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Curvatures of weighted metrics on tangent sphere bundles

Abstract. We determine the curvature equations of natural metrics on tangent
bundles and radius » tangent sphere bundles S,M of a Riemannian manifold M. A
family of positive scalar curvature metrics on S, M is found, for any M with bounded
sectional curvature and any chosen constant 7.
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1 - Introduction

This article continues the study of some structures which identify the
tangent sphere bundles S,M = {u € TM : ||u|| = r} of a Riemannian manifold
(M, g) with variable radius and weighted Sasaki metric. We use the same no-
tation from [1].

Throughout, we assume that M is an m-dimensional manifold with a Riemannian
metric g and a compatible metric connection V on M. The manifold TM is endowed
with a canonical vertical vector field &, defined by &, = u. Note the map 7 denotes,
where appropriate, any of the bundle projections from SM or TM onto M. And
clearly V =kerdn ~ n*TM invariantly. Regarding the given connection,
7*Vx& = X? and this projection X — X” has kernel H. The metric connection thus
induces a splitting of 7TM = H @ V with both H, V parallel and isometric to z*TM.
Indeed dz induces the isomorphism H ~ 7*TM also invariantly (i.e. coordinate-free,
see [1]). We have amap 6 € End TTM, which identifies H with V, sends V to 0 and is
parallel for V* = 7n*V & n*V.
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We continue our study assuming metrics of the kind g/t = fin*g @ fon*g on
H @V, where fi,f> are given by
1) fi=en,  fr=e
for some functions ¢, ¢, on M. Obviously we let these functions be composed with 7
when considered on the manifold 7M. Recall the well known Sasaki metric is just
g5 = g"! = (-,-) with H induced by the Levi-Civita connection. There is also a hor-
izontal vector field 6'¢ known as the spray of the connection. We remark the addition of
a third bilinear symmetric form fsu @ u, where f3 > 0 and u = (06 = & o 0, gives a
metric with interesting properties on S, ; the rather much studied Cheeger-Gromov
metric, which deviates from ¢° by a multiple of &, is only relevant for TM.

Our treatment of vector fields lets us use canonical projections X = X" + XV
when necessary, and not permanently recur to lifts of tangent vectors on M to either
sections of H or V. The original use of the map 6, for example, expresses the benefit
of this feature. We easily turn our attention to tensors defined on 7M. Notice the
holonomy Lie algebra of any of the metries above remains unknown in general, even
if M is any irreducible Riemannian symmetric space. Our main objective here is to
envisage a solution to that problem and so we compute several curvature formulas.

The geometry of tangent bundles has had much study in the past and the
Riemannian curvature of the Sasaki metric has been found (cf. the references in
[1, 3, 7]). Regarding the radius » tangent sphere bundle with the induced metric
from g/t-%2 we achieve in Theorem 1.2 a generalisation of a result from [6]: if M has
dim > 3 and bounded sectional curvature, and f; is sufficiently large or f; is
sufficiently small, with both constant, then S, M has positive scalar curvature.

Our purpose with this study is also towards the geometry of the so called gwistor
bundle, which is the natural Gs-structure existing on S;M for any oriented
Riemannian 4-manifold.

Parts of this article were written during a sabbatical leave of the author at the
Philipps-Universitit Mathematics Department, Marburg. He wishes to thank their
great hospitality and the excellent time spent there.

1.1 - Computing the curvature of TM

Let V = VY denote the Levi-Civita connection of M. As one of the few cases one
can cope with, we study the curvature of G = ¢/t where f; = €22 is a function on M
and f is a constant. We define 0 = f5 /f1.

Recall from [1, Theorem 5.2 ] that the Levi-Civita connection of the tangent
bundle is given by determining first

(2) VY = ViY? + X(p)Y?,
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3) D'=V'eVv¥®  on HpV =TTM,
@) BX,Y) = Y(p)X" — 6(X", Y")grad gy,
(5) (AxY.Z) = (REX.2),Y) + (RAY.2).5)).

The first connection is metric on the vector bundle V. The tensor R¢ is given by
REX,Y) = n*RY(X, Y)¢ and finally VX, Y € I'(TM,H & V), we have

(6) VY = DY — %Rf(x, Y)+ AX,Y) + B(X,Y).

We recall, for amoment, thatif V' = V + C and V are two connections on a vector
bundle L, hence with C € Q'(End L), then

(7) RV =RV 4+d"C+CAC

where

(8) dVC(X,Y) = VxCy — VyCx — Cix v

and

9) CnNOX,Y)Z=CX,CY,2) - CY,CX,2))

with X,Y vector fields and Z a section of L.

Now, we have to compute several d¥ derivatives of our structure, where
V = V* @ V" respecting the splitting H @ V. Recall the formula already implicitly
used, RV = n*RY, easy to see since this is a tensor. Assuming the reader is by now
familiar with the notation, we shall let fall the asterisk wherever possible and ab-
breviate RV = R.

Let AV*® be defined (in the same way as the tensor A is defined):

(10) (AVR(Y, Z), W) = g (VxRN , W), Z) + (VxR)NZ,W),Y)).

Again we have the properties

(11) VxR (Y,Z) = VxR*(Y", Z") €V,
(12) AVR X, Y) = AV (X!, YY) + AVR (X0, YY) e H.

Proposition 1.1. We have:

1. RV* =R.

2. (VxROY,Z) = (VuR)\Y,Z)E + R(Y, Z)X".

3. AR X, V)Z =(VxR)\Y, Z)¢ — (VyR)X,2)¢ + R(Y, 2)X" — RX, Z)Y".
4. VAKX, Y)Z = (dpy NAX, V)Z — AVR Z + AVR Z + AREX, Y), 2).
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Proof. 1.The connectionis VxY + dp,(X)Y. Following (7) and letting 1 denote
the identity, the C part is dg,.1. Thence dv(d(pz.l) = ddg,.1 = 0. And clearly

dpy.1 Adgy.1 = depy A dpy.1 = 0.
2. For any vector fields:
VxR (Y,Z) =Vin'R(Y,2)¢) — " R(VyY, 2)¢ — n*R(Y, Vi Z)¢
=" (VauxR)Y,2), + R(Y, Z)Vx¢
=(VxR)Y,Z2)¢ + R(Y, 2)X"
since we have the identity Vx¢& = X",
3. Since R = Rﬁ;h and 7*TV = 0, we have
AVRX, Y)Z
= (VxR — VYR — Ry yZ
= Vx(R(Y,2)0) — R(Y,VxZ)¢ — Vy(R(X, Z2)¢) + R(X, VyZ)
—R(VxY,Z)¢ + B(VyX, Z)
= (VxR)Y,2) — (VyR)X,Z), + R(Y,Z)Vx¢ — R(X, Z)Vy¢
= VxR (Y,Z) - VyR" (X, 2).
4. First we find
(Vx(A(Y,2)), W)
= X((AY,2),W)) — (AY, Z), VxW)

_ %(X( FORY W), Z) + (RE(Z, W), Y))

+ Zf_;l (<VX(R5(Y7 W), Z) + <R5(Y, W), VxZ) + <VX('R€’(Z, W)),Y)
+(RYZ, W), VxY) — (RE(Y, VxW), Z) — (RY(Z,VxW),Y))

= (X(px)A(Y,2), W) + zf—;l ((VxRHY, W) + R (VxY, W), Z)

+ (REY, W), VxZ) + (VxR)Z,W) + R« (VxZ,W),Y) + (R°(Z,W), VxY))

= (X(p)A(Y, Z) + AR (Y, Z) + A(VxY, Z) + A(Y,VxZ), W).
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Recalling the torsion of V* is RS, cf. [1, Proposition 5.1], we then have
dYAX,Y)Z
= (VxAy)Z — (VYAXx)Z — Ax 12
= VxAY,2) - AY,VxZ)—---
= X(p)AY,Z) + AVR (Y, 2) + A(VxY, Z) — Y(p)AKX, Z)
—AYR(X . 7) — A(VyX,Z) — AVxY — VyX — REX,Y), Z)
= dpy NAX,Y)Z + AVR (Y, Z) — AV R (X, Z) + AREX,Y), Z)

as we wished. O
In a very similar computation as the above we find:

Proposition 1.2. The B tensor satisfies
dVBX,Y)Z =(Vx grad g,, Z)Y" — (Vygrad gy, Z)X’ + Z(p,)R*(X,Y)
(13) — 0RX(p)(Y", 2") = 2Y (o) (X", 2") — (R*(X.Y), Z)grad g,
—(Y",Z")Vx grad g, + (X", Z")Vy grad p).

Now, we want to compute the curvature of V. As the reader might see, the
development of dVC + C A C is quite long when C = dg,.1° — 1/2R¢ + A 4+ B.Sowe
shall proceed with two particular cases. The first is below, while the second is in the
next section.

Theorem 1.1. Supposef; > 01is a constant, f> = e*?> and the connection V is
flat, so that
(14) VEY = VxY + X(pp)Y? 4 Y(p)X® — (X7, Y?)grad gs.
Then the Riemannian curvature tensor of TM with metric G = g/t is given by
RCX.NZ = (X(po)Z(py) + 05(X", Z") + (Vx grad ¢, Z))Y"
— (Y(p)Z(py) + 66*(Y", Z") + (Vygrad gy, Z)) X"
— (X (p)(Y", Z") — Y(po)(X", Z")) grad ¢,
—o(Y?, Z")Vx grad g, + 6(X", Z"YVygrad g,

where ¢ = ||grad p,||.
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Proof. After some computations we find
BABX,Y)Z = 6&((X", Z°)Y" — (Y*, Z°)X")
and
CANCX,Y)Z = (dg,. 1" N\B+ B ANdp, 1+ BAB)X,Y)Z
= X(p)Z(p2)Y" = Y(02)Z(p)X" + Y(p2)B(X, Z")
— X(p)B(Y,Z")+ BABX,Y)Z
= X(po)(Z(pp)Y" + 6(Y", Z")grad ¢,)
= Y(p)(Z(p2)X" + 6(X", Z")grad ;) + B ABX, Y)Z.

Adding to d¥C = dVB above, we deduce R =dVC + C A C. O

The case when grad ¢, is parallel may be further developed. Straightforward
computations yield the following result.

Corollary 1.1. Suppose (M,g) is a flat Riemannian manifold and the
Sfunction fo wverifies Vdpy, =0. Then the sectional curvature of the metric
G = g% on a plane IT spanned by the orthonormal basis X,Y is

k(IT) = GRE(X,Y)Y,X)

16
1o = — o' |bXY — aY"|* - RESUXTIPIY P — (X7, Y,

where X =agrad g, +X' +X*, Y =bgradg, + Y' + Y" and X', Y' € H N (grad g,)",
a,b € R. In particular, k(IT) < 0.

Hence on points & where grad ¢, # 0 the fibres T,M are hyperbolic totally geo-
desic submanifolds. The other fibres are flat.

In the previous conditions, we observe that the equations of a geodesic curve @ in
TM appear as:

. Ly e

V50" +26(p)0" = 0.

So it would be interesting at least in this case to solve the problem of knowing when
is V¢ complete (the completeness of a pull-back connection seems to be an open
problem).

If M is a simply connected flat Riemannian manifold and V¢ is a complete con-
nection, then we suppose (TM, G, I¢, %) is very close to being a Stein manifold (cf.
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[1] for such Hermitian structure). To deduce this applying a famous result of Wu, cf.
[10], we would need TM to be Kéhler with k£ < 0. But then we would be asking the
function f; to be a constant, by [1, Corollary 6.3], and so we would be referring only to
the complex plane with standard metric.

1.2 - Curvature of g with fi, f» constants

The second particular situation we must try to investigate is when f; is a constant.
So we continue with V = VY the Levi-Civita connection of M. We may write simply

(18) Véi=v+cC with C:f%RéJrA.

The connection D* = V* & V*, so we write it as V. Since R¢ A R® = 0, the curvature
of G is

1 : 1_. 1 .
(19) RG:Rv—deRg+dVA—§R€/\A—§A/\R‘-+A/\A.
Notice RV stands for RV @ RY'. Some parts of the tensor R® were computed in
Proposition 1.1, namely those involving dV. Now
AR X, Y)Z = (VxR)Y,2)¢ — (VyR)(X, 2)é + R(Y, Z)X" — R(X, Z)Y"

(20) ) !
= (VxRIY,2) — (VYyR)X, 2),

(21) AVAX,Y)Z = — AV (X, 72) + AR (Y, Z) + AREKX, Y), 2).

The others parts do not simplify nor cancel each other, as the reader may notice
reading their nature in H ¢ V.

Let eq,. .., ey be a real g-orthonormal basis of 7'M at a given point. This is im-
mediately lifted to H and then to V by 0, giving a gS-orthonormal basis. Writing

0 . .
(22)  AX,Y)=> (AX,Y),e)e; = 5 > (RUX, ), Y) + (R(Y, ), X))e,
we have the Gauss-Codazzi type equations

- %Rf NAX, Y7 = — %Rf(X,A(Y, ) + %Rf(Y,A(X, 7))

) = O (R, 6),2) + (R, ), TIREK, &)
J

—((R°(X, ), Z) + (R(Z,e)), X))R(Y , ¢;)),
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- %A ANRX,Y)Z = — % AX,R(Y,2) + % AY,RX,2))
(24) 5
- - Z Z (<R6(X7 ei); Rf(Y; Z)> - <R5(Y; ei); Rgv(Xv Z)>)el
and
ANAX,Y)Z = AX,AY,Z)) — AY,AX,Z))
= O3 RAAY, 20,60, X) — (RUAK, 20,60, ¥y
(25) 2

2 m
%Z(((RE(K ¢), Z) + (R(Z,¢),Y))(R(ej, ), X)
i

— ((RE(X, ¢)), Z) + (R*(Z, ¢;), X))(R(ej, €:), V) ) e.
Also AX,R(Y, Z)) = g Z<R5(X, e;), R*(Y,Z))e;. Now we have
ROX" YMZ" = RX", Y Z" — %(vxmf)(yh,zh)
(26) S (VRROE!, 2 + AR, Y, 2
- % AX" REYM, ZM) + % A" REXM, ZM),
ROxY, Y"Z"
@7 =- %(VXvRé)(Yh,Z’L) — AR (X7, 71 +§ D (RUZ" €)), X")YRA(Y", ¢))

1 ¢ 0
= RO ZDXT = AT X, 20 4+ S (R 0, XVREY ),

RG(XW, Yh)zv
(28) . Pe )
= AV R(Y 77 + T D (REY™€)), Z)(R¥(ej, €0), X" )e,

RG(Xh, Yh)zv _ R(Xh7 Yh)z?) 7AVY}‘R6(X}L,ZU) +AVX"R6(Y}L,ZU)
CON
+3 > (REX™€)), Z")RE(Y", ¢p) — (RE(Y", ), Z")RE(X", ¢))),



[9] CURVATURES OF WEIGHTED METRICS ON TANGENT SPHERE BUNDLES 307

RG(XW’ Yv>zh _ _AVyv'Ri(Xv,Zh) _i_AVXvR‘-:(Yv’Zh)
(30) 52 }
+T ((RE(Z", €)), Y') (R%(ej, €), X') — (RE(Z", €)), X") (R(ej,€:), Y) ) e;
and, clearly, R¢(X?, Y")Z" = 0.
The simplification in formula (27) is due to property 2 in Proposition 1.1. In order
to find the Ricci curvature of G we let R6(X,Y,Z, W) denote the 4-tensor
G(R%(X,Y)Z,W). The same we agree in denoting R with the metric g. We only need

RG(Xh7 Yh, Yh7 Wh)
:ﬁR(Xh> Yh/’ Yh’, Wh) +f1 (A(Ré(Xh, Yh)7 Yh)7 Wh>
+Ji (A", REX", Y, W

81 = ARG YN YW+ (A W, RECE V)

e wh, mE )

= AR, YV XP) 4 SRAY W, R 1),
REX", Y, Y", Wh
= —filAV R X Y, W
2 m
- ‘flTé Z <R5(Xh7 67)7 Yv> <Ré(677 ei)a YU> <eia Wh>
ij=1

(32) f2

= <(W REX", Wh), Y?)

fléz Ervh () I3 h v
(REX" e), Y'Y (REW" ), Y")

f152

S (RE(X", ), Y)Y (RS (W, ¢}), Y"),

(33)  REX",Y" Y" W" =RCW" Y" Y" X" :J% (Vyn REYW, Y, X7,

(34) REX", Y", Y", W) _MZW(Y’@,ej),Wv><7ef(Yh,ej),X”>,
J

(35) ROX",Y",Y",W") =0,

(36) REX", Y", Y W) =]§ (Vy ROX", Y, W)
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and of course RE(X" Y? Y, W?) = 0. The simplification in formula (32) is due to
property 2 in Proposition 1.1 and the skew-symmetries of E. Henceforth the Ricci
curvature of G, the trace of the Ricci endomorphism, is given by

rie?(X", Y™

i Oe; Oe;
— RG(XI'L € Yh)-l-RG(Xh 1 2 Yh)
izzl VA f1 ViR
3 m 3 3
. = rie(X", Y") — 15]_: (REX", e)), R“(Y"  ¢)))
+§ D (REX", ), Oe;) (REY™" ¢)), Oc;)
i,j=1
— rieX", ¥") gz REX", ¢), RECY™, ),
(38) ricG(X”,Y”) = Z (R¢ (el,e]) X" R (ei,€)),Y"),
(3 m
(39) ric? (X", Y?) = -5 Z (ViR (es, X, YY),

And the scalar curvature is

m

Z —r1cG(ek,ek) +%I‘10 (Oey., Oey,)

S fi = c 2
=5 - R
i 4f? ”Z,C:l( i)

where R, = (R°(e;, €;), Oer) = (R(e;, ej)u, ex;) on each point u € TM. Of course, ric
and S above denote respectively the Ricci and scalar curvatures of M.
The following result generalises another from [9] strictly for the Sasaki metric.

Proposition 1.3. The Riemannian manifold (TM,G) is Einstein < TM is
flat < M 1is flat.

Proof. If TM is Einstein then S¢ is constant. In the present case it has a
quadratic part varying in ||u/|, unless all R, = 0, Vau. O



[11] CURVATURES OF WEIGHTED METRICS ON TANGENT SPHERE BUNDLES 309

It is worth recalling the following results. The Sasaki metric of TM is locally
symmetric if and only if M is flat ([5]). And, regarding what we continue studying
next, the tangent unit sphere bundle is locally symmetric if and only if (M, g) is flat
or locally (S2(1), gsq)- Conformally flat is stronger: reserved for the locally standard
2-sphere (cf. [3]). More recently it was proved semi-symmetric is the same as locally
symmetrie ([4]).

1.3 - The second fundamental form of S.M and the Ricci and scalar curvature

Let us start by recalling the theory of the second fundamental form of a
Riemannian embedding. Suppose Q? is a submanifold of a Riemannian manifold
(N7, ) and Q inherits the induced metric from N. Let V' denote the Levi-Civita
connection of N and let X, Y be two vectors tangent to Q. Then we have the Gauss
formula

where the sum respects the orthogonal decomposition 7Q @ TQ*. Passed the
formality, VxY is the Levi-Civita connection of Q. The clearly symmetric tensor

(42) a: QUTQ ® TQ) — °(TQ™H)

is called the second fundamental form. Its trace H* is the mean curvature vector.
Let n € Q%TQ"). Then we have the Weingarten formula Vin = —A,X + Dxn
where A, is a self-adjoint tensor on T'Q since (4,X,Y) = — G(Vyn,Y) = G5, V5Y)
=G@,a(X,Y)) and D is a metric connection on 7Q*. Finally we have the Gauss
equation

(43) RX,Y,Z,W)=RX,Y,Z,W) - GuX,2), Y, W) + G(Y, Z), (X, W)).

We now resume with the study of the induced metric G = ¢g/i-% on the tangent
sphere bundle S, M with radius function » € Cj;, with V = V¥ and fi, f> constant.
Recall m = n + 1 is the dimension of M.

Proposition 1.4. TS, M ={X e TM : (X,& =rXr)}

Proof. Indeed we have (& ¢&) —7*=0 defining the submanifold.
Differentiating,
X((&,&) — %) = 2(Vx&, &) — 2rX(r) = 2((X", &) — rX (1))
we find the tangent space. O
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In order to write the second fundamental form, we may write « as a scalar tensor:
(44) wX,Y) = G(VEY, U%
with U® a unit vector field defined on S,M and such that U¢ 1% TS, M. Writing
(45) U% = agradr + bé
for some functions a, b, we find the solution

1

=
r/fo + Ofat?

(46) a = — obr and
where 0 = f>/f; and © = ||grad r||.
Proposition 1.5. The second fundamental form of S,M C TM with the

induced metric g/t and where fi, f, are constants, is given by

47 X, Y) =afilAX, Y)(r) — (Y, Vx gradr)) + bfa(X(")Y(r) — (Y*, X")).

n

"o+ ofor®

If Vdr = 0, then the mean curvature is H* = —

Proof. Continuing from (44),
aX,Y)
= (VxY" + AX,Y),agradr) + fo(Vx Y’ — %Rf(X, Y), bé)
= afy(VxY" + AX,Y), grad r) + bfa(VxY", &)
= afiX(Y () — (Y, Vx gradr) + afidx y(r) + baX(rY (1) — (Y", Vx&))
= (afi + b XXY (1) + afiAx y(r) — (Y, Vx gradr))
+ 0fa(X(MY (r) — (Y, X))
and the result follows. For the mean curvature Wle take a horizontal g-orthonormal

Vi

vertical frame tangent to S,.M. There must also exist an extension of these vectors to

frame ey, ..., ey, with e,, = u/r. Then the Y; = Oe; for i =1, ..., n constitute a

an o.n. frame of 7,S,.M, and therefore a m x m-matrix a;, € R inducing m vectors
X; = Zp a;pep + ;¢ /7, tangent and o.n. to each other and to the Y}; in particular with
x; = X;(r) € R. Now the condition Vgradr = 0 implies A(X,Y)(r) =0 for all X, Y
because in the definition we find the symmetrization of

(RE(X,gradr),Y) = — (R(u, 0'Y)gradr», X") = 0.
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Finally,
m
H* = olX;, X)) + Zoc(
i=1 J=

= X)) — bfsaf — Zb

So one has the formulas to compute the Riemannian curvature R of S, M.
From now on we assume 7 is a constant. Then

(48) b= 1 , a:—\/—J72 and oc(X,Y):—@(X”,Y”).
rv/fo f r

Henceforth, by Gauss formula (43), the curvature RG(X .Y, Z W) does not differ

from that one, given previously for the ambient manifold, except if all four vectors

are vertical. Minor adaptatlons must follow in the Rieci and scalar curvatures, re-

spectively ric” and S of the tangent sphere bundle.

Proposition 1.6. With ric® and SC restricted to S, M, we have

: G -1
1. ric’ = ric® + " (/-
e (n—1n
2.8 =864 —
+ 2

Proof The fibres are n-dimensional spheres. The differences rie” — ric® and
S — 8% are easy to check from (48) and the Gauss equation. More closely

n
ric” (X, ¥) = ric(X, ¥) + % SREX?, Oei, Oe;, Y7
2in1
, 1
= ric X, Y) 4 37 (X, Oeidatber, ¥) -+ ol Oeu(X, V)

= ric%(X, +3 <X” YY) — <X”,Y”>.

Looking at formula (37), we see the sum in 7 of the RG(X, Oe;,0e;,Y) uptom =n+1
gives the same as the sum up to %. This is because we may take an orthonormal basis
of V at each point w such that u/r is the last vector and then we notice
(Ré(Xh, e;),¢) = 0. Recall w L T,S,.M and &, = u. The same question is not put in
formulas (38, 39). The same observations are made for S”. O

Theorem 1.2. Let the radius r be a fixed constant. We have the following:

1. For a surface M the bundles TM and S,M have the same Ricct and scalar
curvatures.
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2. Let m >3 and suppose M has bounded sectional curvatures (e.g. if it is
compact). Then:

(a) for any f> there exists a sufficiently large fi such that the tangent sphere
bundle (S, M, g/v%) has positive scalar curvature.

(b) for any fi there exists a sufficiently small fo such that the tangent sphere
bundle (S, M, g/%2) has positive scalar curvature.

Proof. Itis clear by a polarisation process that all values R* sk in formula (40)
remain bounded on S,.M. The result follows combining with Proposition 1.6. O

In the present setting, we immediately generalise Theorems 1 and 2 in [6].

Theorem 1.3 [6 Theorem 1]. Let dimM > 3 and suppose M has bounded
sectional curvatures (e.g. if it is compact). Then the tangent sphere bundle
(S, M, g/v22) has positive scalar curvature for all sufficiently small constant radius
r > 0.

We just remark that [6, Theorem 2] essentially gives conditions for achieving
negative scalar curvature. We may state analogous result for the weighted
metric.

Acknowledgments. The author acknowledges the support of Fundacio
Ciéncia e Tecnologia, Portugal, through Centro de Investigacdo em Matematica e
Aplicagoes da Universidade de Evora (CIMA-UE) and the sabbatical grant SFRH/
BSAB/895/2009.

References

[1] R. ALBUQUERQUE, Weighted metrics on tangent sphere bundles, Q. J. Math.
(2011), http://dx.doi.org/10.1093/qmath/haq051 (accepted).

[2] A. L. BESSE, Einstein manifolds, Springer-Verlag, Berlin 1987.

[3] D. E. BLAIR, Riemannian geometry of contact and symplectic manifolds, 2nd
ed., Progr. Math., 203, Birkhiuser, Boston 2010.

[4] E. Boeckx and G. CALVARUSO, When is the unit tangent sphere bundle semi-
symmetric?, Tohoku Math. J. 56 (2004), 357-366.

[5] 0. KowaLski, Curvature of the induced Riemannian metric on the tangent

bundle of a Riemannian manifold, J. Reine Angew. Math. 250 (1971),
124-129.



[15] CURVATURES OF WEIGHTED METRICS ON TANGENT SPHERE BUNDLES 313

[6] 0. KowALSKI and M. SEKIZAWA, On tangent sphere bundles with small or large
constant radius, Ann. Global Anal. Geom. 18 (2000), 207-219.
[7] M. I. MUNTEANU, Some aspects on the geometry of the tangent bundles and

tangent sphere bundles of a Riemannian manifold, Mediterr. J. Math. 5
(2008), 43-59.

[8] T. SaAxkAL Riemannian geometry, Transl. Math. Monogr., 149, AMS, Providence
1996.
[9] M. SEK1ZAWA, Curvatures of tangent bundles with Cheeger-Gromoll metric,
Tokyo J. Math. 14 (1991), 407-417.
[10] H. Wu, An elementary method in the study of nonnegative curvature, Acta

Math. 142 (1979), no. 1-2, 57-78.

R. ALBUQUERQUE

Departamento de Matemética da Universidade de Evora and
Centro de Investigacio em Matematica e Aplicacoes (CIMA)
Rua Roméao Ramalho, 59

671-7000 Evora, Portugal

e-mail: rpa@uevora.pt





