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Conditional results about primes between consecutive powers

Abstract. A well known conjecture about the distribution of primes asserts that
all intervals of type [, (n + 1)?] contain at least one prime. The proof of this con-
jecture is quite out of reach at present, even under the assumption of the Riemann
Hypothesis. In a previous paper the author, assuming the Lindeléf hypothesis,
proved that each of the interval [n* (n + 1)*] contains the expected number of
primes for o > 2 and n — oco. In this paper we prove the same result assuming in
turn two different heuristic hypotheses. It must be stressed that both the hy-
potheses are implied by the Lindel6f hypothesis.
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1 - Introduction

A well known conjecture about the distribution of primes asserts that all intervals
of type [12, (n + 1)?] contain at least one prime. The proof of this conjecture is quite
out of reach at present, even under the assumption of the Riemann Hypothesis.
D. A. Goldston proved the conjecture assuming a strong form of Montgomery
Conjecture, see [6]. The author improved this result by proving that all intervals of
type [#2, (n + 1)°] contain the expected number of primes, for n — oo, assuming a
weaker hypothesis about the behavior of Selberg’s integral in short intervals, see
D. Bazzanella [2].

This paper is concerned with the distribution of prime numbers between two
consecutive powers of integers, as a natural generalization of the above conjecture.
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In a previous paper the author, assuming the Lindel6f hypothesis, proved that each
of the interval [n*, (n + 1)*] contains the expected number of primes for « > 2 and
n — oo, see [4, Theorem 1].

In this paper we prove the same result assuming in turn two different heuristic
hypotheses. It must be stressed that both the hypotheses are implied by the Lindel6f
hypothesis.

The first new hypothesis is a weakened version of the hypothesis stated in
D. Bazzanella [3].

Hypothesis 1. There exist a constant Xy and a function Ay, T) such that, for
every 5/12<f<1/2 and ¢ > 0, we have

2X

J Wy +y/T) — wy) — y/T + Ay, T)|*dy < XF+ert-2
X

and
Ay, T) < y/(Tlog y)

for at least ome integer k> 1, uniformly for X > X, X?12<T<XF and
X <y<2X

To state the second new hypothesis we need to use the counting functions N(a, T)
and N®(g,T). The former is defined as the number of zeros p = f + iy of the
Riemann zeta function which satisfy ¢ < f < 1 and |y| < T, while N® (g, T)is defined
as the number of ordered sets of zeros pj = ﬂj + z'yj (1 <j < 2k), each counted by
N(o, T, for which [py + -+ 9 — ey — -+ — 7e] < L.

We start to observe that D. Bazzanella and A. Perelli [1] made the heuristic as-
sumption that there exists a constant 7T such that

N(s, T)*

(1) N, T) <« T

Té}

for every T > T and arbitrarily small ¢ > 0, which is close to being the best possible,
in view of the trivial estimate

N(o, T)*

N®@G. T
(0,T) > T

The above may be generalized and weakened to

N(o, T)*

(k)
N9, T) <« T

7 (1/2<0<0),
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with suitable <1 and arbitrarily small ¢ > 0. We now observe that the Lindeldf
hypothesis implies that for every # > 0 we have

N(o,T) < T*1=9*1  (1/2 <o <1),

see A. E. Ingham [10], and then we are led to claim the following.

Hypothesis 2. Forevery 0 < n<1/6 there exists an integer k > 2 such that
N, T) < TH*A=-11 (1/2 <6 <5/6+1).

We note that Hypotheses 1 and 2 are weaker than the Lindel6f hypothesis, see
G. Yu [13, Lemma B] and D. R. Heath-Brown [8, Lemma 1] respectively.
We are now able to state our main theorems.

Theorem 1.1. Let o > 2 and assume Hypothesis 1, then each of the interval
[n%, (n + 1)*] contains the expected number of primes for n — oc.

Theorem 1.2. Let o > 2 and assume Hypothesis 2, then each of the interval
[n*, (n + 1)*] contains the expected number of primes for n — oc.

Note that despite Hypothesis 1 and 2 are implied by the Lindeldf hypothesis we
obtain the same expected distribution of primes between consecutive powers and
then the two theorems are stronger than Theorem 1 of [4].

2 - Definitions and basic lemma

The basic lemma is a result about the structure of the exceptional set for the
asymptotic formula

(2) w(@ + h(®) —yw(x) ~ h(x) as x — oo.

Let X be a large positive number, 6 > 0 and let | | denote the modulus of a
complex number or the Lebesgue measure of a set. Let (x) be an increasing function
such that x® < h(x) < x for some ¢ > 0 and

EsX,h) ={X <wx <2X : |ylx+ h(x) — wlx) — h(x)| > oh(x)}.

It is clear that (2) holds if and only if for every J > 0 there exists X((d) such that
Es(X,h) = 0 for X > X,(6). Hence for small 6 > 0, X tending to co and h(x) suitably
small with respect to x, the set E5(X,h) contains the exceptions, if any, to the
asymptotic formula (2). We will consider increasing functions A(x) of the form
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h(x) = 2/+%®) with some 0 <0 <1 and a function &(x) such that |e(x)| is decreasing,

e(x) =0(1) and e(ac—i—y):s(ac)—i—O( v >
x log &

A function satisfying these requirements will be called of type 6.

Lemma . Let0<6<], h(x)beoftype 6, X be sufficiently large depending on the
function hx) and 0<d' <3 with 6 — & > exp(— /log X). If xy € Es(X,h) then
Ey(X, h) contains the interval [xg — ch(X), xo + ch(X)IN[X, 2X ], wherec = (6 — )0 /5.
In particular, if Es(X, h) # 0 then

|E5(X, k)| >4 (0 — 0)h(X).

The lemma essentially says that if we have a single exception in E5(X, k), with a
fixed J, then we necessarily have an interval of exceptions in Ky (X, k), with ¢’ little
smaller than J. The interesting consequence of this lemma is that we can use an
average estimate to prove the non-existence of the exceptions.

The above lemma is part (i) of Theorem 1 of D. Bazzanella and A. Perelli, see [1].

3 - Proof of the Theorems

The theorems assert that
3) w(n+1)") —pm*) ~m+1"* —n*  as  n— oo,

assuming a suitable heuristic hypothesis. In order to prove the theorems we assume
that (3) does not hold. Then there exists 6 > 0 and a sequence 1; — oo such that

w((n; + 1) — wd) — [ + 1" — ]| > oln; + D" — n)].

In the remainder of the proof we will always assume that n; is sufficiently large as
prescribed by the various statements. Putting x; = nj“ and h(x) = (/" +1)* — x, we
then have

lw(e; + h(x;) — w(x;) — h(x;)| > oh(x;))

and hence we have x; € Es(x;, k). The use of the lemma leads to
(4) |5 iy, )] > htaey) >

On the other hand we can bound |E';2(x;, h)| and find a contradiction with (4). For any
Y € Es/2(xj, h) we can write

1-1/o

(5) Wy + h@) — p) — )] > Shiy) > 2t
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for every x; <y < 2x;. We divide the interval [x;,2x;] into O(In? x;) subintervals
Ji = la;, ai1], with

.
(6) a; =% +1 1 72
og “x;

and define
B o(@j, h) = Ejpp(aj, h) N J;.

We let
(1) T;=a;" /o

and observe that Hypothesis 1 implies that there exist aninteger k > 1, a constant X
and a function A(y, T) such that, for every i, we have

2z

(8) j Wy +y/T) —wy) - y/Ti + Ay, TOI*dy < o T}
Lj

and

9) Ay, T) < y/(Tilog y),

uniformly for x; > Xo and x; < y < 2x;. From the Brun-Titchmarsh theorem, see H.
L. Montgomery and R. C. Vaughan [12], we can deduce that for every ¢ we have

%71/05
w(y + ) —yw(y) — k) = vy +y/T) —wy) —y/Ti + Ay, T;) + O (ﬁgm) ’
4

for every y € J;. The above bound and (5) imply that

Wy +y/To) — ) — y/T; + Ay, T > ;%

for every y € Eg /z(xj, h). Thus we obtain

[Epalacy, )| < a1 j Wy +y/T) — () — y/Ti + Ay, T dy
Eg/z(“,z'vm

ij

<o S [ty /T~ )~ y/ T+ A TP dy.
i

<

By (8) we conclude that

(10) [Bsyeley, )| < a7y T T g
i
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For o > 2, when ¢ is sufficiently small and «; is sufficiently large we have a contra-
diction between (10) and (4), and this completes the proof of Theorem 1.

To prove Theorem 2 we use the classical explicit formula, see H. Davenport
[5, Chapter 17], to write

e —1 x;log %
) — — —— p - e )
1)  wy+y/T) -y —y/Ti MZI;?/ P O( R, )
uniformly for x; <y < 2, where 6; =log(1 + T;1), 10 < R; <u; and p = +1iy
runs over the non-trivial zeros of {(s). If we choose R; = Tilog‘?’xj and recall (7) and (6)
we have
xj/“logng <R < x;/“ logx;

and

S 1-1/a
edir —1 ;
vy +y/T) -y —y/Ti=— > o +0<7 >
[7|<R; P
We note also that
5

1
< Jetﬁdt§65i<<i.

()

[ e a
0

Sip _
(12) e 1’ _

p

0

Follow the method of D. R. Heath-Brown we can prove that for « > 2 and every fixed
u > 5/6 we have

o _1  a
YooY <
[YI<R;, p>u P 0g X;
see (12.79) in [11]. Thus we obtain
e‘siﬂ -1 96'171/0(
wy +y/T) —yy) —y/Ti = — Y colT |
Iylég,ﬂgu P log x;

for every i and y € J;. As before we observe that for every y € J; we have

!71/01
wy +h(y) —wy) — y) =wly +y/T) —yw(y) —y/T; + O( ! )

log x;
and then
eél‘p _ 1 x!*l/a
vy + b)) —vy) — hy) = - y o5
‘}"SRXL:/}SM P log X



[7] CONDITIONAL RESULTS ABOUT PRIMES BETWEEN CONSECUTIVE POWERS 67

for every ¢ and y € J;. This implies that

2u; 2%k
. dip 1
—ok(1-1/a o
(13) |Es/o(j, h)| < x; 2ka-1/ )Z J R4 a.
i x; [YISRi, B<u p

To estimate the 2k-power integral we divide the interval [0,%] into O(Inx;) sub-
intervals I, of the form
I — [ r  r+1 }

logx;’ log ;
By Hoélder inequality we obtain

2k 2k

3 oy e(sfﬂp 1 o Sy e(’fﬁp 1

[I<R;, B<u | yI<R;, pel,

Following again the method of D. R. Heath-Brown, we write

el — 1
J Z Y ——| dy <
5 | WI<Ripel, P

(agyprt AT PP P P e Pt
j

Wiy Prpa (A et Pt P+ 1)

[11|SR; o |79k | <R;

X (€ — 1) (77 = 1)(eP1 — 1) ("7 — 1)

1 . . 1
< o x;JrZIcv/long _ -
Ti ﬂl...,./fzkzr'/lnng |p1 +oe pk +pk+1 et p2k + ]'|
<R gl <R;
This implies
efsiP -1 1 2ka+1+¢
(14) S oy dy < 7 max o7 Mo, Ry,
o |[PISRi, p<u p i 0st
j
where
1
M(o,R;) =
' ﬁl,m%zﬁ TP+ 0 = Vo — 0 — Yol

[111<R; oo lrp |<B;
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and
(15) M(o,R;) < N®(a, R)log x;
see [11, p. 336]. From (13), (14) and (15) we have
(16) By, )] < 240y - max "N, R;).
— o<
We now consider an arbitrarily small constant > 0, let v = 5/6 +  and assume
Hypothesis 2. Thus for every 1/2 < ¢ < u we have

—g)— 2i 4k(1—0)—-1)/a
xJZ_kaN(k)(a7Ri) < x]z_kaR;lk(l 0)—1+n < xik0+( k(1-0) )/o'-Hy.

For o > 2 the above upper bound attains its maximum at ¢ = « and then from (16) we
obtain
a7 By g, )| <y OO

For « > 2, when ¢ is sufficiently small and x; is sufficiently large we have a contra-
diction between (17) and (4), and this completes the proof of Theorem 2.
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