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On Kihler surfaces with semipositive Ricci curvature

Abstract. We study the existence problem for smooth or real analytic Kéhler
metrics with semipositive Ricei curvature on the complex projective plane blown up
at 9 points.
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We shall study in this note a problem from [7].

Take a smooth elliptic curve Cy € CP? and blow-up 9 points py, . . ., pg on Co. The
result is a compact complex surface S which contains a smooth elliptic curve C with
zero selfintersection, the strict transform of Cy. The anticanonical bundle Kg Lof Sis
isomorphic to Og(C), and it is nef, i.e. it has nonnegative degree on every compact
complex curve in S. Demailly, Peternell and Schneider ask in [7] about the existence
of a smooth hermitian metric on Kg 1 whose curvature is a semipositive (1, 1)-form.
According to Aubin-Yau Theorem (solution of the Calabi conjecture), this is
equivalent to the existence of a smooth Kéhler metric on S whose Ricei curvature is
semipositive.

A simple case is when the normal bundle of C'in S, N¢ € Pic°(C), is torsion, say of
order ¢. Then a standard argument shows that S admits an elliptic fibration
n:S — CP!, such that 7 !(co) = ¢C. Hence (Kg 1®* i isomorphic to 7*(O(1)), and it
is immediate to find (by pull-back) the desired smooth metric on Kg 1 with semi-
positive curvature.

Another simple case is when N satisfies a certain diophantine condition in-
troduced in [15, p. 595 ] (see also [1]), which is opposed to torsionness and almost
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surely true. Then, by [15, Th. 3 ], we get on some neighborhood U of C a function
Fy : U — R U {400} which is pluriharmonic outside of C and has —logarithmic poles
along C, i.e.

dd°Fy = —d¢.

One says that C has a pseudoflat neighborhood in S, which is foliated by the Levi-flat 3-
tori {Fy = c}, with clarge. By an easy regularization procedure, we then find a smooth
plurisubharmonic function F' : S\ C — IR, which coincides with Fy on some smaller
neighborhood V of C: just take F' = ¢ o F\y for a suitably chosen convex function
¢ € C(R), equal to 0 on a neighborhood of —oco and to id on a neighborhood of +oco.
Then F' defines a smooth metric on Kg 1 — O4(C) (choose a reference section s with
{s=0} =C and set ||s|| = exp ( — F)), and the curvature of this metric is semipositive.

Actually, to find a metric on Kg ! with semipositive curvature is equivalent to find
on S \ Casmooth plurisubharmonic function which growths like —log dist(C, -) (up to
a function which smoothly extends to C).

There is however a substantial difference between the two examples above. In the
first case we can get a metric whose curvature has full support in S, that is we have a
positive eigenvalue on an open and dense subset of S. In the second case, instead, we
typically get a metric whose curvature is concentrated in the (possibly small)
neighborhood U, since the evoked regularization procedure produces a function F’
which is constant outside of U. For physical reasons, it would be preferable to find a
metric on Kg! whose curvature is spread over the full S, a sort of heat-equation
regularization of d¢c. A natural condition which ensures such a property is the real
analyticity of the metric. However, we shall prove that real analytic metrics with
semipositive curvature rarely exist:

Theorem 1. Suppose that S\ C does not contain any compact complex
curve. Then:

() There exists on S a smooth Kdihler metric with semipositive Ricci curvature if
and only if C admits a pseudoflat neighborhood in S.
(i) There does not exist on S a real analytic Kdhler metric with semipositive Ricci
curvature.

As is well known, the condition imposed on S \ C is very generic in our parameter
space Cg , towhich (p1, ..., pg) belongs (see e.g.[11, (4.14)]). Observe also that, by the
Hodge Index Theorem, the adjunction formula and Kg = Og( — C), any irreducible
compact curve D in S\ C is either a (—2)-curve (smooth, rational, with self-
intersection —2) or an arithmetically elliptic curve with zero selfintersection. In the
latter case, however, D is necessarily cohomologous to «C, for some rational o > 0,
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and S has an elliptic fibration containing C and D as fibers, so that Kg! clearly admits
a real analytic metric with semipositive curvature as explained before. Hence the
only case which remains to be analysed is when S \ C contains some ( — 2)-curves but
no elliptic curves. Our proof will show that even in that case the existence of real
analytic metrics with semipositive curvature is exceptional.

Concerning the smooth case, we stress that our result does not yet answer de-
finitely to the question of [7]: we do not know if suitable choices of the nine points may
produce a curve C without pseudoflat neighborhoods. It is likely, however, that those
choices exist (compare with [15, p. 606]). Another still open problem is about the
existence of smooth metrics whose curvature has full support; as we shall see, this is
related to finding a pseudoflat neighborhood of C which is dense in S.

The proof of Theorem 1 is quite simple, but in spite of its simplicity we think that
it may be interesting to know that for a full measure choice of (p,...,p9) we get a
surface S which admits a smooth Kéhler metric with semipositive curvature, but not
a real analytic one.

In this paper “smooth” means “infinitely smooth”. We leave to the reader the care
to check the minimal degree of differentiability needed for our arguments.

Before starting the proof of Theorem 1, let us state and prove a probably well-
known fact concerning weakly 1-complete surfaces, i.e. surfaces which admit a
smooth plurisubharmonic exhaustion. It is basically contained in [12], up to replacing
Nakano’s theorem used there with the more powerful Hormander’s estimates [6].

Proposition 2. Let W be a connected Kchler surface with trivial canonical
bundle, and suppose that there exists a smooth plurisubharmonic exhaustion
[ W — R which s strictly plurisubharmonic at some point. Then W is holomor-
phically convex (and in particular it is Stein if it does not contain any compact
complex curve).

Proof. By [12, Prop. 1.4], it is sufficient to show that there exists a non-
constant holomorphic function on W. We shall use for that purpose the argument
of [12, p. 159].

Take two points p,q € W around which f is strictly plurisubharmonic. Blow-up
them, and let £, F C W be the corresponding exceptional divisors. Set

L=0~(-2E-2F).
w
Since L has positive degree on £ and on F, it is easy to construct (by using the pull-

back of f to W) a metric on L whose curvature is everywhere semipositive, and
strictly positive on some neighbourhood V of £ U F'. Remark also that, since Ky is



444 MARCO BRUNELLA [4]

trivial, we have K~ @ L = Oﬁ]( — E — F), and hence we may take a meromorphic
section h of Kﬁ/ ® L which has first order poles along E' U F' and which is holomorphic
and nowhere vanishing outside.

Take now ¢ € ngt(ﬁ/) such that Supp(p) C V, ¢ = 0 around £, ¢ = 1 around F'.
Then (Dp) - b € A>' (W) @ L is -closed and satisfies the hypotheses of [6, Th. 14.2].
Hence, by that theorem, there exists & € A**(W) @ L such that 93 = (p) - h. The

3 ~ d
function 7 is smooth on W and vanishes on £ U F'. Thus the function ¢ — 7 is holo-

morphic, equal to 0 on £ and to 1 on F'. It projects to W to a nonconstant holomorphic
function. |

Itis an old problem to know if a statement like the previous one holds without any
assumption on the canonical bundle, and even without the Kéhler assumption. See [8]
for the real analytic case.

Return now to our rational surface S, and suppose that Kg I admits a smooth
metric with semipositive curvature . Take a section s of Kg! vanishing on C, and set

F:S\C—R
F = ~log|s]|.

Then, on S\ C, we have w = dd°F. From w > 0 and [ @ A @ = ¢}(S) = 0, it follows
N

w A @ = 0, hence F satisfies the (homogeneous) Monge-Ampere equation:

(dd°F)"? = 0.

The next lemma provides a second equation satisfied by F'. The proof is short, but it is
based on a very deep result on the topology of Stein surfaces.

Lemma 3.
dd°F AdF Ad°F = 0.

Proof. The functionf = exp (¥)is a plurisubharmonic exhaustion of S \ C, and
it is strictly plurisubharmonic precisely on the set where dd°F A dF A d°F does not
vanish (dd’f = (dd°F + dF A d°F) - exp (F)). Hence, if that (2, 2)-form is not identi-
cally zero, we deduce from Proposition 2 that S\ C is Stein.

Consider now a domain B = {F <1}, with 2 >> 0. Its boundary M is then dif-
feomorphic to T? (the opposite of the boundary of a tubular neighborhood of C). It is a
pseudoconvex boundary, and, since S \ C is Stein, it can be smoothly approximated
by a strictly pseudoconvex boundary M, still diffeomorphic to a 3-torus and bounding
a Stein domain B.



[5] ON KAHLER SURFACES WITH SEMIPOSITIVE RICCI CURVATURE 445

Now, a deep theorem of Stipsicz [14] affirms that B must be homeomorphic to
T2 x RZ. This is certainly impossible in our case, since Bis diffeomorphic to S\ C
and S\ C is not even homotopically equivalent to T2 x R? (e.g. look at the inter-
section form, which is identically zero in the case of T? x R? and non trivial in the
case of S\ C, which contains spheres of selfintersection —2; or, alternatively, look at
the Euler characteristic). O

We note that up to now the absence of ( — 2)-curves is not really indispensable.
Indeed, by [3] they can be suppressed by a small deformation of the complex
structure on a neighborhood of the above B (in other words, Stipsicz’s Theorem holds
for every relatively compact domain, not necessarily Stein, whose boundary is a
strictly pseudoconvex 3-torus).

Remark 4. An interesting problem is about the Steinness of S\ C under the
sole assumption of absence of compact curves, a special case of a problem raised by
Hartshorne, see [11, p. 223]. For instance, if C has a pseudoflat neighborhood then
S\ Cis certainly not Stein, due to the presence of compact Levi-flat hypersurfaces,
and it is tempting to conjecture that S \ C is never Stein, whatever the choice of the
nine points is. It is not difficult to see that S \ C admits a Morse exhaustion function
with critical points of index < 2, so that we cannot exclude the Steinness of S\ C by
“classical” topological arguments (Andreotti-Frankel). On the other side, results by
Eliashberg and Gompf [9] show that S\ C is at least homeomorphic to a Stein
surface, and we can even find an open subset 2 C S\ C which is Stein and topo-
logically isotopic to S\ C; the boundary 02 is a topologically flat 3-torus, topolo-
gically isotopic to the boundary of a tubular neighborhood of C. It is worth observing
that Stipsicz’s Theorem cannot be used here to prove that S \ C is never Stein (or, at
least, cannot be used in a trivial way). Indeed, if S \ C is Stein then we have a strictly
plurisubharmoniec exhaustion f : S\ C' — R, but in principle f may have infinitely
many critical points, accumulating to C, and so we cannot ensure that the level sets
of f close to C are 3-tori (this is what typically occurs for Stein domains constructed
by Eliashberg and Gompf).

The geometrical meaning of Lemma 3 is the following. Set
M, ={F =1}

and take a regular value 1. Then T M is spanned by the Kernel of d°F| u,» and the
vanishing of dd°F A dF A d°F is equivalent to the Frobenius integrability of d°F| M,
for every 4, i.e. the Levi-flatness of each M ;. When 1 >> 0, we therefore get a family
of Levi-flat 3-tori, approaching to C.
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The next step of the proof of Theorem 1 is an elegant cohomological argument
from [5] to show that these Levi foliations glue together in a holomorphic way (there
is also a local counterpart to this fact, see [2, Cor. 5.4], which however works only
outside the critical points of F').

Without loss of generality, we may assume that the minimum of F on S\ C is
equal to 0. For every 4 > 0, choose a smooth function ¢, on R, equal to 1 on ( — oo, 0]
and equal to 0 on [4, +00). Set

Fy =0,0F c C5(8\ 0) C CX(S).

Then
(dd°F;)"* =0

dd°F, NdF; Nd°F;, =0

woANdF; Ad°F; =0

as a simple computation shows.

The second equation means that the (1, 1)-form dF; A d°F; € AVY(S)is closed (and
semipositive). The third equation implies, via the Hodge Index Theorem, that the
cohomology class of dF'; A d°F; is proportional to the class of w, i.e. to the class of the
current dc. Hence, by the dd°-lemma we find an integrable function G, on S such that

ng/\dCFAZCA-éc—i—ddCG;V

for some ¢; > 0. Actually, we have ¢; > 0 because dF'; A d°F; is semipositive and not
identically zero (for A > min F').
Consider now the open subset of S

W, ={F>J}UC.

It is connected: otherwise, there would be a connected component W', disjoint from C,
and the maximum principle applied to F'|y;, would give a contradiction. On this con-

. . 1 .
nected open subset the form dF; A d°F; is identically zero, hence C—Gi is plur-
)

iharmonic on W, \ C and has —logarithmic poles along C. In particular, C has pseu-
doflat neighborhoods in S, and the first part of Theorem 1 is now completely proved.

The level sets of G, close to C are Levi-flat 3-tori, and the corresponding Levi
foliations have dense leaves (all isomorphic to C or C*); this follows from the fact that
N¢ is not torsion. A first consequence of this density is that F' restricted to such a
level set must be constant, i.e. the level sets of G, coincide with the hypersurfaces

. L 1 1 .
M,. A second consequence, in the same spirit, is that o G, and o G, differ only by a
A "
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constant, which can be adjusted to 0 after the choice of some normalization. Set
2={F=0}cCS.

Because /A is an arbitrary number greater than 0 = min F’, we finally get:

Proposition 5. There exists a function
G:S5\2—RU{+o0}
which is pluriharmonic outside of C and such that
dd“G = —d¢.

This Green function G generates a holomorphie singular foliation F on S\ X,
tangent to the Kernel of the 1-form 0G, which is holomorphic outside of C and has
first order poles along C. Of course, F is tangent to C and nonsingular there. Note
that F is also generated by a holomorphic vector field v on S\ X, defined by
1,2 = 0G where Q is a meromorphic 2-form on S with first order poles on C. This
vector field is complete, being tangent to the compact real hypersurfaces M;, 1 > 0.

Remark 6. Byanindex-type argument, it is possible to show that if N is totally
irrational (i.e. the orbit { NV ?" } e 1s densein Pic®(C), equivalently the leaves of F close
to C are all isomorphic to C) then the above vector field v has no singularities at all.
Hence, in that case, every M, /. > 0, is a smooth 3-torus, and S \ C retracts (topolo-
gically) onto 2. Moreover, G continuously extends to X, as a constant.

It is at this point that the real analyticity assumption enters in a massive way:

Lemma 7. IfF isreal analytic, then the foliation F extends to a holomorphic
foliation on the full surface S.

Proof. The subset 2 C S is real analytic, of dimension at most 3. It is easy to
find a real analytic subset 2; C X of dimension at most 2 such that every connected
component of Xy = X'\ 2} is a smooth hypersurface (or stratum) of dimension 3
which is either strictly pseudoconvex or Levi flat.

If 2, C 2 is a strictly pseudoconvex stratum, then F (and also the holo-
morphic 1-form dG) extends through 2, by Hartogs. If instead 2, is a Levi-flat
stratum, then we have on 2}, the Levi foliation, and we need only to prove that this
Levi foliation glues in a real analytic way to the foliation F outside of Xj,. But this
is a rather trivial fact: F is tangent to the Kernel of dF A d°F, and around any
point of 2, we can divide dF' A d°F by some power of an equation g of X7 so that we

get a real analytic (1,1)-form (%)dF A d°F which is no more identically zero
Q
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along X (put in another way: the “essential” singularities of a real analytic sub-
sheaf of the tangent bundle of a real analytic manifold always have codimension at
least 2). Actually, this argument applies also to the strictly pseudoconvex strata.

In this way, we have extended F to S\ X, and dim 2y < 2. Each irreducible
component of X is either a point, or a real curve, or a real surface which is totally real
at a generic point (absence of compact complex curves in S \ C). In all cases, Hartogs
theorem provides the extendibility of F through X;. O

As in Lemma 3, the absence of ( — 2)-curves in S \ C is not really important here,
since a foliation outside a compact complex curve of negative selfintersection extends
through the curve.

Remark that, by the above proof, the only obstruction to the holomorphic ex-
tension of G (or of v) is represented by the Levi-flat strata. Informally, one may
think that, in the real analytic case, the Levi-flat pieces of 2 support a (foliated)
closed positive current 7, and that G extends to an integrable function, still denoted
by G, which realizes a cobordism between o and T*

dd°G =T — dc.

1 ,
This current 7'is a weak limit of the smooth currents - dF; A d°F;. Actually, a similar
1

interpretation holds even if F' is only smooth, and not real analytic, the current 7
being supported in the boundary of X, and presumably “laminated”. However, in the
smooth case this subset X' could be very large, for instance it could have a nonvoid
interior, and then we do not know how to extend the foliation through it. Roughly
speaking, the complement of 2 is the maximal pseudoflat neighbourhood of C, and
one may well imagine that it may be small (but we do not know any concrete example).
The last step of the proof of Theorem 1 is an argument from the general Kodaira-
dimension-type classification of foliations [10] [4]. Instead of referring to general
results, we prefer to give a simple and direct proof of the result that we need.

Proposition 8. There does not exist a holomorphic foliation F on S which is
tangent to C and free of singularities along C.

Proof. Let Kz be the canonical bundle of an hypothetical foliation 7. By
Miyaoka’s Theorem [4, p. 56], K is certainly pseudoeffective, because F is cer-
tainly not a foliation by rational curves. Moreover, since S \ C contains no compact
complex curves, we see that Kr is even nef [4, p. 57] (a curve D with ¢;(Kr) - D<0
would be necessarily F-invariant, hence contained in S \ C). By the Hodge Index
Theorem, and ¢;(Kr) - C = 0, we then get that Kr is proportional to Og(C), and in



[9] ON KAHLER SURFACES WITH SEMIPOSITIVE RICCI CURVATURE 449

particular:

G(Kr) = ar(S) - e1(Kr) = 0.

Take now the conormal bundle N% of F. By adjunction (Ks = Kr ® N’) we have
WK F) = hM(N%) and h3(Kr) = h'(N%) = 0, the latter equality because there are no
global holomorphice 1-forms on S. Hence the Riemann-Roch formula gives:

WK ) = RHN%) + 7(O5) = B\(N3) + 1.

However, h°(K ) < 1 because otherwise we get an elliptic fibration tangent to C, and
therefore:

R'(N%) = 0.
Consider now the exact sequence
0—-Ny —>Nz®05(C)— Nz 0s(C)|; — 0

and note that N% ® Og(C)| ~ O¢ (the isomorphism being the Residue Map: the fact
that F is tangent to C precisely means that N3 ® Og(C) C Q}g(log ()). By the above
Rh'-vanishing, we get a nontrivial global section « of N ® Og(C). This is impossible
for at least two reasons:

(i) Res(a) = a[C]for some a # 0, contradicting the fact that the (total) residue of a
logarithmic form must be cohomologous to zero (Res(x) = 0u).

(i) By adjunction and Kg! = Og(C) we get also a global section of Tr = K!
nonvanishing on C, i.e. a global holomorphic vector field on S with an elliptic orbit. As
is well-known, this is impossible on a rational surface. O

This completes the proof of Theorem 1.

Remark 9. There is a version of the previous proposition (which can be
extracted from [10] or [4]) which does not require the absence of ( — 2)-curves in
S\ C. The conclusion, however, is not the inexistence of the foliation, but the
statement that F is a quotient of a foliation on a ruled surface with elliptic base,
transverse to the fibers (this discrepancy is due to the fact that, when there are
(— 2)-curves, the pseudoeffective K may have a nontrivial negative part, which
can be eliminated by a covering, but this operation destroys the rationality of the
surface). See [11, p. 224] for explicit examples, and [13] for a thorough analysis of
the coverings that may occur. In particular, Ogus’ examples show that for special
choices of Cy and py, ..., pg one can obtain a nonelliptic surface S which admits a
real analytic Kdhler metric with semipositive curvature.
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