = 6, with velocity domain ( — Ve, Vingz)-

24.2 - Bump-on-tail test-case

In this section, we compare the AP-methods with classical schemes (PIC resp.
semi-Lagrangian) in the case of a bump-on-tail instability, which is a form of the two-
stream instabilities. We initialize the Vlasov-Poisson equation with

(2.10)  fole,v) = LA 4 deos(i), filw) =C (exp‘vz/ 2 1 gexp 00/ 2”?),

with C' a renormalization constant. Periodic boundary conditions for the Vlasov
system and homogeneous Dirichlet boundary conditions for the Poisson equations
are considered. The numerical parameters are 6 = 0.04, x = 0.3, vg = 4.5, v; = 0.5
and o« = 2/9. The space domain is (0, 207).
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Fig. 2.9. Bump on tail instability. Time evolution of || E(t)| ;. with Classical PIC, PICAP-1,
PICAP-2. Left: Resolved case: 4z = 2 x 1073 <1 = land 4t > w~! = 1. Right: Under-resolved
case: Ax =8> 2=10land 4t > w1 =107

The evolution of the solutions, corresponding to the bump-on-tail test-case, is
very different from the evolution of the Landau damping solutions investigated
above. A small spatial perturbation of the equilibrium distribution function leads to a
growth of the electric field strength, in other words we are in the case of an unstable
equilibrium.

Fig. 2.9 (left) shows results corresponding to the resolved case, where A = 1 and
Ax =2 %1073, We consider 10 particles per cell (in average). We consider also the
CFL condition vpmaxAt = 0.94x, which consequently ensures the resolution of time
scales. The electric field is plotted in Fig. 2.9 (left) for Classical PIC, PICAP-1,
PICAP-2 schemes. The various schemes are in very good agreement one with each
other, up to time 100w ~!. After the instant 50«1, the results are altered by the
damping due to the numerical noise of the PIC methods. However, all the schemes
capture the dynamics well, despite the small number of particles per cell.

We consider now the following under-resolved case: Ax = 3 while 2 = 10~1. We
consider 6 x 10* particles per cell. For the Classical PIC scheme, we enforce the
condition At = 4! to be sure that time is under-resolved. For the PICAP-1, the
PICAP-2 the time step is computed from the CFL conditions vy.At = 0.94x. In
Fig. 2.9 (right), the electric field is plotted for Classical PIC, PICAP-1, PICAP-2
schemes: while Classical PIC exhibits a large instability before damping, PICAP-1
and PICAP-2 rapidly damp the energy.

All these results can be compared with the results obtained via a semi-
Lagrangian AP-scheme, on a phase-space domain of (0,207) X ( — Vs, Vmaz) With
Umae = 9 and N, = N, = 1024 (see Fig. 2.10).

Briefly, all these numerical results permitted to show the efficiency of the AP-
scheme (compared to standard schemes) for the resolution of the Vlasov-Poisson
system (2.1) in the quasi-neutral regime 0 </ < 1, on a grid which does not resolve
the small space and time scales, i.e. 4 > A, A4t > o !. The use of larger time and
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Fig. 2.10. Resolved case: Time evolution of ||E(t)||;. for the Ampere approach (left) and
the RPE approach (right).

space steps, fixed only by the desired precision and not by the small-scale para-
meters, is an essential advantage, as it permits a considerable gain in computa-
tional time.

The limit 4 — 0 was not investigated in this section, however the developed AP-
scheme is consistent with the limit model P° when / tends to zero and for fixed
discretization parameters At, 4x, as long as this limit is mathematically justified. In
particular, in the case of a slight perturbation of the Maxwellian, the limit A — 0 can
be performed rigorously, and the designed AP-scheme automatically switches be-
tween the 1 ~ 1 and the 4 ~ 0 regime. However, this is not the case for the bump-on-
tail instability, which is an instable framework and where the limit 4 — 0 is not
justified, such that the limit regime /4 ~ 0 (if it exists) could not be investigated with
the AP-scheme.

3 - Vlasov equation in the high-field limit regime and with variable Larmor radii

Section based on the article of:
N. Crouseilles, M. Lemou, C. Negulescu®

The presence of large magnetic fields B in a plasma introduces additional small
space- and time-scales, related to the gyromotion of the charged particles around the
magnetic field lines, hence to the Larmor radius p;, and the cyclotron frequency w..
When charged particles are submitted to a large magnetic field, their movement in
first approximation follows the magnetic field lines (the particles get trapped along
the field lines). When observing the particles on larger time scales however, an

5 Multiscale numerical study of the Viasov equation in the high-field limit regime and
with variable Larmor radii, in preparation.
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additional drift movement perpendicular to the magnetic field lines is observed.
Depending on the physical phenomena one wants to investigate, different scalings of
the kinetic model have been introduced in literature, permitting to study various
asymptotic regimes when the magnetic field gets larger, for example the guiding-
centre, drift-kinetic, gyro-kinetic models.

The subject of the present section is the study of a Vlasov equation in a two small-
scale situation, in other words the investigation of the following finite Larmor radius
equation

1 1
(3.1) P of +- Vif +E- va“r; (A vxf“"g(?) X B) -Vuf =0,

where ¢ stands for the particle cyclotronic period, which is small due to the large
magnetic field B, and the parameter 7 € [¢, 1] comes from the rescaling of the per-
pendicular space-variable. This scaling comes from the fact that the characteristic
length in the parallel direction to B is taken as L ~ t whereas the characteristic
length perpendicular to Bis L, ~ & which means that the spatial observation scale in
the plane perpendicular to the magnetic field is chosen smaller than the one in the
parallel direction. This allows the electric field to vary across the Larmor radius, and
to recover different phenomena in the asymptotic limit.

The aim of this section is to find a numerical procedure, being able to describe in a
homogeneous manner the evolution of charged particles in the high B-field limit,
each of them possessing different Larmor radii. As an example one can mention ions
composed of many various components, owning each of them a different Larmor
radius, or electrons in the zero Larmor radius limit. Again we have to cope with a
singularly perturbed problem, the solutions becoming highly oscillating in the limit
¢ — 0, requiring thus some averaging procedures.

Let us consider a homogeneous magnetic field B = | B|b, with the direction b := e,
and where for simplification we take |B| = 1. Given this vector field b, one can de-
compose now vectors v € R, gradients V¢, with ¢(x) a scalar function, and di-
vergences V - v, with v(x) a vector field, into a part parallel to the magnetic field and a
part perpendicular to it. These parts are defined as follows:

v =@ b, v, =Ud-bdRbw, such that v=v| + v,
(8.2) Vo= V@b, V.¢:=Id—-b®bV¢, suchthat Vo=V ¢+ V¢,
Virv:=V-.y, Vi-v:=V-vy, such that V.o =V -0 +V_ v,

where we denoted by ® the vector tensor product. Thus, the velocity is decomposed
in v = (0,0, v) and v, = (vz, vy, O)t, so that v + v, = .

The Vlasov equation (3.1) describes in particular two different asymptotic re-
gimes, which can be frequently encountered in literature [8, 7]:
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1. ¢ = v < 1: Gyrokinetic, finite-Larmor radius equation (for ions)
1 1
(33) Of + oy Vxf +B-Vof +- v - Vif +-(vxB) - Vo f =0,
with the dominant operator denoted by 71 :=v, - Vx + (v X B) - V.

2. 1=1,0<e¢ < 1: Guiding-center, zero-Larmor radius equation (for electrons)
1
(34) athr’UH ~fo+E'va+7)L : foJFE(v X B) ) vvf =0,

where the dominant operator is 72 := (v X B) - V,,.

New difficulties arise in the numerical treatment of the kinetic equation (3.1), due
to the occurrence of two different small scales and hence the appearance of several
asymptotic behaviours in the limit. Many other physical, biological, chemical phe-
nomena have a similarly complicated behaviour, involving in particular several small-
scale parameters. Much effort has been done on the development of numerical
schemes for singularly perturbed problems containing only one small parameter,
however efficient schemes for singularly perturbed multi-parameter problems still
lack. It is thus very important to design and study numerical schemes for such multi-
parameter problems, especially to be able to investigate the interaction or organi-
sation of two (or several) distinct phenomena. The objective of this section is thus to
introduce an AP-scheme, capable to capture all these asymptotics in a unified fra-
mework.

3.1 - Study of the two limit regimes

First, let us study separately the two limit regimes and identify the corre-
sponding limit problems. In order to simplify the computations, we will shift
sometimes from the Cartesian to the polar coordinates for the velocity, i.e.

vy :=7rcos(d) 9 e0,2n)
v = (U, 0y, 0,) & (1,0,0,), . ; B
(02,0, 0:) = ) {vy = rsin(0) r>0
and use the notations (where B :=¢,)
v :=0,0,2.), v =(yv,,0), tv:i=(,-,0=vxB.

The Vlasov equation writes then in polar coordinates

OF +v.0.F +E.0, F + (E,cos 0+ E, sin0)9,F — % (Eysin0 — E, cos 0)0pF

(3.5) . .
—l—;r(cos 00.F + sin00,F) — EaOF =0,
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where the unknown now is F'(t,x,y, 2,7, 0,v,). To simplify the notations, let us in-

troduce the following operators
o

AF = (1)282 +E.0,, + (E,cos 0+ E, sin 0)0, 1 (E,sin0 — E, cos 9)89) F,

and
T3F := (rcos 00, + rsin 00)F = (v,0, + v,0)F , ToF := —0pF ,

such that we can simply rewrite the Vlasov equation (3.5) as
1 1
(3.6) 8tF+AF+;TgF+ETzF:O.

Introducing now the new parameter o := %, which designs somehow the Larmor
radius, and defining the operator

T%F =T3F Jr%TzF,
the Vlasov equation (3.5) rewrites as
1 1 1
(3.7) 8tF+AF+;<Tg+&Tz)F=8tF+AF+;T{'F=O.

In the following we will study the asymptotic behaviour of the solution F** to this
equation in the the two regimes:

e o =0 > 0 fixed and v — 0 (automatically one has then ¢ = apr — 0) ,
e 7 = 7 fixed and o — 0 (automatically one has then ¢ = atg — 0) .

The first limit corresponds to a finite-Larmor radius regime, whereas the second one
to the zero-Larmor radius regime.

3.1.1 - Study of 77 and T,

As a first step, let us investigate separately the two dominant operators 77 and
T 5. For this, we shall work in the Hilbert-space V := LA(R? x R?).

Study of 77: The operator
1
T1:DTHcCVv—=V, Tif:= (vl-VX—FuLv-Vv)f,

is defined on

DAY= {fev) (m-vxiw.vv)few



[47] ASYMPTOTIC-PRESERVING SCHEMES. MODELING, SIMULATION AND MATHEMATICAL ETC. 311

Its kernel is given by
(3.8) ker(77) := {M{(t,x + orsind, y — arcosl,z,r,v,)}.

To determine the orthogonal projection /75 on this kernel, we will investigate the
characteristics associated to the operator 77, which satisfy

XV = (V0 VetV = (7, V.00

Defining the rotation matrices R*(s) and P*(s)
cos(i) sin(i) 0 sin(z) 1- cos(g) 0
Ris) = —sin(i) COS(Z) 0|’ Pis) = cos(i) -1 sin(i) 0
0 0 1 0 0 0

the characteristics corresponding to the dominant operator 77 write
X(s;x,v,t) =+ oaP*(s —tv, Vis;x,v,t) =R *(s—tw.

These characteristics are 2zo-periodic, such that one can introduce the average of a
function f along one of these periods. It can be shown then, that this gives exactly the
expression of the projection operator /77. Indeed,

t+2mo
IIi(f) - = Zla J f@, x4+ oP*(s — v, R*(s — tv)ds

7T
t
t+2mo

1 _ _
=— J F(t,oc+ocsin(s—t>1ﬂcos,0+oc(l—cos<:t>)frsint97
27 o o
t
y—i—oc(cos(ST_lf)—l)rcos9+asin(87_t)rsin67z,r,6—ST_t,vz) ds

t+2mo
3.9) 1

=— J F(t,ac+ocrsin9+ocrsin<s—_t— 9),
2ma o
t

—t —t
y—arcos@—&-wcos(ST—0>,z7r79—87,vz) ds

2n

:%JF(t,erowsian arsiné y — arcosf + arcosé, z,r, &, v,) dé
0

= M7, + arsind,y — arcos 0,z,7,v,).

We have the following properties:
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Proposition 3.1.1 The average operator II5 defined in (3.9) is linear and
continuous. Moreover, it coincides with the orthogonal projection on the kernel of
T1. Indeed, one has

m5:V — kerT?, T4:D(TY)CV— JTH = (ker(T))",
J J (f =) Pdvde =0, V€ ker(T7).
R® R?
Study of 72: The operator
T2:D(T2)CV -V, TF:=wxB) V,f=-0pF,
is defined on
D(Ty):={feV ]/ —F cV}.

Its kernel is given by
(3.10) ker(Ts) == {Max(t,x,y,2,7,0,)},

and the orthogonal projection on this kernel writes

2n
1
Il (F) := o JF'(t,.%‘,y,z,T, 0,v,)do.

(=1

One can prove that

Proposition 3.1.2 The orthogonal projection operator Iy is linear and con-
tinuous. Moreover, one has

IIy:V — kerTy, To:D(Ty)CV— I(Ta) = (ker(T2))",

J J(f —IL(f))Pdvde =0, VO e ker(Ty).
R® R
Remark, that one has also the important properties
Iy TsM =0, ILTIM=0, VM ec ker(T2).
Indeed,

2n

2n
J (7 cos(0)0, M + rsin(0)9,M) dO — J M do
0

0
2n

2n
= ro.M J cos(0) d0 + ro,M J sin()dd =0, VM e ker(7).
0 0
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3.1.2 - Identification of the limit models

In this subsection, we will identify the two Limit models corresponding to the two
asymptotic regimes 0 <7 <« 1, o = o (finite Larmor radius) or 7 = 79,0 <o < 1 (zero
Larmor radius). We will moreover introduce the two different Asymptotic-
Preserving reformulations of the P-problem (3.1), corresponding to these two limit
regimes, and will prove their convergence towards the associated Limit models.

Finite-Larmor radius regime: o« =0, 7 — 0

To identify the Limit problem, we will start with a standard Chapman-Enskog
expansion F' = M + 1g, which leads after insertion in the Vlasov equation (3.7) to

1 1
8t(M+Tg)+A(M+Tg)+; TS(M+rg)+a—Tz(M+rg) =0.
0

Comparing now the terms of the same order in 7, one gets that M € ker 77" =
1 .
ker (T s+—T 2). At next order, we get an evolution equation for M
oo
M + AM + T7°g = 0.

To eliminate the unknown g, we apply the projection operator I77°, which leads to the
limit model

(3.11) (L) O:M + I AM = 0.
1 1

This procedure permits to get some information about the behaviour of ¥ in the limit
7 — 0, in particular that F' tends towards an element of the kernel of 77°. This shall
permit to reformulate the initial singular perturbation problem (3.7) in such a
manner to capture automatically the Limit model (L)}* as 7 tends to zero.

Indeed, decomposing F as F' = M{* + G{* where M* € kerT7" and G{* € IT7",
one can reformulate the singularly perturbed problem (P) as follows

QM + [T AF = 0
APy

12 1
(8.12) G + (I~ IINAF + TG = 0.

This system is equivalent to (3.7) and moreover a regular perturbation of the Limit
problem (L)}*. Indeed, letting  tend to zeroin the second equation, permits to show that

TI'F=0 =Fecker(7}) =F=M?, G{=0.
Inserting G}* = 0 in the first equation of (3.12) yields the Limit model (3.11). Hence,

passing tothelimitt — 0in(AP)7" willlead to no numerical problems, which was not the
case for (3.7), being singularly perturbed.
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Zero-Larmor radius regime: t=1tyand o — 0

In the same spirit as previously, a Chapman-Enskog expansion F' = M + og
leads to

1 1
M + og) + AM + ag) + T—T3(M +ag) + aTz(M +ag) =0.
0 0

At leading order in o, we get M € ker7 5, which means M does not depend on 0. At
next order, we get the evolution equation

1 1
atM+AM+—T3M+—ng =0.
70 70

Integrating with respect to 6 (or applying I72), permits to eliminate the unknown g
and to get the Limit model

(3.13) L)y oM + I AM =0,

where we have used the property [7o7sM = 0.

To get a reformulation, which preserves the asymptotic behaviour of the solution
F, we decompose again F' as F = My + Gy with My € ker 7, and Gz € 37 ».
Inserting this decomposition in (3.7) one can reformulate the singularly perturbed
problem (P) as follows

1
oMy + 11, <A+T—Tg)F =0
0
(3.14) (AP),
1 1
0Gs + U — H2)<A+—73>F+—TZG2 =0.
70 Tod

This system is equivalent to (3.7) and moreover a regular perturbation of the Limit
problem (L)s.

3.2 - Micro-macro decomposition

The concern of this section is to extend the methodology presented so far, in
order to develop a numerical method able to treat accurately both limit regimes, and
this in a unified framework. In other words, we would like to construct a scheme
which is AP in both asymptotics, i.e. stable uniformly with respect to o« and ¢ and
consistent with both Limit models, when the different limits are considered.
Moreover we would like that the method shifts automatically from one regime to the
other, such that one can treat easily problems where different regimes occur in
different parts of the domain.
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In order to treat both limit regimes together, we shall first fix the parameters ¢
and o and start from the singularly perturbed kinetic equation (3.7) and the de-
composition

(3.15) f=M*+G*, MY =I5F) € kerT?, G € 3T},

Plugging this decomposition in the initial Vlasov equation, projecting on the kernel
of 77 and subtracting the obtained equation from (3.7), leads to the micro-macro
system

OM” + ITITAF =0

(3.16) (MM)™ 1
OGT + U — IDAF + ;T‘i‘F =0.

Remark that for fixed (o, 7) this is an equivalent reformulation of the kinetic equation
(3.7), due to the uniqueness of the decomposition (3.15).

In the next section we will show that this system is able to capture the different
asymptotic regimes. This property comes essentially from the fact that for r = 7y and
o< 1, one has II] =I5+ O(x), such that M{ ™" = [I{(F) = M2 + O(x) and
G ™" = G2 + O(). Indeed, recalling the definition of I7{

2n
1
5 f) :EJF(t,x—i—owsinO—wsiné,y— arcos O + arcos &, 2,7, & v,) dE
0

and using Taylor’s formula, <.e.

F(t,x 4+ orsing —arsiné y — arcosd + arcos &, 2,7, &, v,) =

Fit xy,zrév,)+ oc{(r sin @ — rsin &)0,F — (rcos 0 — rcos é)ayF}+O(oc2) ,

permits by integration over & to show that IIT = IT + O(x). This ingredient shall
permit to get the right limits in the different asymptotic regimes.

3.2.1 - Asymptotic limits

The main goal of this section, is to investigate the asymptotics illustrated in
diagram in Fig. 8.1. In particular we are interested in the behaviour of the (MM)"*-
reformulation as one of the two different limit regimes is considered. We shall show
that the (MM)"*-problem is a small perturbation of the (AP)-reformulations con-
sidered so far, allowing thus to recover the micro-macro model for (M}, GY) on the
one hand and for (M2, G2) on the other hand (for the corresponding limits). These
micro-macro models recover then the good asymptotics in the limit, as we have seen
previously.
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(MM)™e
a = ag r=1o
0<7r<1 0<a<l
(AP)y° (AP)2 + O(a)
7770 a— 0
(L)Y (L)2
ag — 0

Fig. 3.1. Diagram of the different asymptotic limits we are investigating.

Finite-Larmor radius regime: o =0y, 7 — 0

In this case, the (MM)"*-reformulation is nothing but the (AP){"-reformulation,
such that everything works very well.

Zero-Larmor radius regime: 1 =1 and « — 0

Inserting now formally the expansions
(3.17) I = Iy + O(w), M{™™" = II{(F) = Mz + O(2), G;" " = G2 + O(w),

in (3.16), yields
oMy + I AF = O(a)

1 1
0Ge + (I — H)AF + —TsF +—ToF = O(0).
70 To

Remarking also that Gs = O(x), one can see immediately, that the (MM)"*-re-
formulation is in this case a small perturbation of the (4 P)s-reformulation.

Both asymptotics

What can be remarked is that both limits commute, i.e. the (MM)"*-reformula-
tion leads towards the limit model (L), no matter which of both asymptotics is taken
in priority. Indeed, this can seen by observing that the (L);°-model is recovering the
(L)9-problem, as o tends to zero. Plugging indeed the above expansions (3.17) in
(3.11) yields formally for ¢y — 0 the desired limit model (L)s.
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In summary, all these formal asymptotics permit to understand that re-
formulating the initial singularly perturbed problem (3.1) under the form (3.16)
will allow to recover the right asymptotic regimes if one of the two limits is
considered, as well as if both are considered independently. Naturally, one has
now to discretize in time and space the new reformulation (3.16) in such a
manner, that the obtained asymptotic preserving properties are not destroyed
on the discrete level. This work is in progress at the moment.

PART II
Flurd models

Let us consider in this part a fluid description of the plasma dynamics,
obtained via the moment method from the kinetic approach (Boltzmann equa-
tion). Let o denote the particle species (« = e for electrons and o = ¢ for ions)
and n, be the particle density, u, the velocity field, T, the particle temperature.
The bi-fluid model describing the plasma evolution reads now

3ma + V- (nzuz) = S?ZO( ;
(II 1) mana[atuoc + (uzx : V)u/fx] = _VPoc + naea(E + Uy X B) -V, + R“ ’

3
EnakB[atTa + (uac . V)Ta] +pocv c Uy = -V qo — Hoc . vuac + Qot )

where some constitutive laws are needed for the pressure p,, the stress visc-
osity tensor /7, and the heat flux term gq,, in order to close this system. In the
Bragingkii closure, the pressure is specified as p, :=mn, T, (perfect gas as-
sumption), the plasma viscosity is assumed negligible, such that V - I7, = 0 and
I, : Vu, = 0 and the energy flux ¢, is supposed to have a diffusive form, given
in terms of the temperature gradient as follows q, := —x, VT, (Fourier law)
with x, the thermal conductivity coefficient. The terms S,,, R, resp. @, re-
present a particle source term, a friction force due to collisions resp. a particle

exchange energy term due also to collisions and taken under the form

Q, = =+3 ﬁ %(Te —T;), where 7, is the electron-ion collision time. Again the
(] e

system has to be coupled with Maxwell’s equations for the computation of the
electromagnetic fields (¥, B).

Similarly to the kinetic framework, a dimensional analysis gives rise to di-
mensionless parameters as for example the Mach number, the Reynolds
number, the Prandtl number, the Peclet number etc., and one has to deal again
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with singular limits as one of these parameters vanishes or goes to infinity.
Here are some of these asymptotic regimes, in the one-fluid (electrons) fra-
mework:

e Euler-Poisson system in the quasi-neutral limit [15, 22]:
om+V-(mu)=0
onu)+V-mueu)+ Vpn) =nVe
—JEAD=1-—m,
where 1 < 1 stands for the rescaled Debye length. In the limit A — 0 the
Euler-Poisson system reduces to the incompressible Euler equations.
e High field limit (Euler-Lorentz) [12, 21]:
om+V-(mu)=0 .
1
o(mu)+V - (nu®u)+;Vp(n) = nl +uxB),

where 7 < 1 describes the gyro-period period as well as the Mach number.
This equation describes a plasma gas submitted to a strong Lorentz force and
possessing a low Mach number. In the © — 0 limit, one switches to the Drift-
fluid (or Gyro-fluid) regime.

o Low Mach number limit [13, 24]:
om+V-(nu)=0
1
omu)+V-nueu) +8—2Vp(n) =0,

with ¢ < 1 the rescaled Mach number. This low Mach number limit describes
the passage from the compressible Euler equations (or equivalently Navier-
Stokes eq.) to the incompressible ones.

e Highly anisotropic temperature equation [46, 45]:
1
oT — EV” (K1) =V - (K. ViT) =0,

where the subscripts || (resp. L) refer to the direction parallel (resp. perpen-
dicular) to the magnetic field lines and ¢ < 1 describes the large diffusivity of
the temperature T along the magnetic field lines.

The goal of this part of the review will be to investigate from a numerical point of
view two singular limits arising in the fluid framework. These two singular pertur-
bation problems occur when one tries to solve the full system (I1.1) in some particular
situations.
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4 - Highly anisotropic elliptic equations

Section based on the articles of:

P. Degond, F. Deluzet, C. Negulescu ®

P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu 7
P. Degond, A. Lozinski, J. Narski, C. Negulescu

The aim of this section is the construction of Asymptotic-Preserving schemes
for an efficient numerical resolution of highly anisotropic elliptic equations,
arising in several fields of application, such as flows in porous media, electro-
cardiogram simulations (bio-mathematics), semiconductor modelling and so on.
In plasma modelling, the high anisotropy comes from the fact that the strong
magnetic field B confines the charged particles in the direction perpendicular to
the field lines, and permits them to evolve freely in the parallel direction. This
property leads to rather different dynamics (in magnitude) in the perpendicular
and parallel directions, yielding highly anisotropic equations, which are difficult
to solve numerically.

Let us specify the mathematical context. We consider a regular, bounded
domain Q c R? with d =2,3 and boundary I'. The anisotropy direction is gi-
ven by a vector field b € (C%(Q))d, satisfying |b(x)| =1 for each x € Q. Given
this vector field b, one can decompose now each vector v € Rd, gradient V¢,
with ¢(x) a scalar function, and divergence V - v, with v(x) a vector field, in a
part parallel to the anisotropy and a perpendicular part. All these parts are
defined as:

v = (v-b)b, v, :=Ud-b®bw, such that v = v + v,
(41) Vig:=(b-Vb, Vig:=Ud—-bx0bV¢, such that Vo =V ¢+ V¢,
Vi-v=V-v, Vi -v:=V-v, such that V-v =V - v+ Vv,

where ® denotes the tensor product. With all these notations, we can introduce now
the singularly perturbed problem we are interested in, deseribing the evolution of
the electric potential ¢ of a magnetically confined plasma:

5 An asymptotic preserving scheme for strongly anisotropic elliptic problems, Multiscale
Model. Simul. 8 (2009/10), 645-666.

" Duality-based asymptotic-preserving method for highly anisotropic diffusion equa-
ttons, Commun. Math. Sci. 10 (2012), 1-31.

8 An asymptotic-preserving method for highly anisotropic elliptic equations based on a
micro-macro decomposition, J. Comput. Phys. 231 (2012), 2724-2740.
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—%Vn (A V¢) = VLAV =f in @

1 : 3
(4.2) &), EnH . (AHV‘@L) +n - (ALVL&‘) =0 on I'y,

=0 on I'p,

where 7 is the exterior normal to the boundary of Q and where the different
boundaries are defined by

I'p={xel|bx)- n=0},

4.3
(43) I'iyUlge={xel|bx) n<0}u{xel |bk) n>0}

and I'y := I'j, U I'yyy. We will suppose that f € L2(Q), I p # Jand that the diffusion
coefficients A € L>*(Q) and A € Mg, q(L>()) satisty

0<A0 < AH(%) < A1 s fa.a. x ¢ .Q,

A0||1)||2 <A (xw < A1Hv|\2, vo € R? with v - b(x) = 0 and f.a.a. x € Q.

(4.4)

The parameter 0 <e < 1 represents here the fraction between the perpendicular
mobility of the particles and the parallel one, and can significantly vary in magnitude
within the simulation domain. In the limit ¢ — 0, the problem (P), degenerates to

—Vi- (A Vy$) =0 inQ
(4.5) (R) nH : (AHV‘@) =0 on FN,
=0 on I'p.

This is an ill-posed problem as it has an infinite amount of solutions, especially those
being constant along the field lines of b. That is the reason why solving (P), (for
¢ < 1) with standard schemes would lead to ill-conditioned linear systems, requiring
more care, or leading (in the opposed case) to unacceptable numerical errors.

The aim of this section is hence to construct an AP-scheme, which shall be able to
resolve the singularly perturbed problem (P), uniformly accurate in ¢ and with no
huge computational costs. To do this, one has to change strategy and think about the
following questions:

e are the solutions ¢* of (P), convergent towards some function ¢0 when ¢ — 07

e if yes, does this limit solution ¢0 solve some limit problem (P), (denoted
also (1.))?

e is this limit problem (P), well-posed?

The identification of this well-posed limit problem (P), passes through the math-
ematical study of the dominant operator in the singularly perturbed problem (P),. This
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identification will then permit to reformulate the singularly perturbed problem (P), in

such a manner that it will recover automatically the limit problem (P), if ¢ tends to zero.
The AP-scheme we introduce in the following can be applied also to other highly

anisotropic elliptic situations, such as the following degenerate elliptic problem

1 .
{—EV(A|V|¢)+¢=f in Q,
ny - (A V9 =0 on Iy,

or the nonlinear, anisotropic, elliptic problem (for the electron density n)

—VH . (VHp(n)) +éen = é‘f on £,
IIH . Vup(?@) = &g on FN.

4.1 - Identification of the Limit problem

In order to construct an efficient numerical scheme for the resolution of the
singularly perturbed problem (4.2), one has to begin with understanding the
asymptotic behaviour of the solutions ¢°. For this, let us firstly introduce an adequate
mathematical framework. Let V be the Hilbert space

Vi={¢pcH(Q) / G, =0, @yh=V1$ Vi +(Vig, Vi)

We are thus seeking for solutions ¢° € V of problem (4.2), written under weak form as
(46) (P),g CLH(¢S7 l//) + 80/L(¢8a l//) = 8(f7 l//) ) V'// € V7

where (-,-) denotes the L? scalar-product and where the bilinear forms
a:VxV—Randa, :VxV— Rare given by

(4.7) (ZH(¢, t//) = JA\\V\@'VW/dQC, CLJ_(¢, l//) = J(AJ_VJ_(/{?)'VJ_I//dOC.
Q Q

The Lax-Milgram theorem permits then to deduce immediately that the problem
(4.6) admits a unique solution ¢* € V for each fixed ¢ > 0.

To discern the asymptotic behaviour of the sequence {¢°},., as ¢ — 0, one ne-
cessitates to investigate the dominant operator in (4.2), in particular to identify its
kernel and introduce a projection operator on this kernel. The kernel is immediately
recognized as the Hilbert space of functions with zero gradient along the anisotropy
field lines b, i.e.

48)  G={oeV[V$=0}, @Gy)g:=NV.1$Viy), Yoyeg.
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In order to identify now the limit problem, let us suppose that ¢* — ¢” in
some sense when ¢ tends to zero and try to find out the problem solved by ¢0.
The first remark is that ¢° has to belong to the kernel of the dominant operator,
¢0 € G. Taking then in (4.6) test functions y € G (which means nothing else than
averaging the equation along the field lines or projecting on the kernel), one
obtains

(49) JAJ_VJ_¢8 . le//dﬂC = Jfl//d% R Vl// €g.
Q Q

Passing now to the limit ¢ — 0 in this last equation yields finally the variational
formulation of the limit problem, satisfied by ¢": Find ¢’ € G, solution of

(4.10) (L) JAN@O Vioypde = ny/dac . Wweg.
Q Q

Again, the Lax-Milgram theorem permits to deduce the existence and uniqueness of
a solution of this problem.

The goal now is to reformulate the singularly perturbed problem (4.6) in such a
manner, in order to get automatically the Limit problem (4.10) when ¢ tends to zero.
Two different reformulations will be presented in this section.

4.2 - First AP-reformulation

The first Asymptotic-Preserving reformulation of (4.2) is based on the decom-
position of the unknown ¢ into :

e a macroscopic part p* belonging to the kernel of the dominant operator, and
which is chosen in this case as the average of ¢* along the anisotropy field lines

e a microscopic part ¢¢, the fluctuating part, lying in the L?-orthogonal comple-
ment A of G, i.e.

(4.11) A={¢pcVI|g,w) =0, Vyeg}.
The Hilbert space V is decomposed in this case as follows
(4.12) V=Ga' A,

with the L?-orthogonal projection operator on the kernel G given by

(4.13) P:V — G such that (Pé,y) = (¢,p) Y€V, yeg.

Applying this projection P to a function ¢ is nothing but averaging ¢ along the an-
isotropy field lines of b. Each function ¢ € V can thus be decomposed uniquely as
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¢ = p* + ¢¢, where p* = P¢° € G and ¢¢ = (I — P)¢" € A. Inserting this decomposi-
tion in the singularly perturbed problem (4.6) and taking test functions # € G and
¢ € A, permits to reformulate the original problem into an asymptotic preserving
formulation: Find (p?, ¢°) € G x A such that

& & _ v
(4.14) AP) {cu(p )+ ac(g’m = (f,m, neg,

a)(q, Q) +ea(q", O +ea () = &(f,0), V€A

Taking test functions # € G resp. ¢ € 4 means nothing else but applying the pro-
jection Presp. (I — P)to the original problem. Contrary to the Singular Perturbation
problem (4.6), setting formally ¢ = 0 in (4.14) yields the system

0 0
b = b b v
(415) @) {aL(p s +alg,m =(f,n) neg

a)q’, &) =0, Ve e A,

which has a unique solution (p°, ¢°) € G x A, where p" is the unique solution of the L-
problem (4.10) and ¢° = 0. Indeed, taking ¢ = ¢° as test function in the second
equation of (4.15) yields V;¢° = 0, which means ¢° € G. But at the same time, ¢° € A,
so that ¢" € GN A = {0}. Setting then ¢° = 0 in the first equation of (4.15), shows
that p° is the unique solution of the L-problem.

4.3 - Characterization of the spaces G and A

In order to solve numerically the reformulated system (4.14) one has to think
about the numerical discretization of the spaces A and G, which is not a simple task
for general anisotropy fields b. In the following we will apply Lagrange multiplier
techniques to cope with this problem.

To avoid the use of the constrained space A, we can remark that A can be
characterized as being the orthogonal complement (in the L? sense) of the G-space.
Thus, instead of (4.14), a slightly changed system will be solved: Find
(p*, ¢%, ) € G x V x G such that

ai(p8777) + ai(q8777) = (f7 77) Vﬂ € ga
(4.16) ay(g®, &) +eai(q°, ) +ea (p®, &) + (I, &) = e(f, &) VEeV,
(qsv)() =0 VX S g

The constraint (¢*, ) = 0, Vy € G forces the solution ¢* to belong to .4, and this
property is carried over in the limit ¢ — 0. We have thus circumvented the difficulty
of discretizing A by introducing a new variable I* € G (Lagrange multiplier) and
enlarging the linear system.
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In order to eliminate now the problems that arise when dealing with the dis-
cretization of G, the Lagrange multiplier method will again be used. First note that

(4.17) g VIP=0 JAHVHP Vyida = ay(p, ) =0, VieL
: €cge N
! peV Q

pev,

where L is the functional space
(4.18) L:={AeL¥Q) | VieL*Q), i, =0}.
The choice of this Lagrangian space has been done so that one could find for any
{ € L*() aunique A € L satisfying V4 = (.
Using the characterization (4.17) of the constrained space G, we will now re-

formulate the system (4.16) as follows: Find (p?, A%, ¢°, I*, f¥) e VX LXV XV X L
such that

a (@’ +a (g, + oy, %) = (f,n), VneV,

a|(p’x) =0, VkeLl,

(4.19) DB { a(@°, &) +ear (g, &) +ea (p®, )+ (I,¢) =e(f, &), VeV,
@0+ (1) =0, VyeV,

al®,1)=0, Vrel.

The advantage of this formulation, as compared to (4.14), is that we only have to
discretize the spaces V and £ (at the price of the introduction of three additional
variables), which is much easier than the discretization of the constrained spaces G
and A. More importantly, the dual formulation (4.19) does not require any change of
coordinates to express the fact that p° is constant along the b-field lines and that ¢*
averages to zero along these lines. Therefore it is particularly well adapted to ar-
bitrary, time-dependent b-fields and can be simply used on Cartesian grids. The
system (4.19) will be called in the sequel Duality-Based Asymptotic-Preserving
formulation (DB-scheme).

4.4 - Second AP-reformulation

A second Asymptotic-Preserving reformulation of the singularly perturbed pro-
blem (P), can be designed by proposing a different micro-macro decomposition. Instead
of decomposing each ¢* = p* + ¢¢ into its mean part along the anisotropy field lines,
p? € G, and the fluctuation part ¢* € A, one can mimic a “Hilbert-Ansatz” by posing

(4.20) §=ptet, Vig'=eVid, g, =0.
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Fundamentally, the space A for the variable ¢* has been replaced by the space £ of
functions vanishing on the inflow boundary. With this new decomposition, the singu-
larly perturbed problem (4.6) can be reformulated as: Find (u?, ¢°) € V x L, solution of

J(Alvqu) -V vdx + JAHVHq” Vivde = Jﬁ)dw, Yo eV
Q Q

4.21)  (MM)
JAHVquE-V”wdac—ejA”V|‘qs~Vdeac:0, Ywe L.
Q Q

This AP-reformulation will be called in the sequel Asymptotic-Preserving problem
based on a micro-macro decomposition (MM-problem). It is, for fixed ¢ > 0, an equiva-
lent reformulation of the original (P,)-problem. Moreover,inthelimite — 0oneobtainsa
well-posed saddle-point problem, which is equivalent to the Limit-problem (4.10).

The essential advantage of this MM-reformulation, as compared to the first one,
is that no more constraint spaces appear, such that the MM-formulation can be
solved immediately without the introduction of additional variables. Remark also
that the basic difference between the two reformulations is simply the manner how
to render the decomposition of V unique, on one hand by imposing zero average along
the anisotropy field lines, i.e. g, =0, on the other hand by fixing the boundary
condition ¢, = 0.

in

4.5 - Numerical results

Let us present now some numerical simulations performed for a variable field b
with both AP-schemes and compare for validation the obtained results with those of a
standard discretization of the singularly perturbed problem (P),. In particular, we
are interested in the validation of the Asymptotic-Preserving property of the new
schemes, in their ability to capture the Limit-model (1) as ¢ tends to zero, without
refining the grids.

The non-uniform magnetic field b we choose, is given by

(4.22) b— B B (Z(Zy — 1) cos(mx) + n)

Bl 2n(y? — y) sin(nx)

Note that the field B satisfies divB = 0, which is an important property in the frame-

work of plasma simulations. Furthermore, we have B # 0 in the computational domain.
Now, in order to test the space-convergence of the schemes, regardless of ¢, we

construct an exact solution ¢°, given by

¢ = sin(ny + 2% — ) cos(mx)) + &cos(2mx) sin(my)
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Streamlines of the field B

y

Fig. 4.1. 2D plot (in the (x,y)-plane) of the limit solution qf:o (left), for the non-uniform
anisotropy field b (right: magnetic streamlines in the (x,%)-plane).
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Fig. 4.2. Relative L?- and H'-errors between the exact solution ¢° and the computed ones
¢y MM), ¢, (DB), ¢p (P), as a function of ¢ and for different meshes.

and the associated force term is calculated using the equation, i.e.
& 1 &
f=-V.-(A/V.¢) - EV“ (A V9.

In Figure 4.1 we plotted the limit solution of the sequence {¢°},., which permits to
distinguish the anisotropy field lines.



[63] ASYMPTOTIC-PRESERVING SCHEMES. MODELING, SIMULATION AND MATHEMATICAL ETC. 327

The relative errors between the exact solution ¢° and the numerical ones, obtained in
this framework with the three methods, the standard FE-discretization of the P,-
problem, the DB-scheme and the MM-scheme, are presented on Figure 4.2, as a
function of the parameter ¢ and for several mesh-sizes. Both, the Micro-Macro and the
Duality-Based AP-approaches, give the same accuracy, they converge with the optimal
rate in both L2- and H'-norms, independently of ¢. The singularly-perturbed model
gives however reliable results only for e-values larger than a critical value ep.
Furthermore the condition number of the DB- and MM-schemes is bounded in-
dependently on ¢, whereas the one for the P,-problemis exploding with 1 /¢ (see F'ig. 4.3).

As a concluding remark, the AP-methods presented here are shown to be very
efficient schemes for the resolution of highly anisotropic elliptic problems, permit-
ting an accurate resolution, independent on ¢, and without having to adapt the grid to
the anisotropy.
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10410 10412
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(a) mesh size: 100 x 100 points (b) mesh size: 400 x 400 points

Fig. 4.3. Condition number estimate provided by the MUMPS solver.

5 - Highly anisotropic parabolic equations

Section based on the articles of:
A. Mentrelli, C. Negulescu °
A. Lozinski, J. Narski, C. Negulescu °

This last section deals with the numerical study of a nonlinear, strongly aniso-
tropic heat equation. As explained in the previous section, magnetically confined
plasmas are characterized by highly anisotropic properties induced by the strong

9 Asymptotic-preserving scheme for highly anisotropic non-linear diffusion equations,
J. Comput. Phys. 231 (2012), no. 24, 8229-8245.

19 Highly anisotropic temperature balance equation and its asymptotic-preserving
resolution, arXiv:1203.6739v1, Mar 2012.
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magnetic field B. The charged particles constituting the plasma move rapidly around
the magnetic field lines, their transverse motion away from B is constrained by the
Lorentz force, whereas their motion along B is relatively unrestricted. This results in
an extremely large ratio of the parallel to the transverse thermal conductivities, as
well as of other parameters characterizing the plasma evolution.

The objective of this part will be to treat the numerical problems arising (due to
the anisotropy) in the energy conservation equation of the fluid model (II.1).
Keeping only the problematic terms, we are thus interested in the particle (ions or
electrons) temperature u(t, x), solution of the evolution equation

By — %vu APV )~V (A YV iw) =0, in [0,T]xQ,

Lo A Tl ) s (ALY e, ) = ),

(5.1) (P), on [0,T]xT,,

Viu(t,-) =0, on [0,T]x I,
w0,) =), in Q.

The coefficient y is zero for electrons and y > 0 for ions. The boundary I is de-
composed into three components following the sign of the intersection with b:

Ty :={xel /b nx)<0}, y:={xel /bk)- n) >0},

and I} = I, U T ,,;. The vector n is here the unit outward normal to I". Most of the
other notations are adopted from the previous section.

The problem (5.1) describes the diffusion of an initial temperature «° during the
time interval [0, T], and its outflow through the boundary I", (see Fig. 5.1). A de-
tailed mathematical study of this problem (existence/uniqueness/positivity of a weak
solution) is provided in [45]. Some other classical works [51, 1] deal (from a mathe-
matical point of view) with similar nonlinear parabolic problems. Indeed, this kind of
highly anisotropic diffusive problem arises in several other important applications,
as for example in magnetic resonance imaging (MRI), which is a powerful technique
for studying the anatomy of the brain. Moreover highly anisotropic PDE’s appear
also in image processing and other computer vision problems.

Putting now formally ¢ = 0 in (5.1) leads to the following ill-posed problem, ad-
mitting infinitely many solutions

-V (A”u5/2V”7/L) =0, in [0,7T]xQ,
(5.2) ® "M (A2, )V yut, ) =0, on [0,T]1x I,
. VLu(t, ) = 07 on [0, T] X F” ,

w(0,) = u’(-), in Q.
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Fig. 5.1. Diffusion of a hot temperature spot along the magnetic field lines.

Undoubtedly, all functions which are constant along the field lines, meaning
Vu = 0, and satisfying moreover the boundary condition on I"|, are solutions of
this problem. From a numerical point of view, this ill-posedness in the limit ¢ — 0
can be detected by the fact, that trying to solve (5.1) with standard schemes leads
to a linear system, which is ill-conditioned for 0<e¢ < 1, in particular with a
condition number of the order of 1/¢. Refining the mesh (in the temporal variable)
would help (up to a certain limit) to avoid this constraint, is however computa-
tionally too expensive.

The aim of this section will thus be to introduce an efficient numerical
method, permitting to solve (5.1) accurately on a coarse Cartesian grid, which
has not to be adapted to the field lines of b and whose mesh size is independent
of the value of .

5.1 - Numerical method

The construction of an AP-scheme, which shall be able to capture the various
scales present in the problem with no additional numerieal costs, in particular, which
shall allow for a smooth transition between the singularly perturbed problem (P),
and the Limit problem (L) as ¢ — 0, passes through some preliminary mathematical
steps. Firstly the Limit model has to be identified. It is defined as the problem whose
solution is the limit of the singularly-perturbed problem solutions {,},., as ¢ tends



330 CLAUDIA NEGULESCU [66]

to zero. Then, after this identification, the key idea of the AP-methodology is to
reformulate the singularly perturbed problem into an equivalent problem, which is
better suited for the limit as ¢ — 0, in particular which captures the Limit problem as
¢ tends to zero.

The reformulation of the here proposed method is based on a “Hilbert-type”
Ansatz, similar to the one introduced in the previous elliptic framework. Let us first
discretize in space and then in time.

5.1.1 - Semi-discretization in space

The variational formulation of the singular perturbation problem (5.1) reads:
Find u(t,-) € V := H'(Q) such that

1
(Beult, ), )y y + = JAH [PV juct, ) - Vo de

(53) (P, “
+ JALVLu(t, - Vivde +y J ul, wdeo =0, YweV,

Q ry,

for almost every ¢ € (0, 7). As mentioned earlier, this problem becomes ill-posed if
we take formally the limit ¢ — 0. Only the leading term survives in this limit, so that
any function from the kernel-space

giz{pGV/VszoinQ}

would be a solution. The well-posed Limit problem is however easy to establish, si-
milarly to the elliptic methodology. One can restrain the test functions in (P), to be in
the space G so that the ¢-dependent term disappears and the correct problem in the
limit ¢ — 0 reads: Find u(t, -) € G such that

L) (o, ), ”>v*,v + JALVLM(L )-Vivde+y J ut, )vde =0, Yweg
Q

I,

for almost every ¢t € (0, T).

The target is now to find a way in order to get a smooth transition between the
singularly perturbed problem (P), and the limit problem (L) as ¢ — 0. In order to do
this, we introduce an auxiliary unknown g by the relation eV ¢ = 4%V u in @, sa-
tisfying moreover g, = 0. This procedure rescales the nasty part of the equation
permitting to get rid of the terms of order O(1/¢). The reformulated problem, called
in the sequel the Asymptotic-Preserving reformulation (AP-model) reads: Find



[67] ASYMPTOTIC-PRESERVING SCHEMES. MODELING, SIMULATION AND MATHEMATICAL ETC. 331

(u(t, ), q(t, ) € V x L, solution of

-y + J(ALVLM) Vivdx + JAHVH(] . VHvdx
Q

Q
(5.4) (AP) +7y J =0, WweV,
r

=

JA“M5/2V|‘M : Vde% — EJAHV”C] : Vuwdac =0,Ywe L,
Q Q

where the Lagrange multiplier space is given by
(5.5) L:={qeL*Q) / Vg€ L*Q) and |, =0}.
System (5.4) is an equivalent reformulation (for fixed ¢ > 0) of the original (P),-pro-

blem (5.3). Putting now formally ¢ = 0 in (AP) leads to the well-posed limit problem

V+J(Alviu) Vlvdac—kJAHVHq VHdeC
Q

Q
(5.6) (L) +y J =0, WweV,

I

=

JA“M5/2V“M : VH’M)d.’)C =0, YwelL,
Q

which is equivalent to problem (L). Note that q acts here as a Lagrange multiplier for
the constraint u € G, which provides the uniqueness of the solution. Hence the AP-
reformulation permits a continuous transition from the (P),-model to the L-model,
which enables the uniform accuracy of the scheme with respect to .

To discretize the (AP)-system in space, let us choose a triangularisation of the
domain 2 and introduce the finite dimensional spaces V;, C V and £;, C L of type Py
or Q on this mesh. The finite element discretization of (5.4) writes then: Find
Uy, qn) € V), X L, such that

J vhdx—&— J(AJ_VJ_/I/L]I) -V d%-i—JAHVH(]h -VH?}}L dx
Q

Q
+y J v, ds =0, Y, €V,

r,

(5.7) (AP,

JAH?/LZ/ZVHZL;L . Vuwh dx — 8JA||Vth . Vuwh dx = 0, Ywe/L,.
Q Q
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Remark that this system is continuous in time and also nonlinear, such that one
has to develop now a procedure for the linearization and the discretization in time.
This procedure has to be chosen carefully, such that the AP-property developed so
far, will not be destroyed.

5.1.2 - Semi-discretization in time

In order to approach numerically the time derivative in (5.7), we use three dif-
ferent schemes : a standard first order, implicit Euler scheme, the Crank-Nicolson
scheme and a second order, L-stable Runge-Kutta method. These three methods will
be exposed to numerical tests and compared.

Denoting by © > 0 the time-discretization step and introducing the forms

(5.8) O, = J@){ dx ,
Q
(59) aHnl(Y/, @, Z) = JA|‘Y/5/2V||@ . VH;{ dm,
Q
(510) CLH(@,){) = JAHVHQ VH)(dDC, CLJ_(@,;{) = JAJ_VJ_@ VL;(doc,
Q Q

allows to present the three methods.
Implicit Euler scheme: Find (uZ“, qz‘“) € V), x Ly, solution of

(™t o) + (th(%zﬂ, o) + ay (g o) + VJMZH% d8> =(uy,, vn)
ry,

(5.11) (Eap)
a’Hnl(ugv quFl’ wh) - ga\\(qz+lv wh) =0 )

where the nonlinear term (u;z'“)w % was replaced by a first order approximation

int:

(5.12) g2 = (gl + 0@)* = w)* + 0.
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This scheme is first order in time, unconditionally stable and asymptotic-pre-
serving.

Crank-Nicolson scheme: Unfortunately, this method is not Asymptotic-
Preserving. It gives reliable results and second order convergence under certain
assumptions, as for example under the restrictive choice of a time step
T~¢/ (u}j)5/ 2 which makes the method inapplicable. If this condition is not ver-
ified, the numerical solution starts to oscillate and gives even negative tempera-
tures. In other words, the Crank-Nicolson scheme is unable to model diffusion
processes for large At, due to the inadequate approximation of the damping pro-
cesses. It is an A-stable scheme, but not L-stable and the AP-property of a scheme
is strongly related to the L-stability of the scheme.

Diagonally Implicit Runge-Kutta scheme: As we are interested in an AP-
scheme, which is second order accurate in time, we propose now a two stage
Diagonally Implicit Runge-Kutta (DIRK) scheme, which does not suffer from
the limitations of the Crank-Nicolson discretization. The scheme is developed
according to the following Butcher’s diagram:

A A 0
(5.13) 1] 1—=X A
| I—XA A
with,l—l—i
%

Remark 5.1.1 (Butcher’s diagram). The coefficients of the s-stage Runge-Kutta
method are usually displayed in a Butcher’s diagram :

(&3] a a1s

(5.14)
Cg g e Ugg

I by -+ by

Applying this method to approximate the following problem

ou
(5.15) 5 Lu+f@®),
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reads: For given u", being an approximation of u(t,), the u"*! is determined via :

S
(5.16) wi=u"+7y_ ay(Lu; +ft+ ¢),
j=1

S
(5.17) w' =y 4 Z bju,.
=1

Ifbj = ag forj =1,...,s than w"' = u,.

The scheme (5.13) is known to be L-stable, thus providing the desired Asymptotic
Preserving property. It writes: Find (uZ’*l, q;f“) € Vy, x Ly, solution of

i it o) + A (m(uiﬁzl, )+ J uy' o, ds + ay (g1}, vh)>

Iy

= (uy;, vp)

(1 + 200, — =, 1w ) = e (g4 0p) = 0
(5.18)  BEar) | @it v) + 2 (m(uﬂl, ) +7 J il ds + (s w))
I,

1-4 /
= (o) +—— (uf# —uj, vh)

-1 1 41 _
@l (u}f + (g —uy ), uy), 7wh) —ea)(qy;, ,wy) =0

n+l __ ,,n+l n+l _ n+l
Up = Uy, s 4, =4y

with uﬁ;l (respectively u’;‘;l) being the solution of the first (respectively second)
stage of the Runge-Kutta method. The terms uyy + Muy — uZ*I) and uy + (u) — u}fl)
are respectively the second order time-approximations of u;(t + Ar) and u,(t + 1),
used to linearize the problem.

For each time step we have therefore to assemble and solve two linearized pro-
blems. This method is two times slower than the Crank-Nicolson scheme, with the
advantage however of maintaining the AP-property of the scheme, advantage which
is crucial for 0<e <« 1.
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5.2 - Numerical results

In this last section we compare (for validation) the proposed implicit Euler-AP
and DIRK-AP schemes with a standard linearized implicit Euler discretization of
the original singularly perturbed problem (5.1). The test case is similar to the one
introduced in the elliptic framework, .e. the magnetic field is given by

2y — 1) cos(nx) +
B B:( Y cos(mx n)

5.19 b=—,
(5.19) B

n(y? — y) sin(nx)

and an exact solution is constructed in order to validate the AP-scheme

(5.20) p = (cos(ny + (* — y) cos(nw)) +4)Tpe™
(5.21) q = p~*?sinBmx) /37
(5.22) U =p+eq.

The problem is supplied with a force term computed accordingly.

The space and time convergence of the methods is tested, with focus on the ¢-
dependence of the errors. To do this we choose first a small time step such that the
time discretization error is much smaller than the space discretization error. We
then vary the mesh size and perform simulations for 100 time steps. The L? relative
errors between the exact solution and the three schemes are plotted in Figure 5.2, as
a function of the perturbation parameter ¢. All three methods give as expected the
third order space convergence in the Lg-norm for large values of e. Moreover, due to
the extremely small time step, the numerical precision is the same, no matter if one
uses first or second order methods. As expected, for small values of ¢ only the
Asymptotic Preserving schemes give good numerical solutions.

) — S ) —
— (E-MM) —— o (E-MM) —o—
1 Nttt (RK-MM) —=— 1 ——— (RK-MM) —=—
. ‘\
01 \\ 01 N
\ N
001 \ 001 \
\ \
\ \
0,001 g 0001 N
\
\
00001 00001 \
1606 1e05 \\
\
1008 1008 \ 2
1007 1007

1e-15

1e-10

(a) h=0.1

1e-05 1

1e-15

1e-10

1e05 1

(b) h = 0.00625

Fig. 5.2. Relative L?-errors between the exact solution % and the computed solution for
the standard scheme (P,), Euler-AP method (E4p) and DIRK-AP scheme (RKp) as a
function of ¢ and for 2 = 0.1 resp. & = 0.00625. The time step is 7 = 1075,
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Secondly we test the time convergence of the methods. To do this we choose
a small mesh size such that the space discretization error is smaller than the
time discretization error. We then vary the time step and perform simulations
on a fixed grid. The results are summarized in Figure 5.3. Note that the (RK4p)
scheme is of second order in time as long as the error due to the time dis-
cretization dominates the error induced by the space discretization. The stan-
dard (P,)-scheme works well and is of first order, as long as ¢ is close to one. The
(Eap) scheme is of first order for all values of the anisotropic parameter. One
has to observe here, that while the (RK4p) scheme demands twice more com-
putational time than the (E4p) scheme, it gives much better precision.

Fig. 5.3. Relative L?-errors between the exact solution ¢ and the computed solution with
the standard scheme (P), the Euler-AP method (£ 4p) and the DIRK-AP scheme (RK4p) as a
function of ¢ and for = = 0.00625. The spacial grid is 200 x 200.

To conclude, one can remark that the asymptotic-preserving schemes, (K 4p)
and (RK4p), are uniformly accurate with respect to the perturbation parameter
e. This essential feature can be very useful in situations where the anisotropy is
variable in space, i.e. the parameter &(x) is x-dependent. No mesh-adaptation is
any more needed in these cases, a simple Cartesian grid enables accurate re-
sults, with no regard to the ¢-values. Hence, the AP-scheme we proposed here is
very powerful, as it allows the use of the same scheme to discretize (P.) as well
as the Limit model (L), in other words it is able to capture automatically the
different scales in the problem, while the numerical discretization parameters
(4x and 4t) remain independent on the stiffness parameter ¢. These parameters
have only to be adapted to the scale of interest.

As a last numerical test, we investigate the evolution of the following initial
Gaussian peak, located in the middle of the computational domain:

(5.23) W, y) = % (1 + 6750(9070,5)2750(%0.5)2) 7



[73] ASYMPTOTIC-PRESERVING SCHEMES. MODELING, SIMULATION AND MATHEMATICAL ETC. 337

(a) t=0 (b) t = 0.01

Fig. 5.4. Numericalsolution (2D plotinthe (x, ) plane) at different time steps for the Gaussian
peak experiment, for T, =10° and = 1. Time step is 1=0.01s and the mesh size is 50 x 50.

where T, = 10° K is the maximal temperature in the domain and the anisotropy
direction is given as in the previous tests. We perform numerical experiments
with the choice of ¢ = 1 and a coarse Cartesian grid. What can be observed is the
nice rapid diffusion of the temperature along the magnetic field lines.

5.3 - Magnetic islands

The Asymptotic-Preserving schemes introduced so far in the elliptic and para-
bolic framework (section 4 and 5) can no longer be used (in the here presented form)
if the anisotropy field lines are closed in the study domain, in other words if the
anisotropy field lines do not cross the boundary. Indeed, in both formulations we
made use of the Lagrange multiplier space

L={qe Q) | Vg L*Q), qr, =0},

where the condition g, = 0 was essential to be able to get a unique solution to the
1 . .
problem Vq = EVHu or equivalently to be able to decompose in a unique way

u = p + eqwith Vp = 0 and Vu = £V q. For all this, it is crucial that each field line
enters the domain, such that one can fix q.

Closed anisotropy field lines are often encountered in tokamak plasma simu-
lations, where the magnetic field is evolving in time and so-called magnetic islands
are appearing. These magnetic islands are formed by a reconfiguration of the
magnetic field, in particular magnetic field lines of opposite directions can brake
and rejoin in order to form an entirely new magnetie topology of lower energy. See
[6] for more details.
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In these cases stabilization techniques will help to circumvent the non-unique-
ness problems. In particular, instead of (5.7) one has to solve the slightly modified
system (modification of order O(h?))

ot
Q Q 2

+v J URVy, ds = 0, Yo, €Vy,
(5.24) (AP), L

0
Jﬂvh dx + J(Alvluh) -V v, dx + JAHVth . V”’l)h dx

JA‘|MZ/2V‘|uh . V“’M)}L der —¢
Q

A”V”qh . V“’M)}L dx = h3 qpwy, dac,

Q—
Q —

Yw € Eh,

where this time the Lagrangian multiplier space is given by
L:={qeL*Q) | VqeLXQ)}.

The stabilization term acts on the Lagrange multiplier space and is an artificial
manner to render the problem Vg = EV”u coercive and hence uniquely sol-

vable on the new space £. This idea comes from the approximation of saddle-
point problems, as for example the Stokes problem, where the stability helps to
satisfy the inf —sup condition (which ensures the existence, uniqueness and
convergence of the discrete mixed system) on a larger range of finite dimen-
sional discrete spaces.

This work is at the moment in progress. The first results are shown in the next
Figures, simulated by Jacek Narski [47]. These Figures illustrate the diffusion (at
two different instants) of the temperature in a varying magnetic field, revealing
islands.

Fig. 5.5. Temperature diffusion (at two different time instants) in a magnetic island
context. 2D plot in the (x,%) plane.
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Summary

We presented in this review some efficient numerical schemes developed to treat
singularly perturbed problems. The main difficulty of singularly perturbed pro-
blems is the occurrence of stiff terms, induced by some small perturbation para-
meter 0 <¢ < 1. Hence, the solutions exhibit a multiscale character, which is difficult
to capture numerically.

The strategies introduced in this review for the construction of schemes
preserving the asymptotic behaviour of the solutions in the limit ¢ — 0 (called
Asymptotic-Preserving schemes) are based on a detailed mathematical study of
the dominant operator, the identification of the Limit model as ¢ — 0 and the
decomposition of the unknown in a macroscopic part (belonging to the kernel of
the dominant operator) and a microscopic part. These two parts satisfy a cou-
pled system of equations, equivalent to the initial singularly perturbed system.
The advantage of the Micro-Macro system is that it leads automatically to the Limit
model, when the perturbation parameter ¢ tends to zero. We would like to underline
here that the construction of AP-schemesis not unique, and several other AP-strategies
are presented in literature, for example based on a combination of splitting, penaliza-
tion, exponential methods. We preferred the Micro-Macro approach in this review, as it
is arather elegant and systematic strategy, allowing also for a rigorous mathematical
study.

After the obtention of the Micro-Macro coupled system, one has to take care
when discretizing this system in order not to destroy the AP-properties with a
non-adapted discretization. Several numerical tests have been also presented in
this review to illustrate the efficiency of the developed AP-schemes. In parti-
cular these schemes are shown to be uniformly stable (in ¢) along the transition
from the initial problem (microscopic level) to the Limit problem (macroscopic
level). This property is very important in practical applications, where the
perturbation parameter can vary considerably within the study domain. In other
words, the AP-schemes are able to approximate uniformly precise the solutions
in both regimes, microscopic as well as macroscopic, and this on e-independent
grids, which have not to be adapted to the anisotropy direction.

The Asymptotic-Preserving techniques presented in this review can be ap-
plied to other singularly perturbed problems, coming from physics, biology,
chemistry, economy etc. But each time, one has to study apart/independently
the occurring dominant operator and construct an adapted AP-scheme for the
special problem. No general AP-methodology can be proposed, valid for all
problems.
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