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Abstract. We show that the usual Weyl quantization provides a Stratonovich-
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the real diamond group . This Stratonovich-Weyl correspondence is related to that
obtained by polarization of the Berezin map in [B. Cahen, Berezin quantization and
holomorphic representations, Rend. Sem. Mat. Univ. Padova 129 (2013), 277-297].
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1 - Introduction

The notion of Stratonovich-Weyl correspondence was introduced in [33] as a
generalization of the classical Weyl correspondence [1]. The systematic study of the
Stratonovich-Weyl correspondences began with the work of J. M. Gracia-Bondia, J.
C. Viarilly and their co-workers (see [23], [20], [18] and [22]).

Definition 1.1. [22] Let G be a Lie group and 7 a unitary representation of G
on a Hilbert space H. Let M be a homogeneous G-space and let u be a (suitably
normalized) G-invariant measure on M. Then a Stratonovich-Weyl correspondence
for the triple (G, z, M) is a linear isomorphism W from a space of operators on H to a
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space of (generalized) functions on M satisfying the following properties:

1. W maps the identity operator of H to the constant function 1;
2. the function W(A*) is the complex-conjugate of W(A);
3. W is G-covariant with respect to 7: For each g € G and x € M, we have

Wn(g) An(g) @) = WA g™ - w);
4. Traciality: We have

J WA) (@)W (B)(x) du(x) = Tr(AB).
M

Stratonovich-Weyl correspondences were constructed for various Lie group re-
presentations, in particular for the unitary irreducible representations of the
Poincaré group [18]. In [16], Stratonovich-Weyl correspondences for holomorphic
representations of quasi-Hermitian Lie groups were obtained by taking the iso-
metric part in the polar decomposition of the Berezin quantization map (see also [20],
[14], [15] and, for the case of Hermitian symmetric domains, [2], [3]).

Let us consider the case of the (2n + 1)-dimensional Heisenberg group Gy. Each
non-degenerate unitary irreducible representation of G has two classical realiza-
tions: the Schrédinger realization on L2(R") and the Bargmann-Fock realization on
the Fock space [21]. An intertwining operator between these realizations is the
Segal-Bargmann transform [21], [19]. In the setting of the orbit method, the
Schrodinger realization can be obtained from a real polarization of the corre-
sponding coadjoint orbit of Gy and the Bargmann-Fock realization from a complex
polarization [5], [6]. Moreover, the usual Weyl correspondence provides a
Stratonovich-Weyl correspondence for the Schrodinger realization [4]. It is also
known that this Stratonovich-Weyl correspondence is related, by the Segal-
Bargmann transform, to the Stratonovich-Weyl correspondence for the Bargmann-
Fock realization which was obtained by polarization of the Berezin quantization map
[29], [30].

In the present paper, we show that the preceding results for the Heisenberg
group can be extended to the (2n + 2)-dimensional real diamond group G. The dia-
mond group (also called oscillator group) is a solvable simply connected non-ex-
ponential Lie group which is a semi-direct product of the Heisenberg group with a
real line. As the Heisenberg group, the diamond group plays an important role in
harmonic analysis and in quantum mechanics [28], [26].

Each generic coadjoint orbit of G does not admit any real polarization and the
corresponding representation is usually realized as a holomorphically induced re-
presentation on the Fock space. Schridinger realization of such a representation can
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be nevertheless obtained from the Bargmann-Fock realization by conjugation with
the Segal-Bargmann transform. We show that the usual Weyl correspondence is
covariant with respect to this Schrodinger realization and then gives a Stratonovich-
Weyl correspondence. We compare this Stratonovich-Weyl correspondence to that
constructed by using the general method of [16].

This paper is organized as follows. In the Sections 2-4, we recall some known
results about the unitary irreducible representations of the Heisenberg group and
the Segal-Bargmann transform, and we interpret these results in the context of the
method of orbits. In Section 5 and Section 6, we introduce the (2n + 2)-dimensional
real diamond group G, the generic coadjoint orbits of G, that is, the coadjoint orbits
of maximal dimension, and the corresponding unitary irreducible representations.
In Section 7, we describe a real parametrization and a complex parametrization of a
generic coadjoint orbit of G, which are obtained by dequantizing the Schréodinger
realization and the Bargmann-Fock realization of the corresponding representation.
Finally, in Section 8, we establish our main results on Stratonovich-Weyl corre-
spondences associated with these representations of G.

2 - Representations of the Heisenberg group

In this section, we introduce some notation relative to the Heisenberg group and
the Schrodinger and Bargmann-Fock realizations of its unitary irreducible non-
degenerated representations.

Let G be the Heisenberg group of dimension 2% + 1 and g, be the Lie algebra of
Go. Let {Xy,...,X,,,Y1,..., YH,Z} be a basis of g, in which the only non trivial
brackets are [X;, Y] =2, 1 <k <n and let {X{,...,X;,Yf,...,Y;,Z*} be the
corresponding dual basis of gj.

For a = (a1, az,...,a,) € R", b= (by,bg,...,b,) € R" and ¢ € R, we denote by

[a, b, c] the element expy, ( S apXk + > 0k Y + CZ) of Gy. The coadjoint action of
k=1 k=1
G is then given by

n n n
Ad*(a,b,cl) (Z o X, + Z[)’kYI: + yZ*> — Z (o + ybi) X,
—1 k=1

k=1 k

n
+> B —ya) Yy +9Z
=1
Fix a real number 4 > 0 and denote by O, the orbit of the element &; := 27 of as
under the coadjoint action of Gy (the case /<0 can be treated similarly). By the
Stone-von Neumann theorem, there exists a unique (up to unitary equivalence)
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unitary irreducible representation of Gy whose restriction to the center of Gy is the
character [0, 0, c] — €' [5], [21]. This representation is associated with the coadjoint
orbit O, by the Kirillov-Kostant method of orbits [26]. More precisely, if we choose
the real polarization at &, to be the space spanned by the elements Y, for 1 <k <n
and Z then we obtain the Schrodinger representation p, realized on LA2(R™) as

(. b, D)) = P _ q),

n
see [4] for instance. Here we use the notation xy := > ayy for @ = (1, %2,. .., %)
k=1
and ¥y = (y1, ¥z, - .-, ¥n) in R". The differential of p, is then given by

dp, X f @) = =0 (), dp,(Yi)f @) = il f(x), dp,(D)f () = iAf (x)

where k = 1,2, ...,n. Moreover, if we choose the complex polarization at &, to be the
space spanned by the elements X, + 1Y}, for 1 <k <n and Z then we obtain the
Bargmann-Fock representation n; defined as follows [10], [12].

Let H; be the Hilbert space of holomorphic functions on C" such that

IF|F = J IFG)P e 2 dpy ()< + oo
cn
where du;(2) := (2nd)"" de dy. Here z = x + iy with x and y in R".
Let us also introduce the action of Gy on C" defined by ¢ - z := z + A(b — ia) for
g =1l[a,b,c] € Gy and z € C". Then r; is the representation of Gy on H; given by

() F@ =g, ) F(g™ -2)
where the map o is defined by
a(g,z) = exp(—icd + 1/ + ai)( — 2z + A(— b + a1)))
for g = [a,b,c] € Gy and z € C".

The differential of 7, is given by

dm;(X,)F (2) :l’szF(Z) + ;ulg
2 8zk
oF

1
dn,(Y)F(2) Zész(z) — /lé‘_zk

dn,(Z)F(2) =i/F(2).

By following the same lines as in [24], Section 6 or [19], Section 1.3, we can verify
that the Segal-Bargmann transform B : L2(R") — H; defined by

B(f)(Z) _ (/1/77,’)72/4 J 6(1/4/1)z2+ixz—()./2)m2f(m) da

R™
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is a (unitary) intertwining operator between p, and ;. The inverse Segal-Bargmann
transform B~! = B* is then given by

BAF)@) = (3)m)"* J AP G/22® Py o o122 Gy (),

R"

For z € C", introduce the coherent states e,(w) = exp (Zw/24). We have the re-
producing property F'(z) = (F,e;), for each F' € H; where (-, -), denotes the scalar
product on H;.

We can transfer the coherent states e, to L2(R") by putting ¢, = B~ le,.

Proposition 2.1.

(1) Foreach g € Gy and each z € C", we have m;(g)e, = meg.z.

) Similarly, for each g € Gy and each z € C", we have p,(9)e; = (g, 2)eg...
B) Foreach z € C" and x € R", we have

() = (4 /n_)n/4 oU/ADZ —iaz—(0/ 2%

Proof. (1) This is an immediate consequence of the reproducing property,
see [13].

(2) Taking the equality B~'7;(g9) = p,(¢9)B™! into account, the result follows
from (1).

(3) By the reproducing property again, we have (f,¢;), = B(f)(z) for each
f € LA(R") and z € C" hence the result. O

3 - Berezin quantization

In this section, we introduce the Berezin quantization map and we review some of
its properties, in connection with the representations of the Heisenberg group.

Consider an operator (not necessarily bounded) A on H,; whose domain con-
tains e, for each z € C". Then the Berezin symbol of A is the function Sy(A)
defined on C" by

<A €z, € )i
<ez7 ez> 2 .
We can verify that each such operator is determined by its Berezin symbol and

that if an operator A has adjoint A* then we have Sy(A*) = Sy(A4), see [7], [17].
Moreover, we have the following result.

So(A)(z) =
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Proposition 3.1. Let A be an operator on H, whose domain contains the
coherent states e, for each z € C". Then, for each g € G, the domain of m;(g 1 )An;(g)
also contains e, for each z € C" and we have

So(mi(9) " Amy(9)(@) = So(A)(g - 2)

foreach g € G and z € C", that is, Sy is Go-covariant with respect to ;.
Proof. This follows from (1) of Proposition 2.1. O

Let L2(H;) be the space of all Hilbert-Schmidt operators on H,. As a particular
case of [34], Proposition 1.19, we have:

Proposition 3.2. The map Sy is a bounded operator from Lo(H;) (endowed
with the Hilbert-Schmidt norm) to LA(C", u,) which is one-to-one and has dense
range.

Recall that the Berezin transform is the operator B on L?(C") defined by
B = SoS; or, equivalently, by the integral formula

B)@) = J Faw) e 12 dyu, ),
on
see [7], [8], [34], [32] for instance. Recall also that we have B = exp (14/2) where
A=4 kznjl 0%/ 021,0%,, see [34], [30]. Another interesting property of S is given by the

following proposition. Here we denote by g the complexification of g.

Proposition 3.3. Let ®@; be the map defined by
n ~x
®,(2) =Y (Rez X + Imz,Yy) + 12 .
k=1
Then
(1) Foreach X € gf and each z € C", we have
So(dm;(X))(z) = i(D;(2), X).
(2) Foreach g € Gy and each z € C", we have ®;(g - z) = Ad*(g) D;(2).
8) The map d; is a diffeomorphism from C" onto O;.

This proposition can be proved by a direct computation. It can be also considered
as a particular case of [16], Proposition 5.1.
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Now, we transfer Sy to operators on L?(R") by using B. We consider the map S
defined by S(A) := So(BAB1) for A operator on L?(R"). Equivalently, we have

(Ae,, &)y
(&2, 8z>2

Clearly, the properties of Sy give rise to similar properties of S. In particular, S is
a bounded operator from Lo(L2(R")) to L2(C", 1;) (Proposition 3.2) and S is Go-
covariant with respect to p, (Proposition 3.3). Also, by Proposition 3.3, we have
S(dp;X))(z) = i{D,(2),X) for each X € g, and z € C". Moreover, denoting by b the
map from L3(L2(R™)) onto Lo(H;) defined by b(A) = BAB~!, we have S = Syb then

SA)z) =

SS* = (Sob)(Sob)" = Sobb*S; = SoS;; = B,

that is, the Berezin transform corresponding to S is the same as the Berezin
transform corresponding to Sy. Then we can write the polar decompositions of
S, and S under the form Sy = BY2U, and S = BY2U where the maps Uy : Lo(H;)
— LA(C" ;) and U : Lo(L2(R")) — L*(C", ;) are unitary. Thus, by following the
same lines as in the proof of [15], Proposition 3.1, we see that U is a Stratonovich-Weyl
correspondence for (G, 7;, C") and that U is a Stratonovich-Weyl correspondence for
(Go, p;, C"). In particular, the Gy-covariance properties for Uy and U follows from
Proposition 3.1. Note also that we have U = Ujb.

4 - Weyl quantization

In this section, we show that the Weyl correspondence gives a Stratonovich-Weyl
correspondence for p,. Recall that the Weyl correspondence on R®" is defined as
follows.

For each f in the Schwartz space S(R*"), we define the operator W(f) acting on
the Hilbert space L2(R") by

W(f)e(p) = @Cn)™" J S f(p + (1/2)s,q) o(p + s)ds dg.

R

It is well-known that the Weyl calculus can be extended to much larger classes of
symbols (see for instance [25]). Here we only consider a class of C*°-functions f(p, q)
which are polynomials in the variable q. If f(p, ¢) = u(p)q* where u € C°(R") then
we have

@) W = (i5:) -+ 12900 + ),
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see [35]. In particular, if f(p,q) = u(p) then W(f)p(p) = u(p) p(p) and if f(p,q)
= w(p)qx then

(42) W(He(p) = i(1/2)0u(p) p(p) + w(P)p(p)).

Let us introduce the action of Gy on R*" given by ¢ - (p,q) := (p + a,q + /b)
where g = [a, b, c]. The following proposition is analogous to Proposition 3.1.

Proposition 4.1. Let ¥, be the map defined by

n
Vip,q) = > (quXy — ApiYp) + 7.
k=1

Then
(1) Foreach X € gj and each (p,q) € R2", we have

W dp,X))(p, @) = i{¥(p,q), X).
(2) Foreach g € Gy and each (p,q) € R?" we have
(g (p, @) =Ad (9)¥;:(p, Q).

(3) The map ¥, is a diffeomorphism from R* onto O,.

Proof. (1) By applying (4.2), we verify that W(q;) = —idp;(Xy), W(ipy)
=1idp,(Yy) for each k=1,2,...,n and W(1) = —idpl(Z). The result follows.
Now, (2) is a consequence of the formula for the coadjoint action of G and it is
easy to verify (3). O

Note that the maps @, and ¥, are related by @,(q — Api) = ¥,(p, ¢) for each
(p,q) € R*.

We endow R with the Gy-invariant measure ji := (2m)"dp dq. Then we have the
following proposition.

Proposition 4.2. The map W is a Stratonovich-Weyl correspondence for
(Go, 9 R,

Proof. We have just to prove that W1 is Gy-covariant with respect to p, since
the other properties of a Stratonovich-Weyl correspondence are easy to deduce
from the classical properties of the usual Weyl correspondence. Covariance prop-
erty can be deduced from [21], p. 83 (see also [22]) but the proof uses the Wigner
transform. Here we sketch a more direct proof. Let f € LA(R*", 1), p € C3°(R™),
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g =1[a,b,0] € Gy and p € R". We can express W(f)(p,(9)p)(p) as an integral. By
making the change of variables (s, ) — (s, q + Ab) in this integral, we get W(f)p,(¢)p
= p,(@W(f)p where f is defined f(p, @) = f(p + @, g + 2b). Hence the result. O

The following proposition asserts that if we identify R*" with C" by
(p,q) — q — Api then the unitary part in the polar decomposition of S coincides
with the inverse of the Weyl transform. This result was proved by S. Luo (see
[30], Theorem 6). Here, we present a slightly different proof based on covar-
iance.

Proposition 4.3. For Fye LA(C", u;), we have SW(F):BI/ZFO where
F(p,q) = Fo(q — Ap1). Consequently, denoting by j the map Fo— F, we have
U=Wj.

Proof. LetF e L%(R*, j)andze C". We have to compute SW(F)(z). As in the
proof of Proposition 2.1, we fix g = [a, b,0] € Gy such thatg - 0 = z,i.e. A(b — 1a) = z.
By using the fact that W is Gy-covariant, we have

SWE) @) = e V2R W (E)e,, )y = (WEP(@)eo, p(9e0)s = (WE)eo, 50

where F(p,q) := F(p + a,q + Ab).
Now, from the definition of W it is clear that

(W(E)zy, &),
_ (27[)7"'(2.7'[_1)"/2 J eisq—(l/Q)((p+s)2+P2) F(p + (1/2)8 +a,q+ Jb) dp ds dq.
R

By performing the change of variables (p,q) — (p — (1/2)s — a,q — Ab) in this in-
tegral and by using the formula

2
J oisr G/ gg (4_71)"/ —y
A

R"
we get

SWF)(z) = (W(F)ey, e0)y = 1" J F(p,q)e 0=~/ gy g,

R

On the other hand, from the equality B =exp(l4/2) (see Section 3), we
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deduce that

B2(F)e) = ()" j Fow) /% dy aw)

cr
" J o0 G-/ (0 Jpi) dp d.

RZn

Then we obtain SW(F) = BY%(Fy). Thus the polar decomposition of S is
S = BY2(Wj)~! hence we have U = (Wj) . O

Let v; be the Gy-invariant measure on O, defined by v, := ((15;1)*(/4 D= ;1)*([4).
Then the maps ¢, :F — Fod;! from L*C" ) onto L*0;,v;) and
ty, :F — FoW¥;' from LR* j) onto L*);,v;) are unitary and we have

Tp, = Ty, ]-

Proposition4.4. Themap Wi := ty, WL is a Stratonovich-Weyl correspon-
dence for (Go, p;, O0;), the map Ws := t4,Uy is a Stratonovich-Weyl correspondence
for (Gy, n;, O,) and we have Wi = Wab.

Proof. By Section 3 and Proposition 4.2, it is clear that W; and W,
are Stratonovich-Weyl correspondences. Moreover, we have W; =14, j 1W!
= Tg, Uob = ng. O

5 - The diamond group

Let n be a positive integer. The (2n + 2)-dimensional diamond (real) Lie algebra
@ is the semi-direct product of R with the (2n + 1)-dimensional Heisenberg Lie al-
gebra. More precisely, g has basis {H, Z.X,.... X0, Y1,. .., Y, }, the only non-trivial
brackets being given by

[H, X ] = -Yy; [HY)=Xy; [X,Yil=2

Let G be the connected and simply connected (real) Lie group with Lie
algebra g. Then G is a non-exponential solvable Lie group. Each g € G can be
written uniquely as

n

g=-exptH exp<z Xy + Z bpY) + cZ)
=1 k=1

where t, ¢, a; and by are real numbers. Then we denote g = (¢, (ay), (bx), ¢). The group
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law of G is given by
@, (ar), (br), ©).t', (a), (bp), ¢') = (", (@), (by), ¢")

where
' =t4t

a, = aj, + aj cost’ — by sint’

w = by, + aisint’ + by cost’

n
" =c+c +% Z(cos t (aby, — ajby) — sint'(agay, + bib),)).
k=1

Note that the Heisenberg group Gy is the subgroup of G consisting of all elements
of G of the form (0, a, b, c) = [a, b, c] in the notation of Section 2.

Let {H*,Z*,Xl*, X0 YE 0 Y} be the dual basis of g*. The coadjoint action
of g = (¢, (ar), (0, 0) € Gon ¢ = [d, (o), (Bp), 7] := dH* +yZ + 3 0 Xj; + 32 iV} s
given by Ad"(¢)¢ = [d, (o), (ﬁ;&), v'] where Y = y and k k

n n
Y
d=d+; ;(a,% +07) + ;(akbk — afy)
o), = oy cost + B sint — p(ay sint — by cos t)
B = — oy sint + B, cos t — p(ay, cos t + by sint).

From this, we easily deduce that if a coadjoint orbit of G contains a point of the form
[d, (ox), (B)), 0] then it is trivial or diffeomorphic to R x S!. Moreover, if a coadjoint
orbit contains a point [d, (o), (51,), ] with y # 0then it has dimension 27 and contains a
unique point of the form [d, 0, 0, y] with  # 0. Such an orbit is called generic.

In this paper, we fix &, = [dy, 0,0, A] with 4 > 0 (the case 1<0 can be treated
similarly). As shown in [6], the method of orbits associates with the coadjoint orbit
O(&p) the unitary irreducible representation of G on H; defined by

((F)(2) = e—i\u|2/4 10" 1022 i dot-+7c) F(e'z + Jiu)

where g = (t,a,b,c) € G and u := a + 1b.

The representation z can also be obtained by the general method of construction
of holomorphic representations of quasi-Hermitian Lie groups described in [31],
Chapter XII (see also [16]). Note that here we use a realization which is slightly
different to that of [16], Section 7, an intertwining operator between these realiza-
tions being F(z) — F(i/'z). Then the restriction 7|, is precisely the representation
7; of Gy introduced in Section 3.
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6 - Schrodinger representation of the diamond group

In this section, we introduce the Schrédinger representations of G by using
the Segal-Bargmann transform B. Note that these Schrodinger representa-
tions cannot be obtained by a direct application of the method of orbits (as this
is the case for Gy, see Section 3) since the corresponding coadjoint orbits do
not admit real polarizations, see [6], p. 191. However, we can also introduce
the Schrodinger representations of G by studying the extensions of p, to G [6],
p. 192.

More precisely, we define the representation p of G on L?(R") by setting
p(g9) := B ln(g)B for g € G.

Proposition 6.1.

(1) The restriction of p to Gy s p;.
(2) The operator p(exp (tH)) is given by p(exp (tH)) = exp (dp(tH)) where

p 1
dp(H)f(ac):i<d —’3+—x2>f(x)—i— P f
7272 21; e

Proof. Statement (1) clearly follows from the fact that B intertwines p, and
7;, see Section 2. To prove (2), we have to compute dp(H) = B~'dn(H)B. First, we
note that

d(H)F@) = idoF )+ 2 %F .
= Y%

To simplify the notation, we set C := (1/ 7)"/* and
oz, ) = Ez + Xz —gac )

Then, for f € Co(R"), we have

2
(drn(H)B)f (2) = idoB(f)(z) + iC J (;7 + zzx) e Of () dac.

R"
Thus, by integrating by parts, we obtain
n

(dﬂ(H)B)f(Z) —=iC J ea(z,x) ((do _ g + ;xz)f(ﬁ(}) — ?,2i;L Z 8,%k f> dex.

R" k=1

Hence the result follows. O



[13] STRATONOVICH-WEYL CORRESPONDENCE FOR THE REAL DIAMOND GROUP 209

Then we see that dp(H) is the sum of a scalar operator and a Schrodinger op-
erator. The problem of exponentiating a Schrodinger operator has been intensively
studied, in particular in the context of the metaplectic representation, see for in-
stance [9] and [21]. It is known that the exponential of a Schrodinger operator can be
expressed as an integral operator, see [21], p. 193. We can also describe the spectral
decomposition of exp (tdp(H)) as follows. Let us introduce the Hermite polynomials

1
2 d 2
e ™

Hy(x) == (—1e" s

)
for [ € N and define
wi(@) = /YA @UN) Y2 R H (V).

Then the functions vy (x) := wy, (wwy, (@2) ... vy, (@), k= k1, ke, ... k) € N",
form an orthonormal basis of L2(R") consisting of eigenvectors of dp(H) hence of
exp (tdp(H)), see [21], p. 52 and [9]. More precisely, we have p(exp (tH))y,
= ¢itdotkDy, for each k € N".

7 - Dequantization of p and =

In this section, we compute W~1(dp(X)) for X € g¢, having in mind to extend
Proposition 4.1 to G. The following lemma is an immediate consequence of
Equation (4.2).

Lemma 7.1. We have W(q;) = —idp(Xy), W(Upy) =1idp(Y}) for k=1,2,... n,

W) = —idp(Z) and W(do — g + g p:+ %f) = —idp(H).

Now, we consider
R . e . ~x Ag 1 5\ ...
Y(p,q) = ;quk - A;kak +7 + (do +5P + 574 )H .
Then we have %(0,0) = &,. Let us also consider the action of G on R*" given by
g-(p,@) = ((p+a)cost + (Alg + b)sint, (g + Ab) cost — A(p + a)sin t)

for g = (t,a,b,c).

Proposition 7.2.

(1) Foreach g € G and each (p,q) € R¥ we have ¥(g - (p,q)) = Ad"(g) ¥(p, q).
(2) The map ¥ s a diffeomorphism from R?" onto O(&y).
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(8) Foreach X € g¢ and each (p,q) € R?" we have
WdpX))(p, @) = (¥ (p,q) — (n/2H" , X).

Proof. Statement (1) follows from the formula for the coadjoint action of G, see
Section 5. Statement (2) is a consequence of Statement (1). Statement (3) follows
from Lemma 7.1. O

On the other hand, let us introduce the action of G on C" defined by
g-2=e""z+ Ab—ia)) for g = (t,a,b,c). In [16], we showed the following propo-
sition which is analogous to Proposition 3.3.

n .
Proposition 7.3. Let ®(z):= )" (Rez.X; +Imz,Y,)+1Z (do+(1/20)|zHH".
Then k=1
(1) Foreach X € q° and each z € C", we have
So(drnX))(z) = i(P(z), X).

(2) Foreach g € G and each z € C", we have ®(g - z) = Ad*(g) D(2).
3) The map d is a diffeomorphism from C" onto O(&y).

Clearly, the maps @ and ¥ are connected by @(q — iip) = ¥(p, ¢). Then we re-
cover the following result of [16].
Proposition 7.4. Foreach X € g° and each z € C" we have
Up(drn(X))(z) = i(®P(z) — (n/2)H", X).

Proof. In Section 4, we proved that Uyb = U =j 'W~1. Then, for each
X € g% we have Uy(dn(X))=5""W1b 1 drn(X)) =5 'W-1(dp(X)), hence the result
by (3) of Proposition 7.2. O

8 - Stratonovich-Weyl correspondence for G
As seen in [16], it follows from the classical properties of Sy that U, is a
Stratonovich-Weyl correspondence for (G, 7, C"). In particular, U, is G-covariant

with respect to 7 since Sj is.

Proposition 8.1. The map W' is a Stratonovich-Weyl correspondence
for (G, p, R®").
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Proof. As in the proof of Proposition 4.2, we have just to show that W—! is G-
covariant with respect to p. This can be deduced from the G-covariance of U as fol-
lows. Denote by L the left-regular action of G on C°°(C") defined by
(LgF)(z) = F(g'-2) forge G, F € C*(C") and z € C". Similarly, denote by I the
left-regular action of G on C*(R*"). Then the G-covariance property of Uy can be
written as Uy(n( g)An(g)_l) = L,Uy(A) foreach A € £L3(H;) and each g € G. Since we
have Uy =/ 'W1b"!, this is equivalent to the fact that W-1(p(g)A'p(g)™ ")
= jLyjYW=Y(A’) for each A’ € Lo(L*(R")) and g € G. Since we have , = jL,j !, the
result follows. O

In Section 3 and Section 4, we showed that Uy and W~! are not only Stratonovich-
Weyl correspondences for the representations p, and 7, of Gy, but also adapted Weyl
correspondences in the sense of [11], Section 6. By Proposition 7.2 and Proposition
7.3, we see that Uy and W~ are not adapted Weyl correspondences for 7 and p,
respectively. It seems to be difficult to construct a Stratonovich-Weyl correspon-
dence for n (or p) which is also an adapted Weyl correspondence. If, however, we

associated p with the coadjoint orbit of &, + gl—] * (instead of &) then Uy and W—!

would become also adapted Weyl correspondences. But such a way to associate re-
presentations with coadjoint orbits is not conform to the classical orbit method, see
[6], [26] and might be justified by other arguments, see for instance the discussion in
the case of the unitary irreducible representations of a compact semi-simple Lie
group in [26], Chapter III.

Let v be the G-invariant measure on O(&) defined by v:= (& 1) (u;)
= (P 1*(@0). Clearly the maps 74 : F — F o @7 from L3(C", u;) onto L2(O(), )
and 1y : F — Fo%™! from L2(R*", 1) onto L2(O(&y),v) are unitary and we have
7¢ = t¢j. By following the same lines as in the proof of Proposition 4.4, we
obtain:

Proposition 8.2. The map Wi := tg W~ is a Stratonovich-Weyl correspon-
dence for (G, p,(’)(éo)), the map Ws = 16U is a Stratonovich-Weyl correspondence
for (G, , O(&y)) and we have Wi = Wab.
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