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On the hydrodynamical limit for a one dimensional kinetic model

of cell aggregation by chemotaxis

Abstract. The hydrodynamic limit of a one dimensional kinetic model describing
chemotaxis is investigated. The limit system is a conservation law coupled to an
elliptic problem for which the macroscopic velocity is possibly discontinuous.
Therefore, we need to work with measure-valued densities. After recalling a blow-
up result in finite time of regular solutions for the hydrodynamic model, we establish
a convergence result of the solutions of the kinetic model towards solutions of a
problem limit defined thanks to the flux. Numerical simulations illustrate this
convergence result.
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1 - Introduction

1.1 - Modeling

Chemotaxis is a process in which a population of cells rearrange its structures,
reacting to the presence of a chemical substance in the environment. In the case of
positive chemotaxis, cells migrate towards a concentration gradient of chemoat-
tractant, allowing them to aggregate. Since several years, many attemps for de-
scribing chemotaxis from a Partial Differential Equations viewpoint have been
considered. The population at the macroscopic level is described by a coupled system
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on its density and the chemoattractant concentration. The most famous Patlak,
Keller and Segel model [19, 24] is formed of parabolic or elliptic equations coupled
through a drift term. Although this model has been successfully used to describe
aggregation of cells, this macroscopic model has several shortcomings, for instance
the detailed individual movement of cells is not taken into account.

In the 80’s, experimental observations have shown that the motion of bacteria
(e.g. Escherichia Coli) is due to the alternance of ‘runs and tumbles’ [1, 14, 21, 23].
Therefore kinetic approaches for chemotaxis have been proposed. The so-called
Othmer-Dunbar-Alt model [21, 23, 25] describes the dynamic of the distribution
function f of cells at time £, position x and velocity v and of the concentration of
chemoattractant S:

Of+v-Vuf = J (TISIW — v)f (') — T[SIw — v)f (v) dv/,

(1) vevV
—AS + S = p(t,x) = J f@,x,v)dv.

veV

In this equation, T[S](v' — v) denotes the turning kernel, that is the probability of
cells to change their velocity from v’ to v, and V the set of admissible velocities. It
is typically a compact symmetric set of R®, which in the case of E. Coli can be
chosen as a sphere, V =S, := {v | ||v|| = ¢}, which means that all cells have the
same velocity c. Several works have been devoted to the mathematical study of
this kinetic system, under various assumptions both on V and the turning kernel,
see for instance [11, 10, 13, 17].

Derivation of macroscopic models from (1) has been investigated by several au-
thors. When the chemotactic orientation, or taxis, that is the weight of the turning
kernel, is small compared to the unbiased movement of cells, the limit equations are
of diffusion or drift-diffusion type. In [16, 22], the authors show that the Patlak-
Keller-Segel model can be obtained as a diffusive limit for a given smooth che-
moattractant concentration. A rigorous proof for the case of a nonlinear coupling to
an equation for the chemical can be found in [11], leading to a drift-diffusion equation.

In this paper we focus on the opposite case, where taxis instead of undirected
movement is dominating. The model has been proposed in [12], and we briefly recall
how it is obtained. The limit problem is usually of hyperbolic type, see for instance
[15]. Dominant taxis is reflected in the transport model by the fact that the dom-
inating part of the turning kernel depends on the gradient of the chemoattractant. At
this stage, two possible models are encountered. On the one hand, we can assume
that cells are able to compare the present chemical concentrations to previous ones
and thus to respond to temporal gradients along their paths. The decision to change
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direction and turn or to continue moving depends then on the concentration profile of
the chemical S along the trajectories of cells. Thus the turning kernel takes the form
(independant on v)

2) TSI — v) = DS + ' - V,.S).

On the other hand, if cells are large enough, it can be assumed that they are able to
sense the gradient of the chemoattractant instantly so that we can use instead the
expression

(3) TISIW — v) = W - V,S).

Theoretical results as well as numerical simulations for models (1)-(2) and (1)-(3) are
proposed in [28].

The function ¢ in the preceding formulae is the turning rate, obviously it has to be
positive and monotone. More precisely, for attractive chemotaxis, the turning rate is
smaller if cells swim in a favorable direction, that is ;S +v -V,S >0 (or
v - VS > 0). Thus ¢ should be a noninereasing funetion. The converse holds true for
repulsive chemotaxis. We refer e.g. to [12] for results in this general configuration.
For the sake of simplicity, we choose here the following form for ¢: we fix a positive
parameter o and a mean turning rate ¢, > 0, and take

4) D(x) = ¢ (14 ¢)),
where ¢ is an odd function such that

. , 4+ i< -«
(5) $eC*(R), ¢ <0, ¢(9c)—{_/1 if x> o

where 0 </ <1 is a given constant.

The turning kernel (2), compared to (3), makes drastic changes in the behaviour
of the solutions to the kinetic model (see [28]). Up to now we cannot take it into
account in the theory, so that we focus in the following on the expression (3). As
observed above, this can be considered as a biologically relevant model.

In the turning kernel, a specific parameter quantifies the “memory” of the bac-
teria. When this parameter is small, a specific asymptotic regime leads to a mac-
roscopie, hydrodynamic model. In order to introduce this parameter, we rescale the
system (1) by setting

X = 2o, t = tot, v = VY7,
S(t,x) = SoS(E, ), ft,x,v) =foft,z,v), D(2) = $yP(2),
where vy = cis the typical speed, x is the characteristic length of the device and the
typical time is defined by ty = x¢/v¢. Dropping the bars, the scaled version of (1)
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reads
o U= + | s — o) - Tisi0 — vy v
—AS +S =p,
where ¢ = & < 1is the parameter we are interested in: it corresponds to the time

interval of information sampling for the bacteria. The hydrodynamic limit corre-
sponds to ¢ — 0, and we first recall formally how it is obtained.

1.2 - Formal hydrodynamic limit

We focus in this work on the one dimensional version of (6), so that the transport
takes place in # € R and the set of velocity is V = {—c, c}. The expression of the
turning kernel simplifies in such a way that (6) with (3) rewrites

() Oftodf = (@~ 008N~ 0) — BESHW),  veV

(8) = OuaSe + 85 = p, = f:(0) + fi( = ).

We formally let ¢ go to 0 assuming that S and f admit a Hilbert expansion
fe=fotefi+---, Se=8So+e&S1+---.

Multiplying (7) by ¢ and taking ¢ = 0, we find

9) D — c0:S0)fo( — ©) = P S0)fo(©).

Summing equations (7) for ¢ and —c, we obtain:

(10) H(fi(0) + £:( = ©) + cdu(fi(€) — fi — ) = 0.

Moreover, from equation (9) we deduce that

B D(— €0xSy) — P(cO,Sy)
D= ¢,Sp) + P(cD:So)

The density at equilibrium is defined by p := fo(c) + fo( — ¢) = [ fo(v) dv. Taking
¢ = 01n (10) we finally obtain

Oip + 0:(a(0xS0)p) = 0,

Jo(e) = fo(—c¢) (fole) + fo(—c¢)).

where a is defined by

D(— c0,Sy) — D(cOxSo)

a(0:S0) = ¢ &(— ¢0,S0) + D(cdsSy)
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This formula holds true for any turning rate @, but using (4), it simplifies in
(0:S0) = —cp(c0xS)).
Notice that a is actually a macroscopic quantity, since we can rewrite

[ v @9, So) dv
9.8)y=Y_
U080 = S dv
v
so that this expression is independant of the sign of c.
We couple this equation with the limit of the elliptic problem (8) for the che-
moattractant concentration, so that, in summary, and dropping the index 0, the
formal hydrodynamic limit is the following system

(11) Op + 9(a(0,S)p) = 0,
(12) w(0xS) = —c ¢y S),
(13) — OuS+ S = P

complemented with the boundary conditions

(14) Pt =0,x) = p™ix), lim p(t,x) =0, lim S(t,x) = 0.
r—too r—+o00

The formal hydrodynamic limit from (7)-(8) to (11)-(12)-(13) has been obtained in
[12] and proved rigorously in the two-dimensional setting for a given smooth S. The
aim of this paper is to give an account of the problems and open questions arising in
the study of the whole coupled system.

1.3 - Preliminary remarks

First notice that, even in this one dimensional framework, this study leads to
difficulties mainly due to the lack of uniform estimates for the solutions to the
kinetic model when ¢ goes to zero and consequently to the very weak regularity of
the solutions to the limit problem. Even though existence of weak solutions to the
kinetic model is ensured in a LP setting, no uniform L* bounds can be expected.
The reader is referred to [28] for some numerical evidences of this phenomenon,
which is the mathematical translation of the concentration of bacteria. This is
some kind of “blow-up in infinite time”, which for ¢ = 0 leads to actual blow-up in
finite time, and creation of Dirac masses. Moreover the balanced distribution
vanishing the right hand side of (7) depends on S;; thus the techniques developed
e.g. in [11] cannot be applied.
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We turn now to formal considerations about the limit system, noticing on the one
hand that a solution of (13) has the explicit expression

(15) S(t,x) = K = p(t,-)x), where K(x) = % e,

so that the macroscopic conservation equation for p (11) can be rewritten
(16) p + 9(a(, K % p)p) = 0.

When a is the identity function, this is exactly the so-called aggregation equation,
which has been studied by several authors, see [2, 3, 4, 20] and references therein. In
particular, finite time blow-up is evidenced when the kernel K is not smooth enough.

On the other hand, taking « = 0 in the definition of ¢ (5) and assuming that the
chemoattractant concentration is increasing for x <xy and decreasing for x >
(which is usually true when cells aggregate at the position xy), we deduce that
a(0,S) = —(1 — A)c sgn(x — xp) which presents a singularity at « = xy. The con-
servation equation (11) becomes therefore a linear conservation equation with a
discontinuous compressive velocity field, and it is well known that the solution is a
Dirac mass. If o is positive, it turns out that a Dirac mass appears as well, after a
finite time.

In summary, we have to deal in the limit system with some kind of weakly non-
linear conservation equation on the density p. Indeed on the one hand the expected
velocity field depends on p, but in a nonlocal way. On the other hand, this equation
behaves like linear equations with discontinuous coefficients, in the sense that it
admits measure-valued solutions. Therefore a major difficulty in this study will be to
define properly the velocity field a = a(d, S) and the product ap.

The paper is organized as follows. In Section 2 we consider the aggregation-like
equation (16), and recall existence and uniqueness results as well as the existence of a
finite time for which L°°-weak solutions of (11)-(13) blow up. In Section 3, we in-
vestigate the hydrodynamical limit of system (7)-(8) and prove in particular that it
gives rise to a somehow natural definition of the flux in the conservation equation.
Some numerical simulations illustrating this result are furnished in Section 4.
Finally, we end this work with some conclusions and remarks.

2 - Aggregation-like equation

In this section, we consider the equation
{ Op + 0x(a(0, K * p)p) = 0,

(17) .
pt=0,)=p".



[71 ON THE HYDRODYNAMICAL LIMIT FOR A ONE DIMENSIONAL KINETIC MODEL, ETC. 97

where K is given by (15). We assume that
(18) 0<p™ e L' N L¥(R).

When a(x) = «, this equationis the so-called aggregation equation (seee.g. [2, 3,4, 6, 20]).
It is known that for singular 9,K, solutions blow up in finite time. More precisely, we
show the blow-up in finite time of L> weak solutions. Most of the results presented in
this section are obtained thanks to a straightforward adaptation of techniques devel-
oped in [2, 3, 6, 20]. Therefore some proofs are not detailed.

2.1 - Existence and uniqueness of local L*°-weak solution

We prove in this section the local existence and uniqueness of a solution.

Theorem 2.1. Let p™ € L' N L®*(R). Then there exists a T > 0 such that
there exists a unique weak solution p to (17); moreover p € C([0, T1; L' N L=(R)).

The proof is an adaptation of results in [2, 3, 20]. We first recall the definition of
the characteristics for this system: X(s; «, ) is a solution of the ODE

(19) %(s;x, t) = a(9.K * p)(s,X(s)), X x,t) = .

Then we have the following representation of the solution of (17):
t

(20) p(t, x) = p™(X(0; x,t) exp ( J (0K % p)(s,X(s — t; 2, 1)) ds) .
0

The proof of this theorem relies strongly on the following estimates:

Proposition 2.1.  Let p™ such as in (18) and let p be a solution of (17) on
[0, T]. Then there exists T > 0 such that for all t € [0, T1, there exists a nonnegative
constant C such that

112G, iy + 11, iy < €

where C only depends on ||p™ || 1 qy and ||p™ || ).

Proof. The L! estimate is an easy consequence of the mass conservation. Then,

104 + a(@, K x p)Dup| = | — Du(a(DK * p)p| < 2| |-
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Integrating along the characteristics curves, we get
¢
ot iz < 11p™ | + 2lla’]| J lpGs, 7~ ds.
0
We deduce that as long as 2||a’|| _||p™ | ~t <1,

.
1= 2]t

We notice that 7' should satisfies the bound 7'<1/@||&/||||p™ | ~)- O

Proof of existence. We do not detail the proof of the existence of solution
which can be deduced thanks to an adaptation of [2, 3, 20], where the study of an
aggregation equation is proposed. We just recall the main argument of the proof in
the following steps:

1. We construct a family of approximating solutions (p,) by solving (17) with
initial data p™ x g, where g, is a mollifier.

2. We state uniform Lipschitz estimates in space and time on the sequences
(a(0:K * p,)), and (X,), and use the Arzela-Ascoli Theorem to extract converging
subsequence.

3. We pass to the limit in the representation (20). |

Proof of uniqueness. The idea of this proof is to use the quantity S. Since
this idea will be developed for measure-valued solutions, we detail this proof.
Computations are done for regular solutions, nevertheless they can be made
rigorous by introducing a regularization and passing to the limit (see [2]). Let us
consider two classical solutions p; and p,. Denoting a; = a(9,K * p;) for i = 1,2,
we have

(21) O(p1 — p2) + Ou(a1(py — p2)) + Ou(polar — ap)) = 0.
Define S(t, ) := (0,K * (p; — p2)(, -))() which solves the problem
(22) —ams + S = pl - p27 on R

We notice that when ¢ =0, we have S(0,x) = 0. From the weak formulation of
equation (21) with the test function S, we have

t
(23) J J 8(py — po)Sdads =1 + 11
0 R
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where

t
I= ”al(pl ~ po)S dacds,
0k
t

1I = ijz(al — a9)S dxds.
0R
For the term 7, we have using (22) and integration by parts

t t t
I “a1< 0,8 + 8)S dads — %“axal 10, S[? dads +”alsz deds.
0 0

0R R R

Moreover,
0p01 = —¢@'(¢DpS1)03S1 < max{c||¢'||;~S1,0},

where we use the fact that ¢ is a noninereasing positive function. From the L*-bound
on S, we deduce that there exists f € L'([0, T]) such that d,a; < p. Thus

t ¢
J (S)J|8 S| dmds+JJa1Sded8.
0 R 0]

Then, the estimate |a;| < Jc gives

(24)

NJl»—l

t t

Jﬁ(s)Hé) S| ds + ;cJHsan ds.

0 0

For the term II of (23), we have thanks to the Cauchy-Schwarz inequality

11| = po(a(0:K  py) — a(0.K * py))S dwds

l
t
J\Ipzllella oo l|0:K * (py = p)ll 2 1S 2 ds.
0

Since 9,8 = 9,K * (p; — py), we obtain

t

(25) 11| < JH/’zHLw”a 1102 S|72 + [IS72) ds.
0
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Then, we notice that using (22) and thanks to an integration by parts the left hand
side of (23) can be rewritten

(26) Jat( p1 — po)S dards — J(\amsﬁ + $?)da.

R R

DO —

S —

Finally, we deduce from (23), (24), (25) and (26),

t

| 0.5+ e < [l (B0 S + 20 ) ds.
R 0

Uniqueness follows from a Gronwall type argument. O

2.2 - Blow-up i finite time

The blow-up of solutions of a one dimensional aggregation solution is proposed for
instance in [6] where it is proved by the method of characteristics that aggregation of
mass occurs. In [2, 3], the finite time blow-up is obtained thanks to an energy esti-
mate. We assume that the initial data is given symmetric with respect to 0 and po-
sitive. It is easy to show then that for all ¢ > 0, p(t,x) = p(t, —x). Moreover, for the
sake of simplicity, we assume that there exists ¢ > 0 such that supp(p™) C [ — 6, J].
Then for all x > ¢ the function S™ = K « pi" satisfies 9,S"(x)<0, so that the
characteristics defined by (19) are inward. Thus for all ¢ > 0, supp(p(t,-)) C [ — 9, d].

The energy of the system is defined as

(27) B =5 [ (0.5 + |87 ds = 5 [ pS d
R R

where the last formulation is obtained by integration by parts. On the one hand, we
have the obvious bound

1
(28) E®) < 5ol 1K #pllp~ < 5lIpll7s-

DO —

On the other hand, using (17) we have

%E(t} = J (0 8)0, Sp dic.

R

Moreover [|9;S||;~ < 1/2||p™|;:. Since the function a is assumed to be regular,
there exists { > 0 such that a(x)r > ¢|z|* for all © € [ — 1/2||p™||,., 1/2||p™ |, ].
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Thus,

(29) 9w > ¢ [ty
R

We now make use of the following result whose proof is given in [3]:

Proposition 2.2. There exists a constant C > 0 such that for all o suffi-
ciently small, we have for any symmetric nonnegative function p in L*(R) with a
compact support in [ — 6, 4],

J 0,K + pl2pda > C.
R
Then, from (29) there exists a constant C > 0 such that for all ¢ > 0,
E@) — E0) > Ct.

Therefore, with (28) we have proved

Theorem 2.2. Let p be a symmetric solution of (17) with symmetric, positive
mitial data with compact support included in [ — J,5]. For sufficiently small 9,
there exists a time T* > 0 for which the solution p ceases to exist, i.e.

t].il'}‘lx Hp(t, ')”Lp(R) = +OO, fO/V P S (].7 OO)

3 - Convergence for the kinetic model

In this section we investigate the convergence of a sequence of solutions to the
microscopic model (7)-(8). We are not able yet to obtain rigorously (11)-(13), for
reasons which are developed in Section 5. We actually prove that the whole sequence
of solutions is convergent, and that the macroscopic density satisfies a conservation
equation with a uniquely determined flux. More precisely, the main result of this
section is the following theorem. We introduce the macroscopic densities

pszjfsdv, p:dev.

14 14

We shall also use a function A € C*°(R) such that A’ = a.

Theorem 3.1. Let T > 0 and let us assume that p™ is given in My(R). Let
(f;, S;) be a solution to the kinetic—elliptic equation (7)-(8) with initial data fj”'i such
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that pi*t .= [ fni dv =y, * p™ where y, is a mollifier. Then as & — 0, the sequence
converges toV( p,S) in the following sense:

pe—p in Sy = C(0, T My(R) — a(Msy, Co)),

S, — 8 in  C(0,T]; W-2(R)) — weak,

and (p,S) is the unique solution in the distribution sense of

{ ap + 0. =0,

(30)
—0pS + S = p,

complemented with initial data p™ and where
31) J = —0,(A@D:8)) + a@:8)S  ae.

Before turning to the proof of this result we notice that the problem (30) is
equivalent to

(32) S — 0,K * [0(A0,9)) + a(0,8)S] =0, in D'(R).

This is obtained by taking the convolution with K of the first equation in (30). This
emphasizes the key role of S in the study of the limit.

3.1 - Preliminary results

First we recall the following statement on the kinetic-elliptic problem.

Theorem 3.2. Let T > 0 and ¢ > 0. Assume f™ € C(R). Then problem (7)-
(8) complemented with initial data f™ admits a unique weak solution in
C([0,T] x R x V) x C([0, T1; C3(R)). Moreover, we have the following estimates
uniform in ¢ > 0:

(33) JJ Ww[*f, dedv = |v[F|p™|(R), ke N.
RV

Proof. The proof of the existence can be found in [28]. The estimates (33) rely
on the conservation of the mass and on the fact that since v € V =S, |v| is con-
stant. O

Then, we furnish a convergence result for a sequence of functions S.

Lemma 3.1. Let (p,)uen be a sequence of measures that converges weakly
towards p in Sy. Let S, (t,x) = (K  p, &, )(x) and S¢,x) = (K * p(t, )(x), where K
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18 defined in (15). Then when n — oo we have
0 Syt,x) — 0,St,x) fora.e tel0,T], xeR,
0:Sy(t,x) — 0,8t x) m L®w— *.
Proof. We have that

x—y
|z — ¥

(34) 0e St 2) = (0K % p,(t, ) @) = J et (¢ di).
R

1
J2

Let ¢ > 0, we regularize the convolution kernel by introducing the following func-
tions:

10—
S Y e, on (— oo, x — &l Uz, +00),
2le -y

6.y = D
—< re (y—x)+1>, on (x — &, ).
2 e
]_ _
—ue"""y‘, on (— oo, x] U [x + & +00),
2 -yl

l//x.,a(y) = 11 e
5( +8e (y—x)—l), on (x,x + &).

With this definition, we clearly have for all , ¥ in R

12—y oy
(35) Vesly) <5 Ty < &, ().

Moreover by definition of the weak convergence,

Jdim [ g, wntan = [ ¢, @ty

R R

Then, from (34) and (35), we deduce

lim sup 9, S,, < J ¢..(y) pt, dy).

Nn——+00
R

Moreover,

1 ([ 1+e* 4
J%,a(y) pdy) =S +5 J (1 1w - ey‘*> p(t, dy)

&
R 1 r—e
< 0:S+ é(l — e 9)|p(t, )|(R).



104 FRANCOIS JAMES and NICOLAS VAUCHELET [14]
By the same token with v, ., we obtain the estimate

1 X ..
0, S — Q(l —e p, )R) < hm+1nf 0. Sy,

<limsup d,S, < .S + %(1 —e 9)|p(t, )|(R).

n——+0oo

Letting ¢ — 0, we get 11111 0 Sy, ) = 0,S(t, x) for almost all t€[0, Tl and xe R. O
n—-+o0

We turn now to the uniqueness of S, which is the key point to get the uniqueness
result in Theorem 3.1.

3.2 - Uniqueness for S

In [2] (see also the proof of Theorem 2.1), the authors obtain the uniqueness on
the aggregation equation by introducing a quantity which appears here naturally to
be the potential S. They get an estimate that relies strongly on the L*> bound on the
density whereas here it is only measure-valued with a finite total variation.
Therefore, we have to work in a weaker space, and we use the fact that the function S
defined by S = K * p is a weak solution of (32). We have the following result.

Proposition 3.1. Let S; and Sy be two weak solutions of (32) in
L>=([0,T1; B(R)) N C([0, TT; WHL(R)) such that 0,,S; < S;, i = 1,2, with initial data
S and Si" respectively. Then there exists a nonnegative constant C such that

151 = Sall Lo mwracry < CHSlim - Sg”HWM(R)-
Proof. Now, differentiating (32) and noticing that K satisfies —9,,,K + K = Jy,
we get
(36) 010y S + 0,(A(0:S)) — 0K * A(0,S) + K * (a(0:S)S) — a(0,S)S = 0.
The definition of S, S(t,x) = (K * p(t,))(x), implies that 9,S belongs to
L>(0,T; BV(R)). Therefore equations (32) and (36) have a sense in their weak for-
mulation. Let S; and S satisfy the weak formulations of (32)-(36) with initial data Slf’i

and ng respectively. We denote by a; = a(9,S1) and az = a(d, S2). We deduce from
(36) that

040,(S1 — S2) + 0,(A(9,S1) — A9, S2))
= 0K * (A(0,S1) — A0y S2)) + 1181 — a2S2 — K * (151 — @282).

Using the one-sided estimate 0,,S; < S; and Kruzkov’s doubling variable technique



[15] ON THE HYDRODYNAMICAL LIMIT FOR A ONE DIMENSIONAL KINETIC MODEL, ETC. 105

allow to justify the following estimate (for details see [18]):

d
%J 10:(S1 — So)| doe < [|0:K]|. J A0, S1) — A9, Se)| dac

R R

1+ KL j 1S — 0o .
R

The function a being regular, we deduce
d
(37) %J |0:(S1 — Sp)| doe < Co J 0.(S1 — Sa)| doe + C J 1S — Sq| d.
R R R

By the same token with equation (32), it leads to

d
(38) %J 1S, — So| de < o J 10.(S1 — S)| d + Cs J 1S, — Se| da.

R R R

Summing (38) and (37), we deduce that there exists a nonnegative constant C such
that

d
72 151 = Sellwnaey < ClIS1 = Szllwaey-

Applying the Gronwall Lemma allows to conclude the proof. O

3.3 - Proof of Theorem 3.1

Let (f;,S;) be a solution of (7)-(8). For fixed ¢ > 0, we have f, € C([0,T] x R x V).
We define the flux J, := [ vf; dv and the macroscopic velocity
%

[ v®d, S,) dv

v
a(0,S;) = To0a.S)dv (€0, Sy).
v

We can rewrite the kinetic equation (7) as

Ouf; + 0 f; = %(Cb( — 00y SIp, — 2f)-
Taking the zeroth and first order moments, we get
(39) Op, + O, = 0,
(40) O, +170up, = %(a(@x Sp, — ).
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From (39), we deduce that
VEe[0, T |p,( )IR) = [p™|(R).

Therefore, for all ¢ [0,7] the sequence (p,(t,-)), is relatively compact in
Mp(R) — a(Mp(R), Co(R)). Moreover, there exists u, € L*°([0, T], BV(R)) such that
P, = Oyu,. From (39), we get that du, = —J, and with estimate (33) for k =1 we
deduce that u, is bounded in Lip([0, 7, L'(R)). It implies the equicontinuity in ¢ of
(p,)s- Thus the sequence (p,), is relatively compact in Sy and we can extract a
subsequence still denoted (p,), that converges towards p in S .

We recall that S, x) = (K *p,(t,))(x) where K(x)=1/2¢ "l. Denoting
S(t, x) := (K * p(t, -))(x), since p € Spy, we have S € L>([0, T']; BV(R)). From Lemma
3.1, the sequence (9, S,), converges in L>*w — * and a.e. to 9, S as ¢ goes to 0.

From (39)-(40), we have in the distribution sense

(41) 0ip, + 0:(a(0::S:)p,) = 0u(a(0:Se)p, — ) = %ax(ath + Uzax/)g) =R,
Now, for all y € C%((0,T) x R), we deduce from (33)
‘J(ateje + 02 0up,) Dy dacdt| < [0 p™ | (R0t 1 + [V 0™ | (R Bt -

This implies that the limit in the distribution sense of the right-hand side R, of (41)
vanishes.

On the one hand, multiplying equation (8) by a(d,S,) and introducing the real-
valued function A such that A’ = a, we get

(42) W0y Sp)p, = —0:(A(0:S,)) + a(0:Se)S,,,
so that we can rewrite the conservation equation (41) as follows, in D'(R):
1
(43) atpg + a’w(_axA(axSF) + a(axsf)sf) = Egax(atJe + vzaacpg)~
Taking the limit ¢ — 0 in the distribution sense of equation (43), we get that in
D'(R)
(44) Op + 0y (—0,A(0:S) + a9, S)S) = 0,

where S(,x) = (K  p(t,-))(x). We recall that we have chosen the initial data
such that p™ = 5, + p™ where 7, is a mollifier. Therefore pi* — p™ in M,(R)—

a(Mp(R), Co(R)).
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On the other hand, as noticed above, S satisfies (32) and (36) in the distribution
sense. Proposition 3.1 above asserts that S satisfying (32)-(36) is unique. Thus p is
unique since, if we assume that there exist p; and p, satisfying (44) in the distribution
sense, then by the uniqueness of the solution of (32)-(36), we have that
K « p; = K x p, which implies that p; = py. Finally, thanks to the uniqueness, all the
sequence p, converges to p in Su.

4 - Numerical simulations

We illustrate the previous convergence result with some numerical simulations of
the problem (7)-(8). We discretize the kinetic equation thanks to a semi-lagrangian
scheme and the elliptic equation for S is discretized with P, finite elements. We refer
the reader to [28] for more details on the numerical scheme. Notice that letting & go to
0 in the simulations is very difficult because of the high numerical diffusivity of the
scheme.

We have chosen to present simulations with realistic numerical values. For the
bacteria E'scherichia Coli the velocity is ¢ = 20 - 1076 m - s~ and the density of cells
is ng = 10" m 1. The domain is assumed to be an interval of length 2y = 1 ¢m. The
turning kernel is given by (3) with ¢ in (5). Due to the large value of %y, the value of
the parameter o should be very large to have an influence; thus this parameter does
not play a role in the dynamics of bacteria and for the simulations we have fixed
o = 1. We assume that the initial concentration of cells is a Gaussian centered in the
middle of the domain. We run simulations with three different values for ¢,:
¢, = 0.05, 1 and 20 so that & = vy/(¢,xo) takes the values 1074, 2-1072 and 4 - 10-2.

In Figures 1 and 2 we present evolution of the density of cells with respect to the
time and to &. We observe the aggregation of cells in the center of the domain which is
the first step of the formation of a Dirac. As ¢ — 0, the aggregation phenomenon is
faster and the solution seems to converge to a Dirac. We display the evolution of the
gradient of the chemoattractant concentration 9,.S in Figures 3 and 4. A singularity
in the center of the domain appears clearly.

Finally, we propose a numerical solution of the macroscopic model (11)-(13).
The equation (11) is disretized with an order one upwind scheme, the elliptic one
as before, and we used the same parameters and the same initial datum as for
Figure 1. The result for the density is displayed in Figure 5. We notice similar
behaviour for both graphs of the density, with a sharper peak for the Dirac mass
in the hydrodynamic limit (notice the difference in the scales). This is a numerical
indication that the hydrodynamic model (11)-(13) could actually be the limit of the
kinetic equation.
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+ t=0s
——t=16s
——1t=48s
---1=80s

002 0.003 0.004 0.005 0.006 0.007 0.008
x (m)

0.006 0.007 0.008 0.009 0.01

+ t=0s
—o—1t=16 5|
——1t=48 5|

---1=80s

(18]

Fig. 1. Time evolution of the density p of bacteria for different values of the parameters e.

Above: e =4 -1072. Under: ¢ = 107%.

5 - Conclusion

In this work we have studied the convergence of a kinetic model of cells ag-
gregation by chemotaxis towards a hydrodynamic model which appears to be a
conservation law coupled to an elliptic equation. Although the limit of the macro-
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15

14:( 10
——e=10"
- - -g=2.107°
121 —o—=4.1072

x (m)

Fig. 2. Density p of cells for different values of the parameters ¢ at time ¢ =80 s. As ¢
becomes smaller the concentration effect is more important.

_20 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
x (m)

Fig. 3. Time dynamics of the gradient of potential 9,.S with ¢ = 1074, As time increases the
derivative of the potential tends to become singular.
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) 0.601 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
X (m)

Fig. 4. Gradient of the potential 0,5 for different values for ¢ at time ¢ = 80 s.

18 T T T T T T T T

|—<>—"1=Ds'
161 t=80s

067**6.001 0,002 0,003 0.004 0.005 0.006 0.007 0.008 0.006 0.01
X (m)

Fig. 5. Time evolution of the density p of cells solving the macroscopic model (11)-(13).
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scopic quantity p, and S, have been obtained in Theorem 3.1, this mathematical
result is not completely satisfactory since the limit model (30) does not allow to define
properly a macroscopic velocity for the flux. Formally, this macroscopic velocity is
given by a(9,S) defined by (12). However, since p is only measure-valued, 9, S be-
longs to BV(RR), hence we cannot give a sense to the product a(d,S)p.

A possible convenient setting to overcome this difficulty is the notion of duality
solutions, introduced by Bouchut and James [7]. In this framework, we can solve the
Cauchy problem for conservation equations in one dimension with a coefficient a that
satisfies the so-called one-sided Lipschitz condition

(45) pe L'(0, T, 8walt,-) < p@) in the distribution sense.

It is actually not difficult to prove that a defined in (12) is one-sided Lipschitz: from
p > 0, we deduce that —9,,,S < S. After straightforward computation, we get

a@(a(a@ S)) = _¢,(Cax S)awxs
Therefore, ¢ being nonincreasing and smooth, we deduce

0:(@(0,)) < emax{||¢'||;~S,0}.

And the properties of the convolution lead to
1 1 i
ISE, I~ < 5 lp(t, )I(R) = 5 P |(R),

so that we can take f = ¢/2max{[|¢'|| .~ |p"|(R), 0} in (45).

However, we are not able to prove the uniqueness for the coupled system (11)-
(12)-(13) in this setting. In fact, the uniqueness proof in Section 3.2 relies on the fact
that the potential S satisfies equation (32) and thus on the definition the flux J in (30).
In the framework of duality solutions, the conservation equation is not a priori sa-
tisfied in the distribution sense, so that a generalized flux has to be introduced to
define the product in (30), that has a priori no link with J defined by (31). The relation
between these two fluxes and therefore the passage from J to the macroscopic ve-
locity a is still an open question.

Finally, the extension to higher dimensions seems presently out of reach, since
the theory of duality solutions is not complete [9]. Poupaud and Rascle [27] (see
also [5] for recent developments) proposed another approach, which coincides with
duality in the 1-d case. Both methods require an OSL type estimate on a, which is
definitely not clear in two dimensions.

Acknowledgments. The authors acknowledge Benoit Perthame for driving
their attention on this problem of hydrodynamic limit.
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