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Kinetic shock profiles for nonlinear hyperbolic conservation laws

Abstract. A unified framework for studying the existence and stability of kinetic
shock profiles is presented. This includes small amplitude waves for the situation
when the macroscopic model is a hyperbolic system of conservation laws with
genuine nonlinearity. For the case of scalar conservation laws, also large amplitude
waves can be understood. Applications range from BGK-models for general scalar
conservation laws and for gas dynamics, to an equation for fermions in a scattering
background under the action of an electric field and to the Boltzmann equation of
gas dynamics.
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1 - Introduction

This work contributes to the mathematical theory establishing the connection be-
tween kinetie transport equations and hyperbolic systems of conservation laws, oc-
curring as their macroscopic limits. Shock waves are basic weak solutions of nonlinear
hyperbolic conservation laws featuring a discontinuity. The main question considered
in this work is the existence and dynamic stability of kinetic shock profiles, i.e. smooth
travelling wave solutions of the kinetic equation, sharing the far-field states with the
shock wave. Several recent results are reviewed and presented in a unified way.

For systems of nonlinear conservation laws only results for small amplitude
shock waves are available. In this case, the Chapman-Enskog approximation, i.e. a
diffusive regularization of the conservation laws, can be expected to provide a good
approximation for solutions of the kinetic equation. Kinetic shock profiles can be
constructed close to viscous shock profiles. The classical result on the existence of
small amplitude kinetic shock profiles for the gas dynamics Boltzmann equation is
due to Caflisch and Nicolaenko [11]. In Section 4, a modified and generalized version
of their approach is presented, leading to more accurate approximation results.
Stability of small amplitude kinetic shock profiles is the issue of Section 5. An ap-
proach based on energy (actually entropy) estimates in the spirit of the work of Liu
and Yu [28] is presented. The main idea is to start from an approach for the system
with diffusive regularization. This can actually be extended to proving convergence
to rarefaction waves [16].
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For scalar conservation laws, stronger results are possible. An approach for the
construction of large amplitude kinetic shock profiles is presented in Section 6. The
main ideas originate from the work of Golse [22] on the Perthame-Tadmor model
[35]. Finally, dynamical stability is discussed, based on ideas from [5].

We consider a kinetic transport model for plane waves in the form

(1.1) Of +v0.f =Qf),

where f(t,x,v) is a particle distribution function at time ¢ € R and position « € R.
The components of the ‘velocity’ vector v = (v,w) € V C R x [0, 00) can be inter-
preted as the velocity component v in x-direction, and as an abbreviation w for
(v% + -+ vfl)l/ 2 where w,ve,...,v9) € R? is the particle velocity. Thus, we assume
x-axisymmetric velocity distributions. The set V of velocities is equipped with a
measure du(v). Discrete sets V' and, thus, hyperbolic relaxation models are per-
mitted.

The so called collision operator @ is assumed to act on the velocity variable v only.
Equations of the form (1.1) can be derived from fully d-dimensional kinetic transport
equations, if the collision events are invariant under rotations (at least around the x-
axis).

The collision operator is assumed to be nonlinear and to have the conservation
property

(12) J¢(U)Q(f)(v)dﬂ(v) 0.
\74

The (linearly independent) components of the vector ¢(v) € R" are called collision
moariants. As a consequence of (1.2), the macroscopic moments of f, collected in the
vector

Uyt ) = | o)1, 2,001,
\%
are the macroscopic densities of conserved quantities:
(1.3) OUr + 0, Jr =0, with Jy := Jvcﬁfd,u.
v

As expected, the zero set of @ will be assumed to be n-dimensional and para-
metrizable by the macroscopic moments:

Q)=0 <= f(v)=MUy,v), (implying Upnpy = U).

The generalized Maxwellian M(U) is the equilibrium distribution of the collision
processes. It is plausible that the dynamics of close-to-equilibrium solutions of (1.1) is
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approximated by the system of conservation laws
(1.4) 8th+8mJ(Uf):0, JWU) = JM(U)7

obtained by replacing f by M(Uy) in the second term of (1.3). This approximation can
only be expected to be physically relevant under a stability condition: we assume the
existence of a kinetic entropy density H(f,v), satisfying

(1.5) JafH( HRU)du < 0

14

where H is continuous in v and twice differentiable and convex in f. We also assume
definiteness in the sense that equality in (1.5) only holds if f = M(Uy). This leads to
the kinetic entropy inequality

(16) & JH(f)dﬂ +0, JUH(f)dﬂ <0.
14 14

The macroscopic system (1.4) will be assumed to be strictly hyperbolic meaning that
for every U, the Jacobian J'(U) of the macroscopic flux J(U) has n distinct ei-
genvalues 41(U) < --- < 4,(U), and the corresponding left and right eigenvectors
l(U) and, respectively, ,(U), k = 1,...,n, are assumed to be normalized such that
L) - (U) = oj.

Piecewise constant weak solutions of (1.4) of the form
U_ for x < st,
U, for x > st,

U(x,t):{

are called shock waves. Here s is the shock speed and U are the constant left and
right states, which are related by the Rankine-Hugoniot jump conditions

(1.7) s(Uy —U)=JWUH)—-JWU-).

For a fixed left state U_ the Hugoniot locus is defined as the set of all U, such that
(1.7) is satisfied for an appropriate s. In a neighbourhood of U_, the Hugoniot locus
consists of n curves intersecting in U_. At U _, the k-th curve is tangent to (U _) and
the shock speed s takes the value 1;,(U_) (see, e.g.,[26]). If U, lies on the k-th curve of
the Hugoniot locus, we refer to {U., s} as a k-shock.

If the k-th field is genuinely nonlinear, i.e. vy, - VA, # 0, then the Lax entropy
condition

(1.8) MU < s < y(U2)

is a stability condition for k-shocks (see, e.g., [26]) and we assume a normalization of
1 such that v, - VA, = 1.
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An alternative approach to entropy conditions starts from the kinetic entropy
inequality (1.6) and uses the close-to-equilibrium approximation

(1.9) om(Us) + ,#(Uy) <0,

as a side condition for weak solutions of (1.4). Here the macroscopic entropy density
and entropy flux (satisfying V¥(U) = Vy(U) - J'(U)) are given by

(1.10) ) = JH(M(U))dﬂ, YU) = JvH(M(U))d,u.
v v

It can be shown that for small amplitude shock waves, i.e., small enough values of
|U. — U_|, the conditions (1.8) and (1.9) are equivalent.

Remark 1.1. Further properties of the kinetic entropy density will be used
below. The above implies the minimisation principle

(1.11) n(U):JH(/\/l(U))d,u: min JH(f)dﬂ,
| Bfip=U

v 7
which has the further consequence that O;H(M(U)) is linear in the collision in-
variants, i.e. theve exists a vector by € R such that OFHMU)) = by - ¢. If we take
the gradient of the first relation in (1.10) it turns out that by = Vy(U), such that
OFHMU)) = Vy(U) - ¢.

For later reference, we collect the assumptions on the collision operator made
so far.

Assumption 1. The collision operator @ has n linearly independent colli-
ston invariants ¢;©), ..., ¢,), and its zero set is given by {M(U,v): U € R"}.
There exists a strictly convex kinetic entropy density H(f,v) satisfying the in-
equality (1.5) (with equality iff f = M(Uy)). The macroscopic system (1.4) is
strictly hyperbolic.

2 - Examples

Not all collision operators can be interpreted as appropriate models for micro-
scopic collision processes. In many cases they are just constructed as relaxation
models towards a desired equilibrium. The so called BGK-models [7], [9] of the form
Q(f) = M(Uy) — f belong to this class. All the examples presented below satisfy
Assumption 1.
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2.1 - BGK-models for scalar conservation laws

A family of generalized Maxwellians for an arbitrary scalar hyperbolic con-
servation law with flux J(U) is given by

U
M(U,'u):Jm(va’(r))dr, veV =R,
0

(see [18]), where m(v) > 0 can be any even function satisfying f m@)dv = 1. The

conservation law is conservation of mass with ¢(v) = 1and Uy = f f dv. Noting that

M is strictly increasing as a function of U, we define kinetic e;ltropy densities by
inverting it:

f
(2.1) {(fiy=U = MU =f, Hfv):= Jﬂ’(C(g,v))dgv
0

where 7 is an arbitrary convex function. Then the entropy inequality

—_—

J FH(OIMUy) = fldv= | [ =1 UDIMUy,v) — fldv < 0

—00

holds, since the equality follows from mass conservation and the inequality is a
consequence of the monotonicities of {(f,v) with respect to f and of /. The corre-
sponding macroscopic entropy density is given by n(U). So all the macroscopic en-
tropies can be recovered from kinetic entropies.

There are of course also many other choices such as discrete velocity models, the
simplest with two velocities: du(v) = (6(v + a) + 6(v — a))dv and

1
MU, +a) = %(an: J)),
the corresponding BGK-model being equivalent to the standard relaxation model

[24]
QU +0:.j=0,  dj+ad?0,U=JU) -],

with U =f(—a) + f(a), 7 = a(f(a) — f(— a)). Kinetic entropy densities can be
constructed as above, if the generalized Maxwellian is strictly monotone in U,
i.e., if the subcharacteristic condition |J'(U)| < @ holds for all relevant values
of U.
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2.2 - A BGK-model for isentropic and isothermal gas dynamics

The following class of generalized Maxwellians has been introcuced in [27]. Here
n=2 U= (p,pu),V =R, and

B

M(p,u,v)—b( 27 p”f’l—(v—u)2> ,
y_l +

with1 <y <3,

1
B 3—y B 1 2y -1/G-1) B org

-1

The collision invariants ¢(v) = (1,v) correspond to conservation of mass and mo-
mentum (in the x-direction), and the macroscopic flux vector is given by

o0 1 m m

Thus, the system (1.4) is the p-system of isentropic gas dynamics with adiabatic
exponent y. The eigenvalues of J'(p, m) are given by

Jip=uFcp),  whereclp) = 5p7 V2.

For p > 0 (away from vacuum) 4; < 1z holds everywhere and the system is strictly
hyperbolic. With the corresponding right and left eigenvectors

/I/'i:(l’;xl), Té:(]w;@)a l1:(/127_1)1 lé:(_11)1)7

one can see that the system is also genuinely nonlinear. The primes indicate that the
eigenvectors are not scaled as assumed in Section 1. Moreover one can show that the
Lax admissibility condition for a 1-shock reduces to

(23) P <pi
and for a 2-shock to p_ > p_.
A kinetic entropy density is given by
f1+1//)’

1)2
HE O =51+ giisa 178

leading to the macroscopic entropy density

pu?

_puw P
nip,u) = 5 T

y—1’7

whose physical interpretation is, of course, energy.
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From the Maxwellians

p 7('u—u)2
M(p,u,v) =——e =z, where v € R,
4 V2n

we recover the isothermal gas dynamics, where the flux is given by (2.2) with y = 1.
Then the eigenvalues are as above with ¢ = 1. Here the kinetic entropy

2
v
H(f,v)=5f+fInf
leads to the macroscopic one

pu®
n(p,u) 274—(/} In p—pIn v2n),

see e.g. also [9].

2.3 - The gas dynamics BGK-model

In the general d-dimensional Maxwellian

7(?)—%0)2-1-(?)2—%2)2+-~-+(?)d—%d)2
2T

@2rT)V? P

with density p, mean velocity (u,usg,...,uq), and temperature T, the axisym-
metry assumption is equivalent to vanishing transversal mean velocities,
ug = --- =ug = 0, and leads to

P @ — w4+ u?
M(paua T’ 'U,'I/U) *Wexp ( T) :

The integration measure is defined as du(v, w) := w %S4t dv dw = d(v, vs, . . ., vy),
where |Sd*1| is the surface of the (d — 1)-dimensional unit sphere. Conservation
of mass, momentum in the x-direction, and energy is required, i.e., $(v,w)
= (1,v,@* +w?)/2) and
Pr 1
U = Prity = v fdu.
pfuj%/Z—f—gprf v\ (0% +u?)/2

The macroscopic flux is given by
U
2
J(p.u, T) = pu=t ot

d
u(pu? /2 +§pT +pT)
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The macroscopic system (1.4) are the compressible Euler equations for a d-dimen-
sional ideal gas, reduced to one dimension by assuming plane wave solutions with
vanishing transversal velocity components.

The Jacobian
0 1 0
7=3 .2 (3 —9) -1 d+2
J(U) = g W n Y L=
u E 3
G- —yE= y=— (@ —1ud YU
p p 2
has the eigenvalues
M=u-—c, Ao =, A3=u+c,

with the sound speed ¢ = 1/yT. The corresponding right and left eigenvectors are
given by

B , 1 3—7 2
7/']C _(17/%73/_ 1 ( 2 u (3 V)@Mk +Ak>> )

—L l ﬁ . 2 3 1 B
lkCQd(Ak (z(y_l)“k yun” + (o — D — B p>7y_1uk yu>,1>,

satisfying (I, - rk),izl = (1, —2,1). In view of further calculations we give r; explicitly:
3—y

2 -1

linear, whereas the second field is linearly degenerate, i.e, 2 - VAz = 0.

The kinetic entropy density is the classical H(f) = f In f, and

1
= (1u—csw—cl+

c2>. The first and third field are genuinely non-

| g - idn = [ n g = w MM - 110 < 0.
Vv 1%

the equality being a consequence of the fact that the logarithm of the Maxwellian is a
linear combination of the collision invariants. The macroscopic entropy density is
given by

(o
WD =" ().

Subtracting a multiple of the conserved quantity p and dividing by a constant factor
gives the classical # = —p In (pT'/p”) with y = (d + 2)/d.



148 C. M. CUESTA, S. HITTMEIR and C. SCHMEISER [10]

2.4 - Fermions in a background medium and a constant electric field

Semiclassical modelling of the scattering of fermions with an equilibrium back-
ground medium leads to collision operators of the form [30]

QU0 = [ o L~ FIMW) ~ FOXL ~ FNMEY
R

where the collision cross section a(v,v') > g > 0is symmetric, M(v) = (271)71/ 2g=%/2
is anormalized Gaussian, and the occurrence of the factors (1 — f) is a consequence of
the quantum mechanical Pauli exclusion principle. The zero set of @ is one-di-
mensional (corresponding to the conservation of mass) and consists of the Fermi-
Dirac distributions (1 4+ ¢/M )L, ¢ > 0. The action of a constant electric field with the
x-component % is included in the total collision operator

QL) = Qs(f) — Eduf .

The only conserved quantity is mass (¢(v) = 1), and it has been proven in [3] that the
zero set of @ can be parametrized by the density:

Q) =0 = [f)=Mlp,v),

where the generalized Maxwellian is a strictly increasing function of p, = [ fav.

Without the lower bound on the collision cross section the existence of non[érivial
equilibrium distributions is not guaranteed (see [37]).

The somewhat surprising result that the definition (2.1) yields a kinetic entropy
density for the operator € (including an acceleration term) has been proven in [5].

3 - Macroscopic and small wave approximations

3.1 - The hydrodynamic limit

The macroscopic approximation (1.4) for the kinetic equation (1.1) can be formally
derived by rescaling position and time by © — /¢, t — t/¢, and passing to the limit
e— 0in

(3.1) O f" + 00, f° = QUFY).

Assuming a strong enough convergence f* — f as ¢ — 0, passing to the limit yields
Q(f) = 0and, thus, f(t,x,v) = MU, x),v)with U = Iirré Uy.. Passing to the limit in
the conservation laws o
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leads to the macroscopic system (1.4). This limit can be justified for all examples of
Section 2 in the following sense: if the initial data f;(x, v) = f%(0, x, v) are smooth and
possess smooth moments Uy, (x), then a unique smooth solution of (1.4) taking these
initial data exists for a short enough open time interval. The unique solution of the
initial value problem for (3.1) converges to M(U), where U is the solution of (1.4), on
any compact subinterval of the existence interval of the latter (see, e.g., [10] for the
case of the Boltzmann equation of gas dynamics).

The harder question of global convergence to weak entropy solutions has also
been answered for all the examples except for the gas dynamics BGK-model (Section
2.3). Proofs working for all cases in Section 2.1 can be found in [33], [34]. For the
isentropic gas dynamics model (Section 2.2) it has been carried out in [6], and for the
fermion model (Section 2.4) in [5].

3.2 - The linearised collision operator

The properties of linearizations of the collision operator at equilibrium dis-
tributions will be needed throughout the rest of this work and, in particular, in the
following section for the construction of a more accurate macroscopic approximation.
For a fixed vector [J , the linearisation of the collision operator around M= M) is
denoted by

Lf = Q(M)f.

The motivation for introducing a suitable functional analytic framework for the
operator £ comes from the entropy inequality

S%JQ(M + &) HM + ¢f)du < 0.
14

Since orH (M) is a linear combination of the collision invariants (see Remark 1.1), the
limit as ¢ — 0 of the left hand side is equal to (Lf,f), with the weighted scalar
product

33) f.9)e = |£9FHWOAL.

14

The induced Hilbert space and its norm are denoted by (L2, ||.||,). The operator £ is
assumed to be bounded and symmetric and, by passing to the limit in the above
entropy inequality, it is negative semidefinite in L2. By the symmetry assumption,
the functions ¢j / G?H (M), 1 <j < n,(where ¢j is the j-th collision invariant) lie in the
null space N of £. We assume that they span N, but use the alternative basis
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8U].M(U ,U),7 =1,...,n, having the useful property

Uy, pain)i = 9y, J@M(U)dﬂ =95, 1<ij<mn.
' v

Since
(f.¢/OFHM)), = Uy,

N* = {f € L2 : Uy = 0} holds, where V" is the orthogonal complement of A in L2.
We assume that £ : N'" — N is invertible. In other words, U, = 0is the solvability
condition for the equation £f = g, which has a unique solution f € A", Finally, the
orthogonal projection from L2 to A is given by fi—U; - VoM.

In this section, we have posed further assumptions on the collision operator:

Assumption 2. The linearized collision operator @ (M) is symmetric with
respect to the scalar product (3.3). Its kernel N is n-dimensional, and its restriction
to N'* is invertible.

For BGK-models the linearized collision operator is given by £f = Uy - VoM —f,
immediately showing dim(\) = n, £L|,,. = —id, and implying

(£1.9)0 ~ £9.0) = | @Uy =10 VoM FHOVOAL.
v
Symmetry of £ is now a consequence of the identity

(3.4) VuMU) FHMU) = Vp(U)$,

derived by computing the gradient of OfH(M(U)) = Vi(U) - ¢ (see Remark 1.1). The
identity (3.4) has other useful consequences. Taking its tensor product with
vV yM(U) and integrating it with respect to v shows that the matrix V2y(U)J'(U) is
symmetric. This in turn implies that VZy(U)r,(U) is a left eigenvector of J'(U)
corresponding to the eigenvalue /;. Thus,

VEnUr(U) = i), with i (U) = V2p(U) i (O), 7(U)) > 0,

implying the following relation between elements of \:

- g g (T ¢
3.5 U) VoM =k, (D), ,(U) - — .
(3.5) rm(U) - Vy 1 (UD(U) 8J?H(M)
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3.3 - The Chapman-Enskog approximation

There are two basic strategies for improving the approximation quality of the
macroscopic limit M(U) as an approximation for f¢. The idea of the Hilbert ex-
pansion [23] is rather straightforward and amounts to constructing an asymptotic
expansion for f* in terms of powers of &

Folt,2,0) = MU 2),0) + Y &t 2,0) + 0E").

=1

Substitution of this ansatz in (3.1), (3.2), and in the initial conditions, and comparing
coefficients of ¢ leads to equations determining the sequence { f,,} recursively.

The second approach does not concentrate on solving arbitrary initial value
problems for (3.1), but to approximate a solution manifold parametrized by the
macroscopic moments U? = Uy.. It starts with the micro-macro decomposition

fE:M(Ue)#*SfL,

and tries to compute f* in terms of U¢ and the dynamics of U?, such that f¢ solves
(3.1). When, in this program, O(¢?)-errors are accepted in the equation for U,, an
approximation up to O(¢)-errors is needed for f*. From (3.1) we obtain

QMWUNf+ = VuMU?) - QU +vd,U*) = VyMU?) - (v = J' (U8, U*,

where O(¢)-terms have been neglected. Computing the gradient with respect to U of
the relation J(U) = [ v¢M(U)du shows that the right hand side satisfies the sol-

v
vability condition mentioned at the end of the previous section such that f* can be
computed uniquely in terms of the approximation U of U*:

(3.6) U= @MW) VM) - (v — J'(UN10U .
Using this in (3.2) gives the Chapman-Enskog approximation [12]
3.7) oU + 0,J(U) = £0,(DU)0,U) ,
with the diffusivity matrix
D) = — Jv¢ ® QMUN) VM) - (v - J'U)]dpu,
v

where the symbol ® denotes the tensor product. For BGK-models, @'|,.. = —id and

a more explicit representation can be found:

e

DWU) = Jvng @ VoMUdu — J' (U .
1%
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The diffusion dissipates the macroscopic entropy, which is reflected by the fact that
VEU)DW) = —(Q MUy @ 1), > 0

holds, where the identity (3.4) and the notation y = Vy M(U) - (v — J'(U)) have been
used.

Remark 3.1. For the BGK-models for scalar macroscopic equations (¢ = 1)
wn Section 2.1, dyM > 0 holds, implying

2
J(U)? = ( Jv@UM(U)du> < JvzayM(U)d,u,
14 14

since [ OyM(U)du = 1. Thus, the diffusivity D(U) is strictly positive.
1%

For the BGK-model for isentropic gas dynamics in Section 2.2,

D(p,m—(s—y)p‘*‘l( 0 0)

—u 1

holds, leading to the Navier-Stokes model

p\ 0
D(p, u)5m<pu) - (/x(/))axu) 7

with the viscosity u(p) = B — p)p’. This example shows that the diffusivity is in
general not regular, such that diffusion does not act on all components of U.
The gas dynamics BGK-model in Section 2.3 gives

0 0 0
2(d - 1) 2(d-1)
— U 0
D(p7 u, T) =T d d s
7(d+2)T73(d—2) 2 (d_4)u d+2
2 2d " d d
leading to
p 0
D(p,u, T)0, pu = w(p, T)Oyus ;
pu? +dT)/2 wu(p, VO + 1(p, 1), T
with viscosity u(p, T) = 2(dd_ b pT and heat conductivity x(p,T) = dzﬁ pT. Note

that with » = 2 ; 2

previous example is recovered.

and with the isentropic relation pT = p’, the viscosity of the
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Remark 3.2. Similar results as those described in Section 3.1 are also
available for the vanishing diffusion limit ¢ — 0 in (3.7) (see, e.g., [20], or [8] for a
recent result).

3.4 - Weakly nonlinear approximation for small waves

In this section we consider the slow modulation of travelling wave solutions of the
linearization of the hydrodynamic system (1.4) at a constant state U_. Modulations
are caused by nonlinearity and by the dissipative terms in the Chapman-Enskog
system (3.7).

We choose k such that the k-th field is strictly nonlinear (r; - VA; = 1) and in-
troduce a moving reference frame and a long time scale by « = + 4, (U_)t and
t=1/ein (8.7):

(3.8) 0. U + (J'(U) — 2 (U-)0,U = e8,(DW)9,U) .
This motivates the ansatz
U, = U- + eyt prU-) + & Us(z,m) + O,
which annihilates the O(1)- and O(e)-terms in (3.8). At O(¢2), we obtain
Y 11, + Yoy (ri, vi) + (J' — 20, Uz = Drké,ziy ,

where all functions of U are evaluated at U _ . A solvability condition for this equation
for U, is obtained by taking the scalar product with the left eigenvector I, of J'
(satisfying l;, - v, = 1):

(3.9) 0y + yoyy = Di(U_)d2y
with D, (U) = [,,(U) - D(U)r,(U), where the relation

( ) 1=w. - Vi=v. -V -Jr) =1 - J"(?"k,Tk) + 1 - (A - VI + Al - V)
3.10
=l - J" g, ) + Aerye - Ve - 71) = b - " (v, 7

has been used.

Approximately, the modulation of travelling wave solutions is described by the
viscous Burgers equation (3.9). Positivity of the scalar diffusivity Dj, will be assumed.
It has to be checked example by example.

Remark 3.3. Forscalar conservation laws we obviously have D1(U) = D(U).
For the isentropic gas dynamics model we obtain Dy, = (3 — y)p’~1/2 for both k = 1
and k = 2, and for the full gas dynamics BGK-model D = T for the genuinely
nonlinear fields k =1 and k = 3.
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3.5 - Viscous shock profiles for weak shocks

Let the k-th field of (1.4) be genuinely nonlinear and let { U, s} denote a k-shock,
where the shock speed can be written as

s=/A_+eo,

with ¢ < 0 and a small perturbation parameter 0 < ¢ < 1. The sign conditions are
due to the Lax entropy condition (1.8). Then the difference of the far field states has
an asymptotic expansion

U, —U_ =2eor_ + O,

where r_ :=1,(U-) and A_ := A4(U-). A travelling wave solution U = Uy,(9),
¢ = x — st of the Chapman-Enskog equations (3.7), satisfying the far-field conditions
Uysp — Uy for & — Foo, will be called a viscous shock profile. It can be seen as an
heteroclinic orbit of the ODE system

(3.11) eDUNO:U =J(U) - J(U-) —s(U—-U-).

General results on the existence of viscous shock profiles are not available (even for
artificial viscosity of the form D(U) = I). For small shocks, i.e. ¢ small enough, U,
can be expected to stay close to the constant state U_, and therefore the asymptotics
of the previous section can be used for an approximation. This leads to a travelling
wave problem for the viscous Burgers equation (3.9) with wave speed ¢ and with the
far-field values y_ = 0 and i, = 20. A travelling wave solution ¥, (17 — 7) = Yusp(E)
can be computed explicitly.

To make this approximation rigorous is a nontrivial problem of the theory of
singularly perturbed ODEs. The details of the justification depend on the properties
of the diffusivity matrix D(U). A general rigorous treatment is, thus, impossible and
we state the result as an assumption.

Assumption 3. Let the k-th field of the macroscopic flux J(U) be genuinely
nonlinear, and let Dp(U_) = ,(U_) - D(U_ )y (U_) > 0. Let, for ¢ small enough,
(B.11) have a solution Uyp(E) = U~ + eypsp(Orp(U-) + & Ui, satisfying
EE?OO Uvsp(&) = Uy, such that U and all its derivatives are uniformly bounded with

respect to e.

We verify the assumption for the BGK-models of Section 2. For the case of a
scalar conservation law (Section 2.1), genuine nonlinearity, w.l.o.g. J” > 0, has to be
assumed. In this case, by D(U) > 0, viscous shock profiles obviously exist, iff the
entropy condition U, < U_ is satisfied. Smallness of the shock is not needed.
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For the case of isentropic gas dynamics (Section 2.2), both fields are genuinely
nonlinear. By the form of D(p, m) the first equation in the system (3.11) is algebraic,
and the system can be reduced to the scalar ODE

e p) P —ppl.
d:p = (p— R Y —
) ep=(p—p_Yu_ —s)+ G u)

It is easily seen that s — u_ is negative for a 1-shock and positive for a 2-shock.
Obviously, this sign determines the convexity of the right hand side, and a viscous
shock profile exists, whenever the entropy condition (p, > p_ for a 1-shock, p, < p_
for a 2-shock) is satisfied. Again smallness of the shock is not needed.

For the full gas dynamics BGK-model (Section 2.3) again one equation in (3.11) is
algebraic. However, after elimination of one unknown, a singularly perturbed second
order system remains. Existence of viscous profiles for small shocks (in the genu-
inely nonlinear fields k¥ = 1, 3) has been shown for various applications.

4 - Existence of kinetic profiles for weak shocks

In this section we shall present an approach for the construction of small
amplitude travelling wave solutions of the kinetic equation (1.1). The macroscopic
moments of their far field limits are connected by genuinely nonlinear entropic
shock waves of the hyperbolic system (1.4). The main ideas are generalizations of
the work of Caflisch and Nicolaenko [11] on the gas dynamics Boltzmann equa-
tion. Our approach is slightly different in several details. In particular, starting
from a formal asymptotic approximation, a perturbation equation for the cor-
rection term is considered. This leads to a sharper error bound in the final result.
Also the problem is in general not linearized around the far-field state. This is
necessary for treating problems with equilibrium velocity distributions with
compact support (like the BGK-model for isentropic gas dynamics in Section 2.2),
in order to guarantee that the support of the state we linearize around contains
the support of the travelling wave.

In the following two subsections, the general procedure is outlined. Applications
to several examples are contained in the last subsection.

A kinetic shock profile is a solution f = f(&,v) of

(4.1) e —8)0:f = Q(f), fgrfwf(f,v) = M.() = MU4,v).

Considering (3.11) as an approximation for (4.1), an approximative kinetic profile for
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a small k-shock is given by
(42) fas = M(Uvsp) + SfL[Uvsp];

where the microscopic correction term is defined in (3.6).

4.1 - The micro-macro decomposition of the correction term

We start by analyzing the formal approximation properties of (4.2). The residual
is given by

SSh =e(v — S)ag“fas - Q(fas)

(43) 1 1L
= 8(7) - S)aéM(Uvsp) + 82(7) - S)aéf [Uvsp] - Q(M(Uvsp) + gf [Uvsp])-

Using the asymptotic expansion of U, given in Assumption 3, it is straightforward
to show that the scaling of the residual is justified in the sense that, as a function of &,
h and its derivatives are bounded uniformly with respect to e.

Also the system (3.11) implies that the macroscopic moments of the residual
vanish: U, = 0. Finally, f,, satisfies the far-field conditions in (4.1) exactly.

The problem (4.1) rewritten in terms of the correction term £2g = f — f,s reads

(4.4) 6 — 8)0:g — Lasg = ER(g) — ¢h,
with L5 = Q'(fas) and R(9) = & 4 Q(fas + &29) — Q(fus) — &Lysg), subject to
(4.5) g(+oo,0)=0 forallveV.
By computing the moments and integration with respect to &, we derive the property
(4.6) J(v—s)gbgdﬂ =0.
1%

The collision operator has been linearized around the approximation fs. This has the
inconvenience to depend on the spatial variable £. Therefore we shall also use the
linearization £ := Q' (M(D))) around the constant-in-¢ state M, chosen such that
U =U_+ U (with U bounded uniformly in ¢) and, consequently, fis = M+ 0@)
and L, = L + O(¢). Here and in the following, we use the abbreviations

M=MD), i=iu@), P=nd), 1=
The correction term is split into a macroscopic and a microscopic part:
(4.7) 9(&,v) = 2(HP) + ew(&,v),

where the macroscopic variable is scalar and corresponds only to contributions from
the k-th field. The choice of the profile function @ is motivated by the work of Caflisch
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and Nicolaenko for the Boltzmann equation [11]. It is chosen such that it approxi-
mately solves a generalized eigenvalue problem:

LD = et(v — 5)D + O(?),

for a constant z and, additionally has the moment property of ¢:

(4.8) J(v—s)gﬁq?d,uzo = J(?]—S)¢U)d/l=0.
14 v

Hence expanding @ = @ + ¢®; and decomposing the wave speed as s = /. + &6 with
6 =0 — U - V1+ 0O(), we determine the components @y and @; and the eigenvalue t
such that

(4.9) LOy=0 and | —)$Pydu=0,

1%
(4.10) LD =1(v — )Py and J(v —8)¢Prdu =3¢ J b Dy du.
14 14

Considering that the null space of £ is spanned by the components of VM, the
problem (4.9) is solved by &y = - VUM. Note that the second equation in (4.9) is the
solvability condition for the first equation in (4.10). We choose a solution of the form

@y =L — DPe] + Y firi(U) - VyM.
i#k
The second equation in (4.10) then becomes
D)+ > B0 — )my(U) = 67,
ik
which can be solved for r and the f; by

ag T A~ ~
e~ :AilUDUA, ] k.
D) B; /Ij(U)—sj( )-DU)F, j#

As a consequence of (3.5) and of (4.9)

B N AT .
=LY (w=-1 _
W ((v )3ﬁH(M)> eN

is well defined. In order to make the decomposition (4.7) unique, we pose the or-
thogonality condition

(4.11) (=98, w), =0.
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The computation

~D = (W - )y, D), = (vy, By),, + O()

_i. quscfl[(v ~ Y VMl + 0@ = —Dy(T7) + 0G)
%4

shows that, for ¢ small enough, D > 0 and the decomposition (4.7) is well defined.
We now write the perturbation equation (4.4) in terms of the decomposition (4.7)
and divide by &:

(4.12) v — 8)DPIsz — z%ﬁasqﬁ +e(v — 8)0:w — Lo = eREP + ew) — h.

It is part of the method of Caflisch and Nicolaenko that for projecting the equation to
its macroscopic and microscopic parts, the alternative decomposition

v —s)D .
g=Pg— 5 Ilg,  with Ilg = (y,9),,

is used. This definition and the property (4.8) of @ imply Up, = U,. Application of I7
to (4.12) gives the macroscopic equation

(4.13) —Do:z +W(&)z = eI'w + eIIR — ITh,

where

?’:—%HLZMQD and Fw:éﬂﬁasw.

These terms are (formally) O(1). This might not be obvious for the last one: the
construction of y, the symmetry of £ and (4.8) imply

I Losw = (Ly,w), + Oe) =1 - J W — s)pwdu + 0 = 0).
1%

In the limit ¢ — 0, z satisfies a linear equation independent from the microscopic
solution component w. The following result shows that it is a small perturbation of
the linearization of the travelling wave version of the viscous Burgers equation (3.9).

Lemma 4.1. Let Assumption 3 hold. Then, formally, ¥ (&) = yusp(&) — o + O(e).

Proof. We shall use the formula

(4.14) Q" MWV M), Vg M) = = QMUNVLEMO)
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which can be derived by computing the Hessian with respect to U of QM (U)) = 0.
Since @y is in the null space of £,

(4.15) %casqs = E“Ss_ £ Dy + Lo P
holds. By the definition of &y,
(4.16) LD = (y, LP1), + O() = t(w, v — 8)P), + O(e) = 6+ O(e) .

The definition of fi; and the expansion of the viscous shock profile U, imply
Jas=U_ + 8?/vsp7”k(U—) + O(&) and, thus,

Los— L QMU + eyuspr(U-))) — QM)

& &
= Q" (M)Yyspi — U) - VuM + O(e) .

+ O(e)

With (4.14) we therefore obtain
Los — L
&

CDO - _;cv%]./\;l(y@sp,}?' - []7 /;ﬂ) + O(S) 9

implying, with the symmetry of L,
Los— L
&

1 By =—1- J v — DPV2Mdu sy — U, 7) + O(e)

14
= — - "D Wuspi — U, 7 + O&) = — tusp + U - VA+ 0(),

where the last equality requires a computation analogous to (3.10). Combining this
with (4.15) and (4.16) and recalling 6 = o — U-Vi+ 0 completes the proof. O

The microscopie projection P is used to derive from (4.12) an equation for w. The
linearized collison operator is now approximated by £:

(4.17) e — 8)0:w — Lw = z%Pcaqu +el'w + ePR — Ph,

where

fw: —1 (7) _~S)¢H£'M)+1P(£as —,C)’M)
& D &

The operator I is formally O(1). Like g, its micro- and macro-components z and,
respectively, w have to satisfy homogeneous far-field conditions

(4.18) 2(£o00) =w(£oo,v)=0.
The problem (4.4), (4.5) for g is equivalent to the (z,w)-problem (4.13), (4.17), (4.18).
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The basic idea for the solution is to produce a fixed point problem by considering
the right hand sides of (4.13) and of (4.17) as given. This is made difficult by the
nondefiniteness of £. The following procedure of removal of the null space is again
based on ideas from Caflisch and Nicolaenko [11].

We introduce a negative definite perturbation of £, which coincides with £ on the
set of functions w satisfying the moment conditions (4.8) and the orthogonality
condition (4.11):

419)  Kw=Lw - ©— (@ — Sy, w)y — @ —3) aﬁHfM) . l W — s)dwdy.

We already know that £ is negative definite on A'". Writing the general element of
n

the null space of Lasw = > ajrj(f]) -VyM € N, we compute
=1

2

n 2
—(Kw, w), = (Z afZ-D<U>r;<U>> +
j=1

> a0 — sy
j=1

The limits (A;(U-) — 4 (U-)r;(U-), j # k, as ¢ — 0 of the vectors (/lj(f]) — s)rj(f]),
j # k, in the last term are linearly independent. Therefore this term controls the
coefficients aj, j # k. The coefficent of a;, in the first term on the right hand side is
equal to Dk(U ), whose limit D;(U_) as ¢ — 0 is positive. So this term controls a,
showing that K is negative definite.

We now replace the operator £ in (4.17) by K:

1 -
(4.20) e —8)0:w — Kw = zEPﬁascb +el'w+ ePR — Ph,

and look for a solution of (4.13), (4.18), (4.20) in the following. The equivalence of the
problems is not obvious:

Lemma 4.2. For given z(&), the problems (4.17), (4.18) and (4.20), (4.18) for w
are equivalent.

Proof. Since any solution of (4.17), (4.18) satisfies (4.8) and (4.11), it also solves
(4.20), (4.18).

Let on the other hand w be a solution of (4.20), (4.18). Multiplication of (4.20) by
the components of ¢ and integration with respect to velocity as well as taking the
scalar product of (4.20) with w results in a system of # + 1 linear homogeneous first
order ODEs for the quantitites

J(v —s)pwdu and ((v— sy, w), .
v
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Due to the homogeneous far-field conditions, these quantities vanish for all &, im-
plying (4.8) and (4.11) and, thus, (4.17). O

4.2 - The existence result

The solvability of the nonlinear problem (4.13), (4.18), (4.20) is deduced by using a
fix-point argument. Hence we first consider the leading linear system, where we
regard the right hand sides of (4.13) and (4.20) as given inhomogenities:

(4.21) & — $)0:w — Kw = hy, subject to w(+ co,v) =0,
(4.22) DOz —W(éz = h,, subject to z(+o00) =0.

Taking the scalar product of (4.21) with w and integrating with respect to & gives
(4.23) - J (K, ), dE = J iy 0),, dE

This shows that the definiteness of K implies uniqueness of the solution of (4.21),
whereas equation (4.22) has a one parameter set of solutions, which reflects the
translational invariance of the travelling wave problem. Therefore we pose the initial
condition

(4.24) 2(0) = 2o,

with an arbitrary zo € R. Lemma 4.1 and the far-field behaviour of ¥,y imply
Y(o00) < 0 and ¥( — oo) > 0. Therefore the fundamental solution Z satisfying

Do:Z —W(OZ=0, Z0)=1,

decays exponentially for £ — +o0, and the solution

e L2
A =2+ 7 i Joy

of (4.22), (4.24) is bounded for bounded #,.

At this point it is necessary to choose a functional analytic framework for the
further development. Different choices are possible and have been made in different
situations in the past. In this general treatment, we stay abstract and assume that
two norms || - ||Z and || - [|;* for functions of the spatial variable & have been chosen,
where the first one is used for solutions of (4.22) and the second one for the right hand
sides. Similarly, the norms || - ||z, and || - ||}, for functions of (£, v) are used for so-
lutions of (4.21) and, respectively, right hand sides. In the following, C denotes
(possibly different) e-independent constants.
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Assumption 4. A solution of (4.21) exists and the solutions of (4.22), (4.24)
and of (4.21) satisfy estimates of the form

l2llz < Clzol + l1AelleD) s llwllzy < Cllwllz, -

Caflisch and Nicolaenko use weighted L*°-norms for the Boltzmann equation
[11], whereas for BGK-models, as we will see later, L2-based norms turn out to be
convenient. In view of (4.23), an L?-approach seems natural. However, for the control
of the nonlinearities regularity with respect to & is needed. Control of nonlinearities
is straightforward in a L*-approach. Estimating the solution of (4.21) in terms of
L*-norms on the other hand, requires much more sophistication than the derivation
of L?-estimates.

The approach for the existence proof of a solution of (4.21) is based on spectral
theory in [11]. In [17] the proof relies on a discretisation of the velocity com-
ponent.

The existence and uniqueness proof of solutions of the nonlinear problem (4.13),
(4.20) and (4.24) is now a contraction argument. Therefore we need estimates for the
right-hand sides of (4.13) and (4.20). Corresponding to the spaces of the solutions and

inhomogenities of the linear problem we define the norms
(4.25) [GwI" = lzll; +ellwlzy, 10 k)™ = (ka2 + &ll Iz,

oo

weighted according to the decomposition g = @z + ew. In the following we identify g
with the pair (z,w), i.e., ||g]|* = ||z, w)||".

The following assumption contains rigorous statements concerning the formal
properties of the terms on the right hand sides of (4.13), (4.20):

Assumption 5. (i) The linear terms appearing in the right hand sides of
(4.13) and (4.20) can be bounded as follows:

(4.26) %IIPﬁasdﬁZIIEL <Clellz,  I1wlE + 17wz, < Cllwll, -
(ii) The residual terms are uniformly bounded:

(4.27) HIR||E" + PRIz, < C.
(iii) The nonlinear term R(g) is quadratic:

HTR(g1) — ITR(go)||s" + ||IPR(g1) — PR(g2)||,,

< Cllgull” + llg2Mllgr = g=l” . for [lgall”, llg2ll” < % :

Before stating the existence and uniqueness result we note that in terms of the
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original unknown f = f,s + ¢2g, the condition 2(0) = z reads
(4.29) (=W, f = fas)p (& = 0) = =D .

Theorem 4.3. Let the Assumptions 1-5 hold. Then for every zy € R and every
small enough ¢ > 0 there exists a solution of (4.1), (4.29), which is unique in a ball
{f o If = fusll” < &6} with 6 independent of e It satisfies

If = MUup)||” < C&,
or, more precisely,
[ = MUpsp) + ef "Upsp] + P2 + £,
where Uygy is the solution of (3.11) and ||z||: and ||lw||?, are uniformly bounded as

e— 0.

Proof. It remains to prove the existence and uniqueness of the full nonlinear
problem (4.13), (4.20), (4.24). As a consequence of assumption (4.26), the estimates
from Assumption 4 can be extended to the full linear problem

Dd:z — P&z =elw + h,,

e —8)0:w — Kw —z % PLy® =clw+ hy,
with given inhomogenities £, h,, and z(0) = zo. In terms of the norms defined in
(4.25) the estimate on the solution of the linear problem can be written as

1, w)I" < C(zo| + ||z, 7o) |7 -

Applying the solution operator for this system to (4.13), (4.20) implies a fixed point
problem of the form
(4.30) 2z =eR.(z,w) + I,
(4.31) w =eR,u(2, W) + hay,
where R, and R,, share the property in (4.28), and iLz, I, are the terms containing the

residual, hence given and bounded due to (4.27). Using (4.28), the fix-point operator
can be estimated by

(€R.(2,w) + ha,y eRw(z, W) + h)||* < c(1 + &(|| 2, w)||)?)

for a constant ¢ > 0.

This implies that for ¢ small enough both the ball with radius 2c and the ball with
radius ¢! min{1/(2¢), Cy } are mapped into themselves by the right hand side of (4.30),
(4.31). Due to the properties of the nonlinearity, the fix-point operator is a contraction
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on a ball with an O(¢71) radius. And we conclude that for ¢ small, (4.30), (4.31) has a
solution with ||(z,w)|" < 2¢, which is unique in a ball with an O(¢~!) radius. Knowing
this and returning to (4.31), also the boundedness of [|w||;, follows. O

Lemma4.4. Letthe assumptions of Theorem 4.3 hold and let the norm || - ||z,
be such that | Uy, < Cllwl|;,. Then the macroscopic moments Uy (&), j =1,...,n,
of the solution f of (4.1), (4.29) are strictly monotone. Due to the asymptotic ex-
panston of the travelling wave solution f, sgn(0:Uy, ;) = sgn(ri.(U_);0: Yusp) follows.

Proof. We proceed as in [17]. One can easiliy extend the proof of Theorem 4.3
to show that the difference of two solutions (z,w) and (2, ) is depending Lipschitz
continuously on the initial data

le — 2l < Clao— 2, [lw ]2, < Cleo .
For the corresponding solutions f and f of (4.1), (4.29) the relation
Up(0) = U; 1(0) = &2 Ug (20 — 20) + £ (U,(0) — Uy, 1(0))
holds. The assumption || Uyx — Upll,, < Cllw — ]|z, now implies
| U (0) — Uy, 1(0)] < Clzo — 2o -

Since Uy # 0, the map zo— Uy 4(0) is invertible for ¢ small, meaning that the tra-
velling wave can also be made locally unique by prescribing the value of Uy ;.(0) in-
stead of z¢. This argument can of course be repeated with Uy (&) for every &, € R
instead of the origin.

Now assume Uy (&) is not strictly monotone. Then there exist two ¢-values &, and
&y + 0 with an arbitrarily small positive 6, such that Uy (&) = Uy (&y + J). Now also
f Ev)=f(E+6,v) isNa travelling wave with Uf,k(fo) = Uy (&p). By the uniqueness
result we obtain f = f. Consequently f must be periodic, which is a contradiction to
the far-field conditions. O

4.3 - Examples

For the BGK-models introduced in Section 2, it only remains to check
Assumptions 4 and 5. The standard norms and spaces of functions of £ we denote by
(LE N1y 2Nl ), (L, |1-]l.) and recall the definition of the inner product in v in
(3.3). Then the Hilbert space Lg,v is naturally defined by the scalar product

(f:9)ev= J<f,g>,,dé, where supp f,supp g C'V,
R
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with the induced norm | - || . Similarly the spaces H. ’gf(le,) of functions, whose deri-
vatives in ¢ up to order k are in L2, are defined by

1
2 2 \2
Ny = (1120 + -+ 19EFIE, )

In terms of these norms we have to make some assumptions on the Maxwellians and
kinetic entropies. We require that for a fixed v € V the equilibrium distribution
M(U,v) with support in V is five times continuously differentiable in U and

2 ~
(4.32) J|¢(v)“ VMU, v)|dp < C, J\¢(v)“| (v’g’,M(U, v)) PZH(M)dp < C,

where « and f§ are multiindices with |a| < 4 and || < 5 and U is O(e)-close to M.
Moreover we assume

(433) |swrsan <cirl,, torlal <.
implying
(4.34) HUf,kHHg < C||f||Hg(Lg)a k=1,....n.

We are now prepared to investigate the existence of a solution to the linear problem
corresponding to (4.21), (4.22). We shall mention that for the existence proof H é—
based norms are sufficient. In this case we would only need the moment conditions in
(4.32) up to || = 3. But since showing the asymptotic stability requires L>-bounds
on the macroscopic profiles of the travelling wave and also on their derivatives up to
second order, we shall rather look for solutions in the spaces H g, respectively H' g(L%):

(4.35) e — $)0aw — Kw = hyy, — with h, € HXLY),

(4.36) Doz — (&2 =h,,  with h, € H.

As we have already indicated before, there exist constants y , & > 0 such that
(4.37) PO < —y foré>E¢, W@ >y fori<e.

Using this property of ¥ it was shown in [17] that the solution z of (4.36) with 2(0) = z
satisfies the estimate

lells < Cllzol + el ).

Additionally, based on a discretisation of the velocity component v, it was proven in
[17] that there exists a unique solution w € H ii(L?]) of (4.21) satisfying

1
Haécw”c’,v S;Haéfh/wng’v) fork:0773
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Here the positive constant « is the one from the coercivity estimate —(Kw,w),
> zc\|w||,2). This coercivity estimate in particular holds for the negative definite op-
erators C appearing in the examples under consideration.

If we can also verify the bounds on the linear and nonlinear terms in Assumption 5
the contraction argument can be carried out. Using the boundedness of 17 : L2 — R
and P : le, — L?,, the moment conditions (4.32), (4.33) and the smoothness of U, we
obtain the desired bounds on the linear terms

1 N
(4.38) EHPﬁas@ZHHg(L;Z,) < Cllzllgs, 1wl + 170l gy < Cllwllgss) -

We observe that for the particular examples under consideration the behaviour of
U.sp is exponential as £ — =+ co. This allows us to integrate the derivatives in £, and
enables us to deduce the boundedness of the residual-terms

(439) 1Phlsazy + 1Tl < C.

Here we have again additionally used the smoothness of U, the boundedness of P
and /T and the moment conditions (4.32), (4.33).
Now it only remains to control the nonlinear term

1
R(g) = 8_4[M(Uvsp + gng) - M(Uvsp) - EZVM(Uvsp) ' Ug]
=U,M"(Uysy + E8U,)U,

for a & € (0,1). By differentiation, the moment conditions in (4.32) and the one-di-
mensional Sobolev imbedding, the estimate

(4.40) |R(g1) *R(QZ)”HIE(L%) < C(||91||H§(L§> + ||92||H§(L‘5))H91 *92||H§(L§)

can be deduced to hold for all g1, g2 With [|g1 (| g2y, |92/l g2y < Ce 2 in general. If V
is compact, the ball of admissible functions gf, g2 has to be reduced to a ball with a
radius Cpe~!. Due to the construction of V this guarantees that the supports of the
Maxwellians resulting from Taylor expansions stay in V.

We shall give the norm of g according to (4.25) explicitly:

(4.41) lgll" = I ” = Izl + ellwll ey -

Hence obviously [|g]lzs2) < Cllg|l", and the existence and uniqueness result is an
immediate consequenée from Theorem 4.3.

For the oncoming examples it now only remains to give a concrete setting for the
Maxwellians and the kinetic entropies, such that (4.32)-(4.33) hold.
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BGK-models for scalar conservation laws

We have already mentioned that the monotonicity condition on the Maxwellian,
OyM > 0, provides a kinetic entropy. Considering V = R, we linearize around the
left states and hence the inner product in v can be written as

= | dn.

As long as the Maxwellians satisfy the conditions corresponding to (4.32) and (4.33),
the existence result is an immediate consequence.

The BGK-model for the isothermal system and the gas dynamics

In both cases we have smooth Maxwellians with V' = R. The conditions (4.32) and
(4.33) can be checked by direct calculations.

The BGK-model for the isentropic system

In this example the Maxwellians under consideration have a compact support.
Hence we have to construct a Maxwellian M := M(p, &) with a bigger support than
all other functions appearing in our calculations. For simplicity we denote in the
following y = 1 + 2a. Then the support of M(py, uy) is bounded by

c C
(4.42) uf—ﬁgvﬁuf—i—\/‘—%.

As we have already seen, the macroscopic profiles of the travelling wave will be
monotone, i.e.

Spr — Priiy Sp_—p_u- p-
Oepr >0, deup =TT 9p == Gepr = —(c- — )" 5 0cpy <0.
Py Pr f

Now one can see that the left hand side of (4.42) is strictly decreasing. An expansion
shows that also the right hand side of (4.42) is decreasing, and hence neither M _ nor
M, provide a large enough support. We choose

(4.43) w=1u_, c=c 1 +¢/p,),

defining p and i uniquely. Then for & small M has the desired properties, i.e. the
support of M includes the supports of all M(ps, ur) plus an additional range of order
¢. And thus we linearize from now on around the Maxwellian M with the support
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V= [A ——, U+ i] . The inner product (3.3) reads
a Va

= 1 IJfg/\;l%_ldv, for suppf,suppg CV.
28b)

(f:9),

Now it only remains to check (4.32), i.e. for M(p, u) with supp M(p,u) C V:

<C,

pu

(4.44) sup
¢

J(a;;ak Mp, u))zM%fldv

for j+k=0,...,5. In order to guarantee that this holds, we have to make a tech-
nical assumption and restrict in the following a to the values

1 . 2
0<(1<ﬁ, or equivalently 1<y<1+ﬁ.

It is sufficient to show the uniform boundedness of
c2 2(8—n) 2 1-p
(4.45) J (E —(v— u)2> (E —(v— @)2> dv, forn=20,...,5.
supp M(p,u)

The assumption supp M(p,u) C V implies

(ove o)< Gon- ) sooe)
for all v € supp M(p,u) and ¢ € R, and hence, assuming for the moment f§ > 1, the
integral in (4.45) is bounded by

2 p+1-2n
J(—(v—u)z) dv .
a +

A transformation of variable leads to the Beta-function and hence (4.32) is valid only
iff+1—2n> —1,ie. f > 8or equivalently 0 < a < 1/17.

5 - Stability of kinetic shock profiles for weak shocks

5.1 - Stability of viscous shock profiles

Goodman [21] shows the asymptotic stability of viscous shock profiles for
hyperbolic conservation laws with a positive definite visosity. Kawashima and
Matsumura investigated the asymptotic stability of traveling wave solutions of some
systems for one-dimensional gas motion [25]. In particular a decay rate for the scalar
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conservation law and a stability proof for the Navier-Stokes equations in Lagrangian
coordinates are given. The stability for the isentropic gas dynamics in Lagrangian
coordinates was derived by Matsumura and Nishihara in [31].

We consider a viscous regularization of the conservation law in terms of travelling
wave coordinates and of a parabolic time scale:

0 U + (J'(U) - $)9:U = eDOU

where, for simplicity, the diffusivity matrix is considered constant. A viscous profile
U.sp satisfies the stationary version

(' Ussp) — $)0:Ussp = eDSE Uy .

We introduce the perturbation by eUg (%, &) := U(t, &) — Uysp(&) and assume the ‘well-
preparedness’ condition

(5.1) J U6(0,0d¢ = 0,

for the initial data. This should fix the shift of the asymptotie travelling wave such
that we expect convergence of U to zero. The equation for Uy can be written as

1 R
(52) UG+~ 0 Uusp) = 9Ug1 + 0:rUg) = D&Ug,

with the nonlinearity »(U) = [J(Uysp + eU) — J(Unsp) — &]’(U,USP)U]/sZ. One of the
basic assumptions of the analysis we present here, will be the existence of a sym-
metric, positive definite, U-dependent matrix A(U), such that A(U)J'(U) is sym-
metric and such that A(Uvsp)D >k > 0 is positive definite. A possible candidate is
the Hessian V25(U) of the entropy density, which satisfies the symmetrization
property, and the matrix V25(U)D(U) with the Chapman-Enskog diffusivity is al-
ways symmetric and positive semidefinite (compare to [29]). Positive definiteness
cannot be expected in general, as the examples in Section 3.3 show. For the case of
non-definiteness, the details of the stability estimates will depend on the structure of
D(U). An example is carried out below.

Positive definiteness of V2#( Uvsp)D(U,gp) is of course preserved, when D(Uys,) is
replaced by a constant approximation, say D = D(U).

Assumption 6. Forevery U € R" there exists a symmetric positive definite
matric AU), smoothly depending on U, such that AU)J' (U) is symmetric and
AUysp)D > Kk > 0.
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Taking the scalar product in L% of (6.2) with A(U,sp)Ug gives
1d

(53) 24t
= —(8:(4U¢), DO:Ug); ,

1
U1 — 5, (Ua, [0:A4G" = 5) = 40:0'WU) : — (0:(AUg), 7(Ue)):

where we used the weighted L?-norm ||U ||§1 = (AU, U);. It is well known that
stability cannot be proven based only on this equation. The main reason is that the
bracket in the second term has the unfavourable definiteness in general. An example
is the scalar case, where 4 =1 and J' is a decreasing function of £ along a shock
profile.

We shall still extract some information from an estimate based on (5.3). Using the
fact that 0:U,s, = O(e), and that r is quadratic in the sense that [r(U)| < C([U)U 2
(with an increasing function C), standard estimation leads to

(5.4) |Ucl + ¥l0:Usl% < C(Usll ) Usl?

4

dt
¢

It is by now a standard method to introduce the primitive W(t,&) = [ Ug(t,&)de.

The assumption (5.1) on the initial data and the conservation propert&oimply the far
field conditions

(5:5) W(t, +00) =0.
Integration of (5.2) gives
1 .
(56) atW'i_E(J/(Uvsp) - S)@g’W‘f"V‘(UG) = D(??W

As above, we test with A(U,,)W:

1d 1 )
(5.7) Sdt W% - %WV, LA — $)IW) . + (AW, 7(Ug)).
= —(0:W, ADO:W) — (W, 0:ADO:W) ..

Now it is reasonable to assume that the second term has the favourable sign. The last
term we estimate as

A K
(W, 0:ADOW) .| <5 0:WII? + ]| 0 AW £ .
A somewhat stronger version of the above assumption is that

1
—5, (W, AN — 9)IW): — ¢l|9:AW|[? > 0.
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With the properties of the nonlinearity we obtain
d 2 2
(58) ZIWIE + (= CUTGILIWIL ) 1T < 0.

For our estimates (5.4) and (5.8) to be useful we need pointwise-in-time control of
|Ug||..- This will be provided by an L?-estimate on V := 9:U; and Sobolev imbed-
ding. The derivative of (5.2) with respect to & can be written as

1 A
(6.9) @V+E&@NMW—@V+@JMJ+%ﬂwﬁ=D%W

We treat this equation similarly to (5.2) and (5.6), but omit the details. The result is
the estimate

(5.10) %W%Mﬂ3+W%UMESCNUduXWhﬁ+H&Mﬁ@-
The stability proof is completed by a combination of (5.4), (5.8), and (5.10). For po-
sitive constants y;, 7., we define
1) = [WI + nllUsl +2210:Ucl
Then, by Sobolev imbedding,
W2+ 1Usll < el

With M := /¢I(0), we assume that M is small enough, so y; and y, can be chosen such
that

K> CODM +9 +7), 191 > CQy,.

Then there is a positive constant A such that

dl
71 < Ul -

Thus, I is a Lyapunov functional. By integration with respect to time, Uy converges
to zero as t — oo in the sense that

wa@ﬁ<m.
0

5.2 - A Lyapunov functional for BGK-models

Now the ideas of the preceding section will be carried over to kinetic shock
profiles. Here the L2-energy methods for the macroscopic system will be extended to
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also control the microscopic part. Similar techniques have been used by Liu and Yu
for the Boltzmann equation [28].

We start with the kinetic equation, written in travelling wave variables and a
macroscopic diffusion scaling:

Eof + e — )0:f = MUy) —f .
Let ¢ denote a kinetic shock profile:
e —8)0:0 = MWU,) —¢.

The perturbation eG = f — ¢ satisfies
1
(5.11) E0,G + e(v — $)0:G = ~MU, + eUg) = MWpI -G

The micro-macro decomposition of the perturbation is defined by
G = Ug - VyM + eg, where U in M = M(U) s a constant approximation of U,,and
&g = —LG is the microscopic projection with the linearization £ of the collision op-
erator around M. Computing the macroscopic moments of (5.11) gives

(5.12) 8tUg+%(J’(U)—S)8¢;UG+8§Jg =0.
¢
Like in the previous section, we obtain an equation for W(t,&) = [ Ug(t, &)dE by
integration: o
(5.13) 8tW+%(J’(f])—s)85W+Jg =0.

An equation for the microscopic part is derived by applying the microscopic pro-
jection to (5.11):

89 — eL((w — $)dz9) + VyM - (v — J'(U)9:Ug
(5.14) A
=-g+ % Ug - [VyMU,) — VyM]+ R(Ug),
with 1
R(U) = ?[M(UW +el) — MWU,) — eU - Vg MU,)].

The next step is to compute the last term in (5.13) in the spirit of the Chapman-
Enskog approximation by computing ¢ from (5.14):

1 .
(5.15) 6tW + E(J,(Uw) — S)@cW — D@?W = 26,5«]9 — each((y,s)g) — T(Ug) y

with D = D(U) and
1
r(U) = Jray = 5 W, +0) = J(WU,) - &' (U)UT.
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In the same way we derived (5.8) in the previous section, we obtain
d
2 WIE + [ = C UG IW I | UalZ < (AW, 84 y) = (AW, Oz o). -

The first term on the right hand side we rewrite using (5.13):

d

1 .
= S (AW Jg)e + (A" D) = 9)Uq, Jy): + Wl

<AW, at Jg>§
leading to

d
s @ (W1 = (AW, Ty); ) + [ = CAUgl| W | Ug

< AT O) = 9)Uc, Jy); + EMgl% + (AU, ciwo-sip)

where an integration by parts has been carried out in the last term. An estimate for
the microscopic part of the perturbation is derived by taking the Lév -scalar product
of the full perturbation equation (5.11) with G:

1d

2di
5.17 )
617 < VuMT,) - VyM

= UG : )

1T61% + 21912, + 91

&

g> +<R(UG)7g>§,v 3

with A4 = V2(U). Now we assume that the factors in the scalar products on the right
hand sides of (5.16) and (5.17) are bounded linear maps of U and of g with the ex-
ception of the quadratic term R(Uy;):

d K
= W = AW, T ] + (5 = CUTGILIWIL ) TGl < Pellgl?,

d

7 10l + g1, | + il < CAUalIUs

dt

Adding these inequalities after multiplying the second by a positive constant ¢ gives
d
= IWIE = 2w, ) + 2ollgl, + 91Ul
K

+ (5= 6+ IWIDCUUGID)IUGIE + 6 ~ #olglE, < 0.

For fixed ¢ and ¢ small enough, the term under the time derivative can be bounded
from below by

2 2 2 2
e[IWIE +1UGlE+ 2912, |

with a positive constant c. So it controls ||W||.,, but not | Ug|| .-
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By taking the derivatives of (5.11) and (5.15) with respect to &, we obtain equa-
tions for G and for H := 9:G = 9:Ug - VyM + ¢h:

1 N
UG+ ((J’(U,/,) - s)UG> ~ DRUG = 0Ty — e0:J sy — :rUg)
1
EOH + v — $)0:H =~ 0; (M(Uw +eUg) — M(Uq,)) _H.

Treating the first equation like in the previous section and the second like (5.11), we
obtain

d

= 1U6I% = &(4Us. 1) | + Kl10:U6 2 < CATGILN TG + el .
d

= 19:Ual + 211, | + 101, < CATGNLIATGIE + 10:Us!.

Now we take a linear combination of these inequalities like above:
d
= 10611 = (AU, Tag): + 20110912, + 310Ul

+ (1= SCU UGN 10:Ug 12 + 0 — 200912, < CUUGlNUG]E-

Again, the term under the time derivative is positive definite. Finally, with y > 0 we
define the Lyapunov functional by

1) =W — #(4W, 1), + #3912, + 6| Ugl
+ 1[I0l - #(4Us, Jag): + 2010:91%, + 310U ]

and obtain

dl K 2 2
(5~ O+ 7+ IWILICUTG N )1 UslE + 6 = #ollgl,

+7(x = 3 Usll ) ) 10U + 76 — #0lloeg %, < 0.

The functional I controls [[W|% + || Uglf? + [10:Us|% + |91, + &[9:91I%,. So, by
Sobolev imbedding,
Wl + 1Tl < I

holds. With M := ¢I(0), I is indeed a Lyapunov functional, if

g>(5+y+M)C(M) and &> .

This can of course be achieved by choosing dJ, y, M, and ¢ small enough.
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5.3 - Stability of weak kinetic profiles for the isentropic gas dynamics BGK-model

The model of Section 2.2 satisfies the assumptions used in the previous section
except the regularity of the Chapman-Enskog diffusivity. Therefore the main steps
of the analysis will be recalled from [15].

To derive estimates for the macroscopic part we adapt ideas from [31], where the
stability of travelling waves for the isentropic system for a compressible viscous gas
in Lagrangian coordinates is proven by L?-energy estimates. Control of the micro-
scopic terms will be obtained like in the previous section.

As in the previous section, we start with the kinetic equation in diffusion scaling:

(5.18) EOhf + e — $)0:f = M(pp,myp) — f

with the far-field conditions f(t,& = +oo,v) = M(p,, m+,v). As in Section 2.2 we
shall switch between the momentum density and the mean velocity, connected by
myg = pruy, as second macroscopic variable. Let ¢ be the travelling wave solution. The
well-preparedness condition for the initial data now reads

(5.19) J(pfo — p)dE =0, J(mfo —my)dé = 0.
R R

Introducing the perturbation G
8G:f_¢7 pi=pPg, M:=Mg,

we obtain

(520) 206G+ e — 9)I:G = % [Mp, + ep,my -+ em) = M(py,my)] ~ G

As in [15] we apply a micro-macro decomposition to the deviation G

(5.21) G = VyM@p,m) - ( ;’% ) + ey,

where as before U = (p, m). Observe that —LG = ¢g. Then the norm of G satisfies
(5.22) IGI2, = [El2 + lom — pi01Z] + g1,

Macroscopic equations for p and m are obtained by computing the zeroth and first
order moments of equation (5.20)

(5.23) e0p + Oz(m — ps) =0,

(5.24) e0ym + O <VUj([7, m) - <:;L> - sm> + €0 J'uzg dv=0.
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Next we apply —£L to (5.20) to get an equation for g
525 2ag - (Vs [T —o)-( 1 )] ) - 0100 - 9= Repmr .
with the nonlinearity

1 .
R(p,m) =3 [M(p,p—i-ep,m(p +6m) - M(p,,my) —eVyM - <£L>] .

Using equation (5.25) we calculate

(5.26) Jv2g dv = q(p,m) — &S(g) — DO(m — pit),
R

with the constant D := (3 — y)p"~! > 0, the nonlinearity q(p,m) := [ v*R dvand
R

(5.27) Sg) = Jmatg L — $)0:)dv.
R

The stability of the shock profiles will be investigated by introducing primitives of
the macroscopic variables. According to (5.22) and the diffusion term in (5.26), it is
convenient to use

4 4
W,(t, &) = Jp(t,é’)df’, W, &) = j (it &) — plt, i) de

Integrating (5.23), (5.24) with respect to & gives the macroscopic equations
1 L

(528)  aW,+- [0:W,, + (€ — e6)0:W,] =0,
1. . .

(529) AW+ [ — )0 W, + F0:W,| + q — DEW,, = &S(9).

Observe that the second equation is obtained by a linear combination of (5.23), (5.24).
We expand q as follows

1 . -
Q. m) = (Vuipy, ) — Vs, ) ( ’ ) Lo,
. 1/. . .
Q(/’» m) :8_2 (J(p(p + &p, m(ﬂ + gm)_j(pwm(p) - SVUJ(ng;m(p) . <’:’L>) .

and note that ¢ is purely quadratic in (p, m).
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Now the system (5.28), (56.29) can equivalently be stated as
(6.30) oW, +- [&:Wu + (¢ — £0)9:W,| =0
(531) oW, + % [Ka(p)0: W, + K1(9)0:W,] + § — DIFW,, = &S(g),
where
(5.32) Ki(@) =2 — (uy — )%, Kap):=¢— &5 +2(u, — ).

We will need the signs of K;, Ky and of their derivatives. From Lemma 4.4 we know
that the travelling wave is strictly increasing, which also implies d:u,, < 0. Then for ¢
small we get

~2

(5.33) 5 <Kilp) <22, 9:Kip) >0, 0:(Kilp)") <0
(5.34) g <Kx(p) <26, 0:Kz(p) <0.

Recall from Theorem 4.3 that 0:K;(p), 0:Ka(p) are O(e) uniformly in &.

We start with the derivation of estimates for the macroscopie parts. For con-
trolling the nonlinear terms, Lg"—bounds of p, m are needed, which we shall control in
H é This means we need to control the H?—norm of W,, W, and therefore we give
integral estimates for their derivatives up to second order in the following.

Expanding (p,,m,) around (p,7) gives p,=p_+ey=p+eyr and
m, = m_ + &sy = 1M + €}z and we can write the nonlinearity as

(535 R(pm) = G, i) - HOMy) - ( >+(p,m) H(M2)< )

where My = MP + ediiyr, m + edhijz), Mz = M(p, + edop,m,, + edam) and
0<%,9% <1. For |R||, to be well defined we have to guarantee that
supp My, supp Ms C supp M. Due to the construction of M this holds for M. For
My this is only true for sufficiently small ||p||.., ||| ... We make this smallness
assumption for the moment and prove it in the stability result at the end of this
section. By differentiating (5.35) and using (4.32), we obtain

(5.36) IR IGzzy < C[10:W, e + 10:Wale]| - for ke =0,1,2,
implying together with (4.33) the same bound for ¢
(5.37) gl < C[10:W, I3 + 10:Wall7e] - for ke =0, 1,2,

Here and in the following C depends on |||, |7



178 C. M. CUESTA, S. HITTMEIR and C. SCHMEISER [40]

Lemmab.1. Let W,, W, be the solution of the system (5.28), (5.29). Then there
exists a constant C and C(||p|| .., M| ) such that the following two estimates hold
forany ary >0,k =0,1,2:

d & o\ -
St [omzaz+ (a(G—o0) - CIwl ) o
b ., : :
638 (2— e - +ec)) v,

< ¢ J (Kl(qo)_qu + saoang)S(g) e,
R

where
1 .
(5.39) Jo=3 J [W/% + Ki(9) W2 + aag(eD(O:W,)? + 2(85W,,)Wu)] dé
R

and
1 .
K@) = 5 [~0:Kalp) Ka(p) ™) — 26D]0:Ks ) M| > 0,

and accordingly for the higher order derivatives k = 1,2:

d &, D )
LR (E - gc) |05 W |I% + (E — a1+ 320)) |05 W, |12

(5.40)
— C[10W, s + 10: Wl s | < gj(agwu + e D W, )9S (g) de,
R

where

(541)  J, = %J (W, + GEW,)? + g eD@E WP + 205 W, 0EW,)| de.

R

Proof. We start with the proof of (5.38) and split it into two steps. First we
derive estimate (5.38) with ap = 0 and in the second step we prove the inequality for
the remaining terms containing ay.

Step 1. We test (5.30) with W, and (5.31) with Kl((p)’qu such that the in-
tegrals containing W,0:W,, and W,,0:W, cancel out. Here we also take advantage of
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the properties of K; and Kj, see (5.33), (5.34):

1d

we e
é%J{W2+K1(¢) 1Wﬂdé+ J ( Ko(p) Ki(p)~ ) 2“d<f+JK1(¢) W, G dé

R 2
+ [[Kato @7 + 0, (Ko )0: 3 e = o [ Kutor W, S(@

In the third term we estimate the quadratic term by
(5.42) | iz < & [owlz + osw. )
The triangle inequality is used for the fourth term

H :(Kio) ) @:WW, dé‘ @(m(@ D) W2+ 00 Wi de.

From this estimate we cannot control ||8¢Wp||§. Therefore we will combine it with the
next one.

Step 2. Testing the first derivative of (5.30) with 9:W, we obtain

1d

2
2dtJ(8¢W)dé+ JGZWMBWdf 0,

and we observe that
d
< j OW )W, dé — J(atwu OW, — W, 0 W,) de.

By combining the equations in the corresponding way we get

1d

5 o |[EDOIW 4 20 W W] d + | Koro.w, - [ @i, ac

+ J(Kz(go) — (¢ — €0))0:W,0:W,dé + ¢ J O:W,qdé = & J 0:W,8(g) dé.

For the fourth term on the left hand side we use the triangle inequality together with
Ks(p) — (¢ — &6) = 2(u, — 1) = O(e). Finally applying (5.42) gives the estimate.

For the bounds on the higher order derivatives we proceed as above. First we dif-
ferentiate the system (5.28), (5.29) k times and test it with 828§W,,, respectively
8§Wu. Applying -

_ D 1
[ otqokw,az - [0k tq kW, de = - 3 |10 WL+ lalf

the inequality for a; = 0 is straightforward. The remaining part is analogous as
Step 2 above. O
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Now we concentrate on bounds for the small terms on the right hand sides in
(5.38) and (5.40). Here the estimates from [17] are extended.

Lemma 5.2. Let W,,W,,g and S(g) satisfy (5.26)-(5.29). Then there exists a
constant C such that

F.Jm«pﬂm S(gydé — Jx(q))Wde
(5.43)

d _
<25 [ Ko W, [ gavac s oC[lgl, + 102 + o: W]

and additionally for k =0,1,2

e J O W,.0ES(g) dé
(5.44) ;
< ezajagfwu Jv28§g dv dé + sc[||a§g||§v + |02 + [|OE W12

Proof.

jmwlwu S(g)de

2
= S%JKl(gp)’qu Jvzg dvdé + 8JK1(§0)71 (J vzg dv> dé

+ JK1(¢)_1(6‘285W,, + (& — e6)0: W) Jvzg dvdé

+ (B 0w, + 0 (Ko )W P2 - 9y dvae

d _
<o | KW [Fgdvdz v (oI, + 10:W, 12 + 0.0, )

+ Jaf <— L) <J v2L((v — s)g)dv>2+W2
2K1(p) "

For the first equality we used (5.26) and (5.29), moreover (4.32) and (4.33), which
also implies fvzﬁ((v - s)aéfg)dv <C ||8§g||v. Finally to control the last term the
function x(p) is needed. We multiplﬁy the above inequality with ¢ and use
K(p) + e (Kl(go)_1> /2> 0.

dé.

The proof for the second estimate is similar. |
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Lemma 5.3. Let W,,W,,g and S(g) satisfy (5.26)-(5.29). Then there exists a
constant C and a C such that for k =0,1,2

Dd
& J8§+1W,,8§S(g) dé < & 5 7

1OE W, 1+ oC 10 Wy 5 + 10 Wl e | +2Cl1 g 12,
Proof. These estimates cannot be derived in the same way as before, since the
derivatives in the bounds would get too high and could not be controlled by the

macroscopic estimates anymore. Here we take advantage of ¢2. We use equation
(5.26) for S(g)

FoES(g) = g(@éfq - ﬁ&éf*zWu - Jvzaéfg(h)) .
Now we substitute 8§+2Wu according to (5.28) implying

(aéﬁ-lwp)Z

2 de

& J oW, 0ES (g)dE =¢ J OqOEIW, dé + & JDat
_ 8“v26§ga§+lw,, v dé. .

For getting control of the microscopic terms we derive estimates from the full
kinetie perturbation equation.

Lemma 5.4. Let G, decomposed as in (5.21), be the solution of (5.20). Then
there exists a C such that for k =0,1,2

dfly,, -

= r(czna;fﬂwp§+||a§+lwu||§)+ez||a§g||§,v} + 195912, < C 10, s + 110 Wl e |-

Proof. The kth derivative of (5.20)is tested with 8§G. For more details see [17].
O

Now we are able to prove the main result of this section.

Theorem 5.5. Let the assumptions of Theorem 4.3 hold and let ¢ be the
travelling wave solution. Let fy(&,v) be the initial datum for (5.18) and let

Wﬂ,O(f) =

U @ - penae

Wi 0(©) :% [0m4,(&) = My () — WU pg (€) — pyEN L.

|
|
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Moreover we assume fy— ¢ € H%(L%) (implying fo( & 00,v) = p( % 00,v)) and
W0, Wao € L?, which ensures assumption (5.19). Let

1
(5.45) [Woollzs + Waollzz + 1o = ol < 6

for a 6 small enough, which is independent from ¢. Then for & small enough
equation (5.18) with initial data fy has a unique global solution. In particular,
small amplitude travelling waves are locally stable in the sense that

Jim [ 1765, = 90l ds = 0.
t

Proof. The mainideais to construct a Lyapunow functional, which is decaying
in time. Recall (5.39), (5.41) and define

I = 1o+ 11 + psl2,

where

1/,
Iy .= Jy +eCy [Z (02||65W,)||§ + ||(9§WMH§) + 82||g|2v]

) b
& Ujmw YR W, dvde +ag ||a¢Wp|§] ,
and for k = 1,2

1/.
Ty =i+ o013 (105 W + 105 WLIE) + 21k,

D
— & U Jvzagg W, dvdé + ay, 5 ||6§“W,,|24 :

Here the constants Cj,j = 0,1,2, are positive and independent from e. Then for any
71,72 > 0 the functional I(¢) is bounded from above and below by

2 2 2 2 2
IWlize + Wl + 2 IGEW I + 102WalZ] + &g 5eqee

respectively by
2 2 2
IW,l2e + [WallZe + 2GliZeuy.

We combine the estimates from Lemmata 5.1-5.4 to get a final one for the time
derivative of I and write all terms on the left hand side. For an initial data and ¢ small
enough, one can show that there exist constants y;,7, > 0and a; > 0, 7 = 0,1,2, such
that the coefficients of ||8§+1W/,||§, ||8§+1Wu\|§, k = 0,1,2, are positive initially. Since
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by the Sobolev-Imbedding I controls the Lgo —norms of W,, W,, and their derivatives,
these coefficients stay positive, if 7(0) is small enough, which is guaranteed by as-
sumption (5.45). Hence

d ,
7 I<— A||GH1211§(L§.)’ for all £ > 0, where 1 >0,
and the proof is completed by integrating with respect to ¢. O

Remark 5.6 [Isothermal Case]. There is one difference in the isothermal case
mmportant to be mentioned. Since the sound speed c is constant, the derivative of
Ki(p) corresponding to (5.32) is now of O(e%) and has a different sign

0:K1(p) = —2(u, — u_ )0z, < 0.

Therefore the macroscopic estimate corresponding to (5.38) with ag = 0 has to be
dertved differently. We test equation (5.30) with Ki(p)W, and (6.31) with W, to ob-
tain

1d s D 5
é%J(Kl((ﬂ)VV/% + Wi)df + 8C||Wp||cv +§ HWqu

— CIWall (10,1 + 10: W I3 + 20|0: W2 = ejscw O: W, de.

Observe that here we do not need estimate (5.43).

6 - Shock profiles for strong shocks of scalar conservation laws

The first existence proof of large kinetic shock profiles is due to Golse [22] for the
Perthame-Tadmor model. The proof for other kinetic models for scalar conservation
laws follows similar steps. It consists of obtaining the shock profile as the limit of
profiles for & on a finite interval [ — L, L] as L — oo. Since the shock profile problem
is translation invariant in the ¢ direction, care has to be taken with fixing the profiles
before taking this limit.

In this section we consider (1.1) and assume that its macroscopic limit is a scalar
conservation law. Furthermore we assume throughout this section that V = R and
du = dv.

We start by giving some ingredients that are common to the examples that follow
and that allow a way of proving existence and stability of strong shock profiles. A
description of the proofs is then done in Sections 6.1 and 6.2. This section is completed
in Section 6.3 by presenting the program for the examples in Sections 2.1 and 2.4.
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We assume that the equilibrium distribution M(U,v) is continuous in v and has
continuous derivatives with respect to U. The macroscopic flux is assumed to be
genuinely nonlinear and, without loss of generality, strictly concave:

(6.1) J'(U) <0.

A key property of M is its invertibility with respect to U: we assume that there exists
a {(f,v) such that

(6.2) U={f,v)=f=MU,n).

To be more precise, we shall assume that the function M®) : U — M(U,v) is
C%(R) and that there exist U,, U_ € R U {—oc, +oc} such that

(6.3) MU, v) >0 forall UelU_,U,].

We continue by briefly describing some of the additional features of the equations.

Existence and uniqueness and the maximum principle

In general, local (in time) existence and uniqueness of the initial value problem
(6.4) Ohf +v0,f =Q(f), on R"xRxV
(6.5) FO,2,0) = finir(x,v) for (x,0) € RxV

follows by considering the mild formulation of (1.1)
t

(6.6) £t ) = T, ) + JT(t — 9QfGs, N ds.
0

where 7'(t) denotes the continuous group generated by the linear transport operator
v0,.. Thus, well-posedness follows if Q(f) is Lipschitz continuous in the domain of 7'(¢)
by a fixed point argument.

We shall assume that Q(f) allows a form of comparison principle, which relates
the solution to the distribution M at constant values of U: Let U_, U, € R be given,
then if the initial condition satisfies

(6.7) MU -, v) < finie(w,v) < MUy, v)

then the solution of (6.4)-(6.5) satisfies

(6.8) MU_,v) <flt,x,v) < MWU,,v) forall >0
and thus also

(6.9) U-<Ust,e) <U, forall t>0.
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The general result for smooth initial data is the following:

Proposition 6.1. Let fiir € C3(R x V), such that there exists U-, U, € R
with (6.7), then there exists a unique solution f € CL(R* x R x V) satisfying (6.8)
and (6.9).

Kinetic entropy inequality

For any increasing function y the following holds

(6.10) jmﬂ NS dv < 0.

|4

f
I.e. (1.5) holds with H(f,v) = J" 7((g,v))dg. All convex entropies # are recovered

f
from a kinetic entropy density H by taking y = #/, and so (1.10) holds.

Additionally, we assume that for 7(U) = U?/2 the entropy dissipation can be
quantified. Namely, that there exists a constant C' > 0 independent of ¢ such that

(6.11) |aroenan < —¢ [ ¢ - mpruwan

14 14

where the function w only depends on v and is positive and uniformly bounded.

L'-contraction

Another property that is satisfied by scalar conservation laws is the L!-con-
traction. For the kinetic equation we shall assume that for two given solutions of
(6.4)-(6.5) such that f —g € L'(R x V) for allt > 0

(6.12) J(Q(f) —Q)sign(f —g)dv < 0.

14

We also assume that the equality holds if and only if sign(f — ¢) is constant (in-
dependent of v). The L!-contraction property now follows from (6.12). Subtracting
the equations for f and g and multiplying by sign(f — g) implies that

(6.13) 8tJ|f—g|dv+8va|f—g\dv§0.
1% 1%

Or integrating with respect to x:

(6.14) il”’—gdvd&cgo.

Sl=
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Also a comparison principle (that generalizes Proposition 6.1) follows easily
from (6.13) (by the Crandall-Tartar-Lemma [13]). Two solutions f and g with
f—geL'(R, x V) for all t > 0 clearly satisfy

ii(f_g)dvdé:il(ﬁm_ v forallt=0.

Then if fi,i+ > ginit then also f > g for all £ > 0.

6.1 - Existence of kinetic profiles for strong shocks
We now look for traveling wave solutions with speed s connecting different
equilibrium states. The traveling wave variable is defined by
(6.15) E=q—st
and we look for functions f(&,v) that satisfy
(6.16) (v —$)0:f = Q(f)

(6.17) Jim fE0)=MU_ 0 lim fE0) = MT.0)

with U, € R, where the far field conditions hold almost everywhere in v.
Indeed, integrating (6.16) with respect to v over V gives

8¢J(v—s)fdv:O
v
and integration with respect to &, using (6.17), implies that

(6.18) J(v—s)fdv:J(U,)fSU, =JWU;)-sUs
v

thus we recover the Rankine-Hugoniot condition.

Observe that if a solution of (6.16)-(6.17) exists then (6.1) implies that U_ < U,
and no solution exists if U_ > U,. This is a consequence of (1.6): multiplying (6.16) by
x and integration with respect to v gives

8¢J(v—s)H(f,v)dv <0
v

(this is the traveling wave version of (1.6)). Integration with respect to £ and (6.17)
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implies
JWUL) - JWU-)

(6.19) WU -0 - =5
+_ —_

(n(UL) —nU-)) <0.

It is now a standard exercise of scalar conservation laws to prove that U_ < U,:
since this inequality holds for all convex entropies, we choose to write if for
n(U) = U?/2, and ¥ now satisfies ¥'(U) = U J'(U). Defining
1
L) = YU -¥U-)) - E(J(U) —JWU-)NWU+U-)
the inequality (6.19) becomes L(U, ) < 0. We now compute L(U_) = 0 and observe

L) = %[J’(U)(U - U)W -JU)]<0,

which holds by the concavity of J, thus U_ < U,.
The general result is the following

Theorem 6.2. IfJ"(U)<0and U_ < U, there exists a traveling wave so-
lution f (unique up to translation in &) such that

5lirj1[r1 [ v) — MWUx,v) weakly in L,i(V).
Moreover, its macroscopic density is continuous and monotonically increasing.

We describe the steps of the proof in some detail.

Step 1: The slab problem. First one constructs profiles on the intervals
[ — L,+L] for all L > 0, by solving the equation

(6.20) W —9)d:f1 = QU"), ¢e(~L,+L),veV
subject to the inflow boundary conditions

(6.21) A —Lv)=MU_,v), forv>s
(6.22) Y+ Lv)= MU, forv<s.

The definition of a fixed point map will depend in each case on Q(f), and is similar to
the fixed point map defined to prove existence of the evolution equation. In parti-
cular, this fixed point map iteration will preserve the maximum and the comparison
principles. In general, regularity of the macroscopic slab profiles might need to be
proved additionally by means of averaging lemmas, for instance.
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A general result can be formulated as follows

Proposition 6.3. With the assumptions (6.3) and that the collision operator
admits a maximum principle and that (6.10) hold, the slab problem (6.20)-(6.22) has
a solution fX e Lglm(( — L, L) x V) with continuous macroscopic density U~, and
satisfying

(6.23) MU_,v) <flEv) < MU,Lv) forall EcR,veV,

then also U, < U < U_ .

The analogous for the Boltzmann equation is still open. Some results on a slab
appear in Arkeryd, Cercignani, and Illner [1], Arkeryd and Nouri [2] and Ukai [38].
A maximum principle is not available here.

Step 2: Centering the profile. The limiting problem for L=o0 is
translation invariant with respect to £. For this reason, before taking the limit
L — oo, we normalize the shift of the profiles fZ. First we observe that by
(6.23) and the inflow boundary conditions

s +0o0o
Ul(-L)= J flC=L,v)dv+ J L= L,vdv

s
+00

S
< J MU, v)dv + J MU_,w)ydv < UXL).
—00 S
Then, for all L > 0, by continuity of U’ we can take e [ - L,L] such that
s +o0
U%%:U%:memmm+meumm.

s

Next we shift the point ¢* to the origin. Before that we first need to extend the
¢ domain of f¥ to R:

fi(—L,v) (< —-L
) = fliév) —-L<E<L
FEL,v) L>¢.

For a sequence L,, — co asn — cowelet &, := &l and ful& V) = flL E—-¢,,v),
and U, := [ f,, dv. Clearly now U, (0) = U* for all n.
v

Passing to the limit L — oo in the equation will differ in each case. But, the bound
(6.23) extends trivially and holds for f,. Then f, converges weakly” in L (R x V) to

N
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some f satisfying (6.23). Applying velocity averaging one obtains that U, — Uy
uniformly on compact sets and Ur(0) = U*. The weak limit f of flL solves the limit
equation in the distributional sense (the limit of the non-linear terms is treated in a
similar way as for the existence proof; it depends on the specific form of Q(f)). It is
yet necessary to prove that the shifted intervals [ — L,, + &,,, L, + &,]1 tend to R.

Proposition 6.4. L+ L — = 0o as L — oco. And there exist sequences
&, — oo and n, — — oo such that the solution of the limit problem satisfies

f(én;’v) - M(U+77))7 f(%»?)) - M(Uf,’l)) VvV —a.e..

In the proof one argues by contradiction, assuming that for a sequence L,, — oo,
E* — Ly — & > —o0 as m — oo. Then, by passing to the limit in the equation in the
distributional sense, the limit f of f, satisfies a half-space problem for & > & with
equilibrium inflow data:

W —8)0:f =Q(f), for &>¢&
& v)=MU_,v), for v>s.

One then proves that f(&*,v) = M(U_,v) also holds for v < s v-a.e. and actually that
(& v) = MU_,v) for & > & v-ae..

With the aid of (6.11) and the continuity of Us one proves that Ur — U, as
¢ — oo, and that, restricted to a subsequence &, f(&,,v) = MU, ) v-a.e. Using
the maximum principle and the inflow boundary condition it can be shown that
U_. < U, < U, and that

J W —=8)(f(Ev) —MU_,v)dv=0, JU;x)—8sU;nc=JU-)—sU-
then, by (6.23),
(6.24) (& v)=MU_,v) v-—ae.,

as anticipated. It is next shown that

J(Q(f) QUMWY sign (f — MW Y dv = 0

v

and (6.12) gives that sign(f — M(U_)) is constant, actually zero by (6.24), thus
f(&v) = MU_,v) for all &> &". This is in contradiction with Uy(0) = U*, then
L+ — .

A similar argument shows that L + ¢ — oo and that there is a sequence
&, — — oo as k — oo such that there exists U_., with f(&,v) - M(U_w,?v) as
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k — oo v-a.e. The entropy inequality again implies that U_.,, < U, . Finally,
JU_o) —sU_ =J(U,)—sU,, as before, hence U, = U_and U, = U,.

Step 3: Monotonicity with respect to £&. Monotonicity of the macroscopic
profiles now follows as a consequence of (6.12). And in particular implies that the far-
field conditions hold in the stronger sense of Theorem 6.2.

First we observe that the following holds

Lemma 6.5. Let f and g be two solutions of (6.4) such that there exists se-
quences &, — oo and 1, — — oo with

Tm (&)~ g v) =0 Tm (0, 2) — g0, 2) = 0
then sign(f — g) is independent of v.

This follows by subtracting the equations of f and g, multiplying by sign(f — ¢)
and integrating with respect to v and £ (as in (6.13)) gives

0= 55J j(v—s>|f—g|dvd<: j J(Q(f) — Q@) sign (f — g)dvdz,

RV RV

thus sign(f — g¢) is independent of v.

This means that if we consider a traveling wave solution f, any translation of it
f &,v) =f(¢+a,v) with a > 0, f is clearly a traveling wave solution as well, and the
above lemma applies, giving that sign(f — f )is independent of v. In particular, that f
is monotone with respect to & holds if an expression of the form [ w(v)f dv for any
positive w, is monotone. This step can be performed in the examples and will depend
on the form of Q(f).

This completes the proof of Theorem 6.2.

6.2 - Stability of kinetic profiles for strong shocks

We now study dynamic stability of the traveling wave just constructed. We prove
that solutions of the Cauchy problem (6.4)-(6.5) approach a traveling wave solution as
t — oo if the initial condition has the same far field behavior of a shock profile.

We let ¢(&, v) be a kinetic shock profile, i.e. a solution to (6.16) and (6.17). We also
let it, by a shift in & if necessary, be chosen such that for the initial datum f;,;;(&, v)

(6.25) J J(fim-t —p)dvdl=0.

RV
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We denote the difference between the solution of the initial value problem and the
shock profile by A(t, &, v) := f(t, &, v) — (&, v), so h satisfies

(6.26) Oh + (v — 8)0:h = Q(f) — Qo)
(6.27) Tt = 0) = fonit — & J J I, & v)dvdé = 0.
RV

Multiplying (6.26) by sign(k) and integrating with respect to v and & we get

& wlavas < [ @ - @unsigntidods <o.

RV RV

And so lim ||2||;; < oo, and also
t—00 Xy

Jj|h| dvdé < JJ |Rinit| dvdé  for all £ > 0.
RV RV

For each ¢, — oo we define h,(t, &, v) := h(t, +t,E,v) — hoo(t, E,v). The sequences
{hn},, are bounded in L>°(0, co; Lé_’,v N Lg" (R x V)). Then (restricted to a sub-

N
sequence) h,, — ho as n — oo in LY, (R x V) weak*. Because of the translation in-
variance in ¢ we get equicontinuity in the &-direction; by applying the L' con-
tractivity to the difference h(t, & + h,v) — h(t, &, v). Thus we can conclude that there
is a subsequence of t,, such that

hy — heo asn — oo 1In Lgfv(R x V) weak™ .

Also since [ |0:(Uy — Up)|dé < [ [|0:(f — ¢)| dvdé, there exists a Uy, such that
R RV

(6.28) Jh dv="U), — Usx stronglyin LLR).
v

We now observe that

o0

J j @Qf) — Qo)) sign(hy) dv dé dt

0 RxV

oo

:J j Q) — Qo)) sign(h) dvdédt — 0 as n — oo
ty RxV

The term Q(f,,) — Q(¢p) can be rearranged in the examples and one can take the limit
in the weak formulation of the equation satisfied by #,, using (6.28) in the nonlinear
term. In addition the above implies that the sign(%.,) does not depend on v, and it is
easy to check that [ [ % dvd = 0, since this property is preserved in ¢. The limit
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equation is
Oihoo + (0 — §):hoe = Qg

sign(h) = sign(Uy,_), J Jh“ dvdé=0
RV

and holds in the weak sense. Here Q results from the linearisation of Q(f,) — Q(p)
and taking the limit n — oc.

Let us see that i, = 0. We argue by contradiction, first we assume that there is
a (t,&,vo) such that hy(ty, &y, ve) > 0. There must be a (&;,v;) such that
hoo(to, &1, 1) < 0. This implies k. (ty, &y, v) > 0 and hy(ty, &1, v) < 0 for all v, because
sign(fs,) does not depend on v. In fact sign(%.,) does not change along characteristics.
So taking & = &) + (vg — $)(t1 — to) and t; # ty, we get h(ty, Ee,v) > 0. Now we can
choose ve such that & = & + (ve — )ty — 1), implying h.(ty, &1,v) > 0, a contra-
diction.

The stability result can now be stated

Theorem 6.6. Let f be a solution of (6.4)-(6.5), with MU_,v) < finit
< MU, v), such that lirip Jfinit@,v) = MU, v). Let ¢ be a traveling wave solu-
r—+o00

tion such that (6.25) holds, then for every sequence t, — oo, f(t, +t,&,v) — (&, v)
m L>®(0,T) x R x V) weak*.

6.3 - Examples

BGK-model for scalar conservation laws

The above program has been carried out in [14], [18] for the BGK-model of scalar
conservation laws described in Section 2.1.

Kinetic entropy inequalities are obtained from (6.3) by letting { be the inverse
of M(U,v) as we already described in Section 2.1. For this model (6.11) readily
holds with

-1
w) = ( sup JIyM(U, v)) .
U_<U<U,

In several of the arguments that follow a subsequence of distribution functions
will converge in L3S, (R x V) weak* as a consequence of the maximum principle. Then
either by an averaging lemma or a uniform estimate derived from the equation, the
corresponding sequence of macroscopic densities Uy converges strongly in some
LE(R) with 1 < p < oo or uniformly in C,(R). Passing to the limit in the equation can
be done easily in the weak formulation because the only nonlinear term M(Uy,v)
involves f through Uy.
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Let us briefly see why Proposition 6.1 holds. The mild formulation (6.6) which
now reads

t
ft,a,v) = e ol — vt,v) + Je(s’t)M(Uf(s, x— vt —s),v)ds,
0

and a standard fixed point argument gives local existence in time. A comparison
principle follows easily from the mild formulation too. Let ], and f2, be two initial
conditions such that f1 ., < i%w-t, and let f! and f? denote the corresponding solu-

tions, let also giuit := f2;, — fL; and g :=f? — f1, then g satisfies

)

Qg + 0xg + g = MU, Uy,

for some U. Thus by (6.3) the positivity of the initial condition is preserved in time.
This can be applied to steady solutions M(U*,v) where U* is constant, and so the
maximum principle follows.

We observe that in this case the mild formulation gives a self-consistent for-
mulation in terms of Uy:

t
Up(t,x) = e Jfo(ac —wt,v)dv + Je(sft) JM(Uf(S, x— vt —s)),v)dvds.
% 0 %

A similar formulation is used to solve the slab problem associated to the traveling
wave equation, as we shall see.

Let us now check that the L!-contraction property holds. We just need to show
that (6.12) holds for any two solutions of the initial value problem, with different
initial conditions, f and ¢ and such that f —g € L}M(R x V). We compute

J{M(Uf,v) — MUy,v) — (f — g)}sign(f —g)dv

1%
= [1rma@y.0) — MU, 01 = 1f - glydo = U = U] - [1f ~gldv <0,
1% 1%

where we have used (6.3).

We now sketch the proofs of existence and stability of traveling waves. We recall
that with the traveling wave variable (6.15) we look for solutions of the problem (6.16)
subject to (6.17), where the traveling wave speed s is given by (6.18). That U_ < U,
under the assumption (6.1) follows from (6.19), as before.

Let us turn now to the existence of traveling waves. To solve the slab problem
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(6.20) subject to (6.21) and (6.22), the following fixed point map can be used

T U J fLdy,
v
where f” solves (6.20), for a given U”, subject to the boundary conditions (6.21) and
(6.22). So the proof'is an application of the Schauder’s fixed point theorem. The special
form of the collision operator allows to define a fixed point map that is in fact an
operator of macroscopic densities and that maps a subspace of the locally continuous
functions into itself. The compactness of the operator holds by applying an averaging
lemma. The definition of the operator implies that there is a unique f that solves the
equation and whose macroscopic density is the fixed point, giving the existence.

The passage to the limit . — oo after the profile has been centered can be carried
out in the same way as above and the proof of Proposition 6.4, in particular, follows
similarly.

The only thing left to check in order to conclude that Theorem 6.2 holds is the
monotonicity of the profiles. By Lemma 6.5 we only need to prove that if f is a
traveling wave solution which satisfies the far field conditions in the sense of
Proposition 6.4, then [ w(v)f dvis monotone increasing for a positive function w. In

this case we can takg w) =W — 8)2; we let g =f — M(U_,v) and multiply the
equation satisfied by g by (v — s). Integrating with respect to v yields
(6.29) o J w—sPgdv=JU, +U_)—JWU_) - sU, — J(v —s)gdv.
1% 14
But integration with respect to v of the equation for g implies that [ (v — s)gdvis

v
constant, and further, after taking the limit along the sequences &, and 7, that
| (w—s)gdv = 0. Finally, by (6.1) and U_ < Uy < Uy,
v

8¢J(v —8)’gdv = J(Uy) - J(U-) — s(Us — U-) > 0.
14

The proof of stability of the shock profiles can be readily adapted and we shall not
comment further on it.

Fermions in a background medium

We now consider the kinetie model for fermion-phonon interaction in the presence
of a large electric field £ described in Section 2.4 and review the results from [5]. In
one space dimension, numerical computations of J(U) suggest that for £ = 0 then
sign(J"(U)) = sign(¥), see [5] and [19]. Let us assume without loss of generality that
E > 0 and that J"(U) > 0.
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Existence and the maximum principle are proved by noticing that Q(f) can be
split into a linear and a nonlinear part

(6.30) Qs(f) = () + 22(Nf

where the operators 1;(f) and A2(f) are linear integral operators. The fixed point
iteration is defined by solving at each step the linear equation

(6.31) eatfwrl + E’Uaxfwrl +Eavf”“ _ ;Q(fn)fnﬂ _ /ll(fn) 7
with
F = finie € LY(R; WEH(R))

where (6.31) can be solved by the method of characteristics or by semigroup theory.
Positivity of solutions f” follows by observing that if f > 0 then —13(f) > 0 and
M(f) > 0. That f* <1 for all n also follows, by writing the equation in terms of
¢" =1 — " and using that Q,(1 — ¢") = —Q4(¢") gives the equation (6.31) with f"+!
and f™ replaced by ¢"*! and by ¢", respectively. So g" > 0 forallnif ¢ =1 —f° > 0.

Thus, the sequence f” is uniformly bounded in L*>° and there is a subsequence
that converges weakly* to some f € L. It has been shown, Mustieles [32], that the
sequence f" converges strongly in L>([0, T; L. ,(R?)), by deriving L' estimates of
the form | /™ — f*||,. < Cllf™ —f" ||, and the existence holds.

That (6.10) and (6.11) hold has been shown by Ben Abdallah, Chaker and
Schmeiser [5]. We do not go into the proof here, we just remark that (6.11) holds for
any convex entropy #, not only for = U?/2, namely

J(Qs(f) — B ) ({(f,v)dv < —C J (f = F(Uy)* M) dv

R R

holds for any strictly increasing function y € C?, with ¢, as before, defined by (6.2)
and with Uf = f U(f,v) M(v) dv. The inequality (6.12), and hence L!-contraction, was
proved by Poupaud [36].

To prove the existence of the slab problem (6.20)-(6.22) one can proceed as in [4]
for the Milne problem. Using the iteration, analogous to (6.31),

0 =)D f" T+ Ed,f" = Jo(f " = I (f"),

for E > 0theiteration procedure is started with f° = M(U, ), thus clearly f* < 9,
the comparison principle implies that /"1 < f for all n, thus the sequence defined
by the iteration is decreasing, and f* € L'([ — L,L] x Q)N L*([ — L, L] x Q). The
existence of fixed points is achieved by passing to the limit # — oo;the convergenceis
strong in L! by the monotone convergence theorem, and weak* in L>, this allows
passing to the limit in . An additional argument that uses the inequality (6.12) is
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needed to prove the uniqueness of the fixed point. For £ < 0 the iteration procedure
is started at f© = M(U_,v) instead.

The rest of the existence proof now follows as in Section 6.1. We only remark that
the monotonicity of f with respect to ¢ is directly proved for Uy (here w(v) = 1), it
requires a technical lemma that follows by analyzing the collision term, we refer to
[5] for details.

The proof of stability follows the same lines. We only remark that the splitting of
the operator (6.30) and averaging lemmas are used here to pass to the limit in the &
equation (6.26).
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