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Ekman equations for wind-driven currents: a theoretical analysis

of some related numerical integration schemes

Abstract. The Ekman equations for wind driven ocean currents are summarized,
and the associated boundary conditions are discussed. The discrete space equations
of the numerical approximation are formulated in both real and complex form, be-
cause both these forms are used in the analysis of their integration in time. Time
integration procedures for the discrete space equations to simulate different re-
sponses of the system, either undamped or damped oscillations, are illustrated.
Upper bound conditions on the size of the time step are given for the stability and
convergence of the numerical schemes.
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1 - Introduction: basic equations and associated boundary conditions

We refer the reader back to the book by Pedlosky, 1979 (p. 174), and to the in-
troduction of the paper by Buffoni et al., 2010 a, for an analysis of the basic as-
sumptions supporting the following depth dependent equations for ocean currents.
Here we confine ourselves to summarize the basic equations of the pioneer model by
Ekman (Ekman,1905), and discuss the boundary conditions associated to it.

Let the horizontal wind driven velocity field be denoted by [u(t, z), v(t,2)], de-
pending only on time ¢ and on the the vertical upward coordinate z, z € (— H, 0),
with H = water layer depth. The initial boundary value problem for the velocity
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field is written as

ouw 0 ,,0u
1) E*&Kgfﬂ) = 0,

ov 0 _0ov
3) g - g -

az 2=0 pw 82 2=0 pw
4) —Ka—u = —o [ult, —H) — u], —K@ = —o[vt, —H) — 7],
oz :=—H oz :=—H

(5) w(0,2) = u’(), v(0,2) =),

where K is the vertical eddy viscosity, and f is the Coriolis parameter. The boundary
conditions are given specifying the diffusive flux —Ko[u,v]/0z at z = —H, 0. The
wind stress [z, 7,]at the sea surface in the boundary conditions (3), where p,, is the
water density, is the driving force of the motion.

This force is obtained from the experimental wind data (speed and direction) by
means of empirical formulas of varying intricacy (Kochanski et al., 2006). The
symplest expression (Pond and Pickard, 1983) is

(6) [, ©y] = p,Cp \/m [wz, wy],

where p, = 1.3 kg m~3 is the air density, Cp = 1.4 1073 is an adimensional drag
coefficient, and [w,, w,]is the horizontal wind velocity in ms~! taken at a reference
height of 10 m.

The boundary conditions (4) describe the interaction between the water layer
(— H,0) considered and the region below z = —H, which can be either the physical
sea bottom or a deeper water layer. In these boundary conditions the parameter o is
nonnegative; when o > 0, it represents a friction factor for the motion (its dimen-
sions are those of a velocity). The reference velocities % and ¥ may assume different
meanings, depending on the physical situations. The conditions (4) imply that both
|u(t,z) — ut] and |v(t,2) — 9| are decreasing as z — —H; moreover, when o — + oo,
these conditions become the Dirichlet conditions u(t, —H) = u, v(t, —H) = ¥.

Typical range of K (Nihoul, 1975, p. 75; Pedlosky, 1979, p. 174; Sheng, 1983, p. 43)
is K €[0.001, 0.1] m?s~!. The depth H is of the order of some units of the Ekman
layer given by /2K /f, so that with f = 10~* s~! we have that H < 100m.

Under the action of a constant wind tress, or when [7,(?), 7y()] = [Tzoc, Tyools
there exists an equilibrium state [u..(2), v (2)] for the velocity field. It can be shown
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that [u(2), v (2)] is asymptotically stable when o > 0, and unstable when o = 0.
Thus, the boundary conditions assigned at the bottom of the water layer considered,
influence the asymptotic behaviour of the motions: when o > 0 we have damped
oscillations around [%..(2), v (2)], with damping time scales depending on o, K, H
(Buffoni et al., 2010 b), while when « = 0 undamped oscillations.

The case of no-slip boundary condition at the bottom of the water layer (i.e. when
o = 400 and % = 0, ¥ = 0), has been assumed by Lewis and Belcher (2004); they
investigated both the cases of a layer of finite and infinite depth. The other limit case
o = 0, i.e. the condition of zero stress fixed at the bottom of the water layer, has been
assumed by Price and Sundermeyer (1999); this model shows that an impulsively
started wind stress induces a flow, which continues to oscillate undamped. Lewis and
Belcher (2004) say that “phisically, this seems somewhat implausible”, so they use
the no-slip boundary condition. Here we use the formulation (4), which admits the
models by Price and Sundermeyer (1999) and Lewis and Belcher (2004) as limit cases
for & = 0 and o — + oo, respectively.

Software, both in FORTRAN and in MATLAB, for solving physical oceano-
graphy problems, in particular for educational purposes, is proposed in the web
(Pawlowicz, 2010; Price, 2010). Often, any justification about stability properties,
convergence to a steady state, or supporting undamped oscillations, of the numerical
procedures are not given. The main objective of this work is a theoretical analysis of
some numerical integration schemes of equations (1)-(5), to illustrate their beha-
viours in different situations mainly characterized by the value of the parameter o.

The paper is organized as follows. In Section 2 the discrete space equations are
derived. In Section 3 time integration schemes are illustrated, and their stability
properties and ability to reproduce oscillations when friction is absent are proved. In
Section 4 some concluding remarks can be found.

2 - Numerical approximations: discrete space equations

Here, for one dimensional spatial problems, we prefer to derive the numerical
approximation by the finite difference method, obtaining equations with the same
basic properties of the finite element equations. To simplify the notation, and also to
obtain analytical expressions for some basic parameters, we consider a constant
eddy viscosity K; however, matrix equations with the same properties are obtained
when K is considered depth dependent. The wind stress, which is the driving force of
the motion, only acts in the boundary conditions (3); so that in the discrete space
equations it will appear as source terms. The discrete space equations associated to
(1)-(5) are first derived, and then time integration is performed.
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2.1 - Equations in real form

Let us define in the interval (— H,0) a uniform grid z, = —H + (£ — 1),
¢=1,...,n, where 0 = h/(n — 1) is the mesh spacing and » is the order of approx-
imation (e.g.: H = 100 m, 6 = 2.5 m, n = 41). Let

[ue®), 0] = [ult,z), v¢,20], [uf, v)] = [W(z), V°)],
and
K
X = y

The following set of ode are obtained from the continuous problem (1)-(4) by the
finite volume method (or integration method, Varga, 1962, p. 167):

1 duy o 1 ol
(7) §W+(x+5)u1—zuz—§fv1—7,
d’LL[
(8) W—XWA-FZXW—;(WH—fvgzo, £=23,....,n—1,
1 dun 1 . Ty
9) 5 gr AU +Xun_§fvn T3
1dv; o 1 o
(10) 5@"’(%‘5‘5)?}1—){?}24‘5]&01—37
d?)z
(11) g e 2= e + fue =0, £=2.3,...m—1,
1 dv, 1 T
(12) 2 d_tn — XVn—1+ YVn + B} Juy, = /7%7
(13) [(0), v(0)] = [u), 0], £=1,2,...,m.

Let us define the vectors
u(t) = [ @), u2®), ..., u, ", v@ = [V10), v2@), ..., va @],

T
u’ =l u, ... ull

»

0 0 .0 (RVA
, U :[?)1)?)27"'77)”]7

~ T ~ T
_ [ 2 _ [ Ty
qﬂ’/'— {5 707"'7O’p 5} ) qy |:5707""O’ } )
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the symmetric matrix
(x+o/d0 —x 0 0
-2 2 —x 0

0 0 ... —x 2
L 0 0o ... 0 —y

X

X

411

and the diagonal matrix D with diag D = (1/2,1,...,1,1/2). Then, the discrete

equations (7)-(13) are written in vectorial form as

(14) D%+Au —fDv = q,,
dv

(15) D%+Av +fDu = gq,,

(16) u(0) =u’, v0)=20".

2.2 - Equations in complex form

Equations (14)-(16) can be written in an equivalent complex form. Let

p@®) =u@®)+iv®), p’=u’+iv’, q=gq,+iq,

Then, we have

d .

() DL+ A+if Dp = q. pO) = p.
By letting

(18) C =D''A+ifI

equation (17) is written as

d
(19) d—’Z+Cp = D¢, p0)=p°.

When ¢ is time independent, the unique steady state p* is solution to the sta-

tionary equation
A+ Dp* = q.

It can be easily obtained by means of the algorithm for solving a linear system with a

tridiagonal matrix (Varga, 1962, p. 195).
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3 - Time integration

Now we will review some basic methods for solving the problem (14)-(16) or the
equivalent (17), under the assumption of a constant wind stress. For some time in-
tegration methods, the analysis can be equivalently performed starting from the
equations either in real or complex form, while for others only by using the real
equations. For the various time iterative processes considered, we will adopt,
without ingenerating misunderstanding, the same notation for the iteration matrix,
its eigenvalues, and for some other quantities introduced in the proofs.

As stated in the introduction, when the wind stress is time independent, the
system will produce well defined asymptotic behaviours, depending on the value of
the parameter o introduced in the boundary conditions at the bottom depth. These
behaviours are determined by the spectrum of the matrix equations (14)-(16) or the
equivalent (17). Thus, a preliminary analisys of the eigenvalue problem associated to
the discrete space equations (14)-(16), or the equivalent (17), is here performed.

3.1 - The eigenvalue problem associated to the discrete space equations

The eigenvalue problem associated to (14)-(15) is written as
(20) JU+DAU —fV = 0,
(21) W4+DIAV +fU = 0.
The eigenpairs solutions to (20), (21) are given by
(22) k== Elf, U5 Vi1 = Lo, £ie),
for j=1,2,...,n, where [4;,e;] are the eigenpairs associated to D 'A. The eigen-
values y; are real and nonnegative (Gantmacher, 1960, p. 310). It can be shown that

2K R
K= (1 — cos(¥;0)),

where ¥; are the nonnegative solutions of the equation

o sin(vo)
i 5 tan(vH),

and
e = € cos(on—0), (=12,...m,

where ¢ are constants. As d — 0, ¥ — v; and g; — Kv?. When o > 0 the zero ei-
genvalue is missing, while when o = 0 the eigenvalue y; = 0 exists. The corre-
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sponding eigenvector is e; = constant [1,1,...,1]; its components are all equal to a
constant, i.e. it is independent of depth.

The eigenvalues )f in (22) are all different from zero for any o > 0; thus, when the
wind stress is time independent, there always exists a unique steady state solution to
(14)-(15).

3.2 - Numerical integration schemes

I) Let
(23) C = D'A+ifl,
so that (17) is now written as
d
(24) S +Cp = Dlq. p(0)=p".

The classical two levels explicit-implcit schemes are summarized in the equation
(25) I+ wMClpt+ At) = [ — (A — w)MC]p(t) + AD 'q,

where 0 < w < 1, and 4t is the time step. In particular, for = 0 we have the explicit
method, for w = 1 the fully implicit method, while for & = 1/2 the Crank-Nicolson
method (Varga, 1962, p. 264).

The asymptotic properties of p(f) are determined by the behaviour of

(26) rt) = p@) - p,

which satisfies the iterative process

(27) rt + At) = M(w, 4t) rt), r©)=p" —p*,
where
(28) M(w, M) = [I + oMCT [T — (1 — w)4C]

is the iteration matrix. In appendix B it is shown that a process of type (27) may
produce asymptotic undamped oscillations only when the eigenvalue of M(w, At) of
maximum modulus is complex, and its modulus, i.e. the spectral radius p(M), is equal
to 1: p(M) = 1. In the following theorem conditions on 4t and w to have the moduli of
the eigenvalues of M(w, At) less or equal to one are given.

Theorem 1. Let u;, /; be the eigenvalues of DA and M(w, At), respectively.
Then, foro >0,0<w <1 (mdﬂj > 0 we have

—= |4 < 1.
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Moreover, when o = 0 we have p(M) = |A1| = 1 only for o = 1/2, obtaining

At

_ 0 —
(30) 1 = €Y with tanf = 1= /2a2/4

forAt#;,

or 0= —n/2 for At = 2/f.

Proof. From the expression of M(w, 4t) it follows that its eigenvectors are
ajej, where a; are constants and e; are the eigenvectors of D~'4, and its eigen-
values /; are given by

1-(0 — w4t (u; + 14
s1) = Lo+
- 1+ oAt (i + if)

Thus, the squared moduli of |Z;| are

[1- (1 — w)atF +[(1 — w)f 4]
[1+ a),ujzlt]2 + [wf 4t .

(32) 4 =

From (32), by direct calculation we obtain (29).
Assume now o = 0, so that there exists the eigenvalue 1, = 0, and x; > 0, j > 1.
As the right member of (32) is decreasing with 4, we have

_ 1410 — o)f 4t
14 [of At

(33) pM) = |A]

Thus, we have |4;| = 1 only when w = 1/2; the eigenvalue 4, is then given by

1—ifat)2 11— fPAR/A—if At 40
o lRaufat/2 14 f2a2/4

with 0 given by (30). O

(34) 2

(IT) A suitable variant of the explicit method (defined by @ = 0 in (25)) leads to
undamped oscillations in the case o = 0 (Price, 2010). The analysis can be performed
only by using the equations (14), (15) in real form. Let us consider the following
explicit discretization scheme of equations (14), (15)

ult+ At) = [I — AD'Alu(t) + fAtv(t) + A4tD q,,,
vt +4t) = [I — ADAlv(t) — fAtu(t + 4t) + #D'q,.

The asymptotic properties of [u(t), v(t)] depend on the behaviour of
[r.®), r,®] = [u®) —u*, v@®) —v],
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which satisfies the iterative process
[rat + 40), 1yt + 4D = M(4b) [r.8), 7,1,

where the iteration matrix is given by

I - AtD'A fatl
M(At) = .
—fat (I — AD7A) (1 —f242) 1 — AD7'A

Theorem 2. Let y;, if, be the eigenvalues of DA and M(At), respectively.
Then, for o. > 0 and y; > 0

(35) At < A <1.

<~

2
i+ f
Moreover, when o. = 0 and At satisfies the inequality in (35) we have p(M) = |/11i |=1
and

i  fAt/A — A V2
(36) i =e with tan 0 = oA for At +# 7
or 0 = +1/2 for At = \/2/f.

Proof. From the expression of M(At) it follows that its eigenvectors are given
by [aje;, bje;], where a; and b; are constants and e; are the eigenvectors of D7'A, and
the eigenvalue equation is

(o= 1+ ity + 3f2 4% = 0.

Thus,
iF = 4D —%fzzlﬁ + fﬁtm
where
pi(dt) = 1 — At S thz.
For

we have that ¢;(4t) > 0 and consequently the eigenvalues )»ji are complex. By direct
calculation we obtain

P = (- ity

It follows that |/1ji| <1when y; > 0and 4t <2/y;; the last inequality is satisfied when
At <Tj, because T; <2/ ;.
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For 4t > T}, qoj(At) < 0, the eigenvalues /lf are real and

At ?
afl<li| = [fT+ \/%] .

It follows that |/1j_ | <1when At <2/ (u; + /). It can be verified that T; <2/ (u; + f);s0
that [4; | <1 for

2
Tj < At <——,
- W+ f

and then the thesis (35).

Assume now o = 0, so that there exists the eigenvalue 1, = 0, and x; > 0, 7 > 1.
If At satisfies the inequality in (35), then we have p(M) = |4 | = 1, so that 1} = €?,
with 0 given by (36). O

(III) Here three levels explicit-implicit schemes are written in complex form
directly for the vector r(t) as defined in (26)

(37) [ +2wat DIAlr(t + 4t) = [I —2(1 — w)4t D Alr(t — At) — 2if Atr(t),

assuming r(0) and r(At) given. r(At) can be obtained from r(0) by using a fully explicit
method. The process (37) may be written in the form

(38) r@®), rit + 4)1° = M(w, A) [rt — 24t), r(t — 4)],

where M(w, At) is the iteration matrix

I+ 2wAtD~ 1A 0
M(w, At) =
2if At T I+ 204tD7'A
I-2(1 - w)4tD'A —2if At I
X .
0 I —-2(1 — w)AtD7'A

Theorem 3. Let y;, /lf, be the eigenvalues of D~'A and M(w, At), respectively.
Then, fora. >0, 0<w <1, > 0 we have that

@ — Dy + /12 + 12
(39) Mt < Tiew) = A
do(1 — o) + f*

+

Moreover, when o = 0 and At satisfies the inequality in (39) we have p(M) = |},1i| =1
and

i . 2f Mtr/1 — f2 A2 1
b= . +i0 J— —_—
(40) i =e with tan 6 = 1o Sfor At £ o

or 0 = £r/2 for At = 1/(2f).
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Proof. From the expression of M(w, A4t) it follows that its eigenvectors are
given by [aje;, bje;], where a; and b; are constants and e; are the eigenvectors of
D7'A, and the eigenvalue equation is

[2(1 + 20p;4t) — (1 — 201 — ) At)F + 437 4% = 0.

2 12 /
. _ (pj(a),At) —feAtr £ 2f AL —(oj(w,At)

Thus,

)

(S

where
pi(w, 4) = 1—2(1 — 204t — [4o(1 — o) + f2148%.

For At <Tj(w), defined in (39), we have that ¢j(w, At) > 0 and consequently the ei-
genvalues ;u]:'t are complex. By direct calculation we obtain

2
R = 1-201 —w)ﬂjAt]
J

1+ 2w,u_7~At

It follows that |/1f| <1 when g; > 0 and (1 — 2w)u;4t<1. Thus, Mf\ <1 either for
1/2<w<lorfor0<w<1l/2and 4t<1/[(1 — 2w),uj]; the last inequality is satisfied
when 4t < Tj(w) because Tj(w)<1/[(1 — 20)p;].

Assume now o = 0, so that there exists the eigenvalue ; = 0,and z; > 0, j > 1.If
At satisfies the inequality in (39), then we have p(M) = || = 1, so that 17 = e%,
with 0 given by (40). O

(IV) Predictor-corrector type solvers for ODE can be applied for solving (14)-
(16). The subroutine DGEAR (Hindmarsh, 1974) of the IMSL library has been used
successfully, for both o = 0 and o > 0. In this subroutine the implicit linear multistep
Adams method is implemented; the time step size is adjusted automatically.

4 - Concluding remarks

Some specific remarks can be drawn about the results obtained from the previous
analysis of the time integration schemes.

(i) Assume « > 0, so that u >0, j > 1. Thus, from (29) it follows that p(M) <1,
and then r(k4t) — 0 as k — +oo, either when w > 1/2 for arbitrary At or when
w<1/2 and At satisfies the inequality (29). The second option w<1/2 is not re-
commended.
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(ii) Since max; S 4K/ 52, the bound (35) for At becomes

p< 2
4K/o" +f

When K /6® is of the same order of f (for example with K ~ 10-2m2s~1, § ~ 5m,
f ~107%s71) it is not a strict limitation for At.

(iii) For 4t > T(w) defined in (39), (pj(w, At) < 0, the eigenvalues /Iji are real and

fat+ . /—pw, 4t) ] :

+ 1=

However, starting from this expression of |/1]T |, no improvement of the bound for 4t in
(39) has been obtained.

(iv) Let us consider the expression of Tj(w) defined in (39) for v =0, 1/2, 1:

T0) = — VT 112 =, ) =V
J

It can be verified that 7;(0) < T;(1/2) < T;(1), where the equalities hold only when
o = 0 and j = 1; in this case we have 71(0) = 71(1/2) = T (1) = 1/f.

We have that 7(0) and T;(1/2) are decreasing with 1, so that the inequality in (39)
is satisfied for all x; when

At < maa; [7(0), T]-(1/2)].
K>

On the contrary, 7)(1) is increasing with z;, so that the inequality in (39) is satisfied
for all 1; when
4t < min Tj(1).
#>0

A comparison with the upper bound 2/ (uj +f) for At in (35) gives T;(1 /2)<2/ (w; +1)
for all 1, while 7(1) <2/(; + f) only for small y;.

(v) Assume o = 0. From (30), (36), (40) we have that if fA4t < <1 then 0 ~ fAt.
Thus, from
Ik = g0 — gifat
we obtain the period ki,q4t = 27/f (see appendix). The eigenvector corresponding
to 41 is constant e1, independent of depth.
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Few general remarks about the application of the numerical procedures are now
given.

Steady state solutions, when they exist, can be easily obtained by writing the
stationary equations in complex form, and then use the algorithm for solving a linear
system with a tridiagonal matrix (Varga, 1962, p. 195).

When the wind stress is time independent, all the numerical integration schemes
analyzed in Subsection 3.2 produce nearly the same outcomes for the same problem.
Obviously, when they are suitable to solve the problem, and under the assumptions
on the bounds of the time step requested for their correct working.

When the wind stress is time dependent, we obtained reliable results by using
both the fully implicit method for parabolic equations (Varga, 1962, p. 264), and
routines for ODE, such the IMSL routine DGEAR.

Results of numerical simulations, in particular for time dependent winds, either
deterministic or stochastic processes, can be found in Buffoni et al., 2010 a, b.

Appendix

Let M be an n x n (real or complex) matrix, and let us consider the following
iterative process

(41) d = Mad ' =Md, k=12 .., agiven.
Let (4;, b)) be the eigenpairs associated to M

(42) Mb; = b, j=1,2,...,n

Assume

1] > (=) [Z2| >(>) |4 > ...

The relations in parentheses should hold when /g is the complex conjugate of 4, as it
happens when the matrix M is real. The asymptotic properties of a* depend on the
spectral radius p(M) = |1;| of M. We have that

pM) >1, <1 = |la"|| = +o0, 0.

Let 2 be not the complex conjugate of 1;. The process (41) may produce undamped
oscillations in the sequence a* when

/1 is complex with |11 =1, i.e. J; = e with 0 # 0.

In fact, assume that the initial vector a® could be written as

n

aO = Z o bj.

=1
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Then, from (41) we have

n
(43) ak = Z o ).;C bj = 0o eikﬂ b, +ck,

J=1
where ¢” is the contribution due to the eigenvectors b; with j > 1. Thus, ¢f — 0 as
k — 400, and the sequence a* present undamped oscillations. When the ratio 27/0 is
an integer, the period is given by kpeyieq = 27/0.
When /; is the complex conjugate of 11, the expression (43) becomes

(44) a" = of b oy e by +ck
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