M. K. BOSE and R. TIWARI(*)

On (ω)topological spaces (**)

1 - Introduction

In [1], we introduced the notion of (ω) topological spaces. There we defined and studied some notions of separation axioms $((\omega)$ Hausdorffness, (ω) regularity and (ω) normality) and compactness $((\omega)$ compactness, local (ω) compactness and (ω) paracompactness). It was proved that a (ω) Hausdorff (ω) paracompact space is (ω) normal. In this paper, we introduce (ω^*) normality which is stronger than (ω) normality. We show that (i) a (ω) Hausdorff (ω) paracompact space is (ω^*) normal (Theorem 3.1), and (ii) if a space is (ω^*) normal, then every point finite (ω) open cover is shrinkable (Theorem 3.3). As promised in [1], a (ω) topological version of Michael's theorem— a characterization of (ω) paracompactness (Theorem 3.2) is given. Theorems 3.4 and 3.5 together reflect the celebrated Stone's theorem on paracompactness.

2 - Preliminaries

We denote the set of natural numbers by N. The following definitions were introduced in Bose and Tiwari [1].

^(*) M. K. Bose: Dept. of Mathematics, University of North Bengal, Siliguri, W. Bengal - 734013, India. e-mail: manojkumarbose@yahoo.com; R. Tiwari: Dept. of Mathematics, St. Joseph's College, Darjeeling, W. Bengal - 734104, India. e-mail: tiwarirupesh1@yahoo.co.in (**) Received 27th May 2008 and in revised form 16th October 2008. AMS classification 54A10.

Definition 2.1. If $\{\mathcal{J}_n\}$ is a sequence of topologies on a set X with $\mathcal{J}_n \subset \mathcal{J}_{n+1}$ for all $n \in N$, then the pair $(X, \{\mathcal{J}_n\})$ is called a (ω) topological space.

In the sequel, the (ω) topological space $(X, \{\mathcal{J}_n\})$ is simply denoted by X. The closure of a set $A \subset X$ with respect to a topology \mathcal{J} on X is denoted by $(\mathcal{J})clA$.

Definition 2.2. Any set $G \in \bigcup_n \mathcal{J}_n$ is called a (ω) open set. A set F is called (ω) closed if X - F is (ω) open. A set is $(\sigma\omega)$ open (resp. $(\delta\omega)$ closed) if it is the union (resp. intersection) of a countable number of (ω) open (resp. (ω) closed) sets.

Definition 2.3. X is said to be (ω) Hausdorff if for any two distinct points x, y of X, there exists an n such that for some $U, V \in \mathcal{J}_n$, we have $x \in U, y \in V$ and $U \cap V = \emptyset$.

Definition 2.4. X is said to be (ω) regular if given a (ω) closed set F and a point $x \in X$ with $x \notin F$, there exists an n such that for some $U, V \in \mathcal{J}_n$, we have $x \in U, F \subset V$ and $U \cap V = \emptyset$.

Definition 2.5. X is said to be (ω)normal if given two (ω)closed sets A and B with $A \cap B = \emptyset$, there exists an n such that for some $U, V \in \mathcal{J}_n$, we have $A \subset U$, $B \subset V$ and $U \cap V = \emptyset$.

Definition 2.6. A collection C of subsets of X is said to be (\mathcal{J}_n) locally finite if each $x \in X$ has a (\mathcal{J}_n) open nbd intersecting atmost finitely many sets $\in C$.

Definition 2.7. X is said to be (ω) paracompact if every (ω) open cover of X has, for some n, a (\mathcal{J}_n) locally finite (\mathcal{J}_n) open refinement.

In [1], (ω) paracompactness was defined for (ω) Hausdorff spaces. We require the following theorem [1].

Theorem 2.1. If X is (ω) Hausdorff and (ω) paracompact, then X is (ω) regular.

3 - (ω)paracompactness

We introduce the following definitions.

Definition 3.1. X is said to be (ω^*) normal if given two $(\delta\omega)$ closed sets A and B with $A \cap B = \emptyset$, there exists an n such that for some $U, V \in \mathcal{J}_n$, we have $A \subset U$, $B \subset V$ and $U \cap V = \emptyset$.

It is easy to see that X is (ω^*) normal iff for any $(\delta\omega)$ closed set F and any $(\sigma\omega)$ open set G with $F \subset G$, there exists an n such that for some (\mathcal{J}_n) open set U, we have $F \subset U \subset (\mathcal{J}_n) clU \subset G$.

Obviously (ω^*)normality is stronger than (ω)normality.

Example 3.1. The (ω)topological space ($N, \{\mathcal{J}_n\}$), where \mathcal{J}_n is the topology generated by the base

$$\{\emptyset, N\} \cup \{\bigcup_{i=1}^n \{\{even \ integers \leq i\}, \{odd \ integers \leq i\}\}\}$$

is (ω) normal but not (ω^*) normal.

Definition 3.2. A (ω)open cover $\mathcal{U} = \{U_a | a \in A\}$ of X is shrinkable if there exists a (ω)open cover $\mathcal{V} = \{V_a \mid a \in A\}$ such that for each $a \in A$, there exists an $n_a \in N$ such that $(\mathcal{J}_{n_a})clV_a \subset U_a$. In this case, \mathcal{V} is said to be a shrinking of \mathcal{U} .

Definition 3.3. $A(\omega)$ open cover \mathcal{U} of X is said to be point finite if each $x \in X$, belongs to finitely many sets $\in \mathcal{U}$.

Theorem 3.1. If X is (ω) Hausdorff and (ω) paracompact, then it is (ω^*) normal.

Proof. Let A and B be two disjoint $(\delta\omega)$ closed sets. Let $x\in A$. Then $x\not\in B$, and so there exists a (ω) closed set F such that $B\subset F$ and $x\not\in F$. Therefore by Theorem 2.1, there exists, for some $n_x\in N$, two disjoint (\mathcal{J}_{n_x}) open sets U_x and V_x such that $x\in U_x, F\subset V_x$. The set X-A is $(\sigma\omega)$ open. Suppose $X-A=\cup_{k\in N}G_k$, where G_k are (ω) open sets. Then the family $\mathcal{U}=\{U_x\mid x\in A\}\cup\{G_k\mid k\in N\}$ is a (ω) open cover of X. Since X is (ω) paracompact, there exists, for some n, a (\mathcal{J}_n) locally finite (\mathcal{J}_n) open refinement \mathcal{C} of \mathcal{U} . Let $U=\cup\{G\in \mathcal{C}\mid G\cap A\neq\emptyset\}$. Then $U\in \mathcal{J}_n$ and $A\subset U$. For each $y\in B$, there exists a (\mathcal{J}_n) open nbd W_y of y that intersects only a finite number of sets $U_1(y),...,U_k(y)\in \mathcal{C}$ with $U_i(y)\cap A\neq\emptyset$, i=1,2,...,k. Let $U_i(y)\subset U_{x_i}$, i=1,2,...,k and $H_y=W_y\cap (\cap_{i=1}^k V_{x_i})$. Then $y\in H_y$, and $H_y\in \mathcal{J}_l$ where $l=\max(n,n_{x_1},n_{x_2},...,n_{x_k})$. Also $U\cap H_y=\emptyset$. Suppose $X-B=\cup_{k\in N}D_k$, where D_k are (ω) open. Let \mathcal{E} be a (\mathcal{J}_m) locally finite (\mathcal{J}_m) open refinement of the (ω) open cover $\mathcal{W}=\{H_y\mid y\in B\}\cup\{D_k\mid k\in N\}$. Let $W=\cup\{E\in \mathcal{E}\mid E\cap B\neq\emptyset\}$. Then W is (\mathcal{J}_m) open, $B\subset W$ and $U\cap W=\emptyset$. Also $U,W\in \mathcal{J}_r$, $r=\max(m,n)$.

Now we provide a (ω) topological version of Michael's theorem (Michael [3]) on (ω) paracompactness. We call a collection \mathcal{C} of subsets of X, σ - (\mathcal{J}_n) locally finite if $\mathcal{C} = \bigcup_{k=1}^{\infty} \mathcal{C}_k$, where each \mathcal{C}_k is a (\mathcal{J}_n) locally finite collection.

Theorem 3.2. Suppose, for each $n \in N$, (X, \mathcal{J}_n) is a regular topological space. Then the following statements are equivalent.

- (a) X is (ω)paracompact.
- (b) Each (ω)open cover of X has, for some n, a σ -(\mathcal{J}_n)locally finite (\mathcal{J}_n)open refinement.
- (c) Each (ω)open cover \mathcal{U} of X has, for some n, a (\mathcal{J}_n)open refinement \mathcal{V} and \mathcal{V} has a (\mathcal{J}_n)locally finite refinement (not necessarily (\mathcal{J}_n)open).
- (d) Each (ω)open cover \mathcal{U} of X has, for some m, a (\mathcal{J}_m)open refinement \mathcal{V} and \mathcal{V} has, for some n, a (\mathcal{J}_n)locally finite (\mathcal{J}_n)closed refinement.

Proof. (a) \Longrightarrow (b): Follows easily.

- (b) \Longrightarrow (c): Similar to the proof of the part (2) \Longrightarrow (3) of Theorem 2.3 (Dugundji [2], p. 163) .
- $(c)\Longrightarrow(d)$: Let $\mathcal U$ be a (ω) open cover of X. Then by (c), $\mathcal U$ has, for some m, a $(\mathcal J_m)$ open refinement $\mathcal V$. Consider $x\in X$ and $V_x\in \mathcal V$ such that $x\in V_x$. Then by the regularity of $(X,\mathcal J_m)$, there exists a $(\mathcal J_m)$ open set W_x such that $x\in W_x\subset (\mathcal J_m)clW_x\subset V_x$. Then $\mathcal W=\{W_x\mid x\in X\}$ is a $(\mathcal J_m)$ open, and hence (ω) open cover of X. Therefore by (c), $\mathcal W$ has, for some l, a $(\mathcal J_l)$ locally finite refinement $\mathcal A$. For $A\in \mathcal A$, there exists a W_x such that $A\subset W_x$. So if $n=\max(l,m)$, then $(\mathcal J_n)clA\subset (\mathcal J_n)clW_x\subset (\mathcal J_m)clW_x\subset V_x$. Since $\mathcal A$ is $(\mathcal J_l)$ locally finite and $\mathcal J_l\subset \mathcal J_n$, it is also $(\mathcal J_n)$ locally finite. Thus, by 9.2 (Dugundji [2], p. 82), $\{(\mathcal J_n)clA\mid A\in \mathcal A\}$ is a $(\mathcal J_n)$ locally finite $(\mathcal J_n)$ closed refinement of $\mathcal V$.
- $(d) \Longrightarrow (a)$: Let \mathcal{U} be a (ω) open cover of X. Then by (d), it has, for some l, a (\mathcal{J}_l) open refinement \mathcal{V} and \mathcal{V} has, for some m, a (\mathcal{J}_m) locally finite (\mathcal{J}_m) closed refinement \mathcal{W} . For each point $x \in X$, there exists some (\mathcal{J}_m) open nbd intersecting a finite number of elements of \mathcal{W} . The collection \mathcal{G} of all these nbds forms a (\mathcal{J}_m) open cover, and hence a (ω) open cover of X. Therefore by (d), \mathcal{G} has, for some n, a (\mathcal{J}_n) locally finite (\mathcal{J}_n) closed refinement \mathcal{F} . For $W \in \mathcal{W}$, we define

$$\mathcal{F}(W) = \{ F \in \mathcal{F} \mid F \cap W = \emptyset \},$$

$$F(W) = \cup \{ F \mid F \in \mathcal{F}(W) \},$$

$$D(W) = X - F(W).$$

Then $\mathcal{F}(W)$ is a (\mathcal{J}_n) locally finite collection of (\mathcal{J}_n) closed sets. Therefore by 9.2 (Dugundji [2], p. 82), F(W) is (\mathcal{J}_n) closed. Hence D(W) is (\mathcal{J}_n) open. Since \mathcal{W} is a cover of X, it follows that the collection $\mathcal{D} = \{D(W) \mid W \in \mathcal{W}\}$ is a (\mathcal{J}_n) open cover of X. It is also (\mathcal{J}_n) locally finite. In fact, if B_x is a (\mathcal{J}_n) open nbd of x intersecting the sets $F_1, F_2, ..., F_k$ of \mathcal{F} , then $B_x \cap D(W) \neq \emptyset$ implies that for some i = 1, 2, ..., k, $F_i \cap D(W) \neq \emptyset$ and so $F_i \cap W \neq \emptyset$. Since each F_i is contained in some member of \mathcal{G} , it

can intersect a finite number of members W of W, and so it follows that B_x can intersect a finite number of sets D(W) of \mathcal{D} .

Now for each $W \in \mathcal{W}$, we choose a $V \in \mathcal{V}$ such that $W \subset V$. If $r = \max(l, n)$, then the collection $\{V \cap D(W) \mid W \in \mathcal{W}\}$ is a (\mathcal{J}_r) -locally finite (\mathcal{J}_r) -open refinement of \mathcal{V} and hence of \mathcal{U} . Hence X is (ω) -paracompact. \square

Theorem 3.3. If X is (ω^*) normal, then every point finite (ω) open cover of X is shrinkable.

Proof. Suppose X is (ω^*) normal and $\mathcal{U} = \{U_a \mid a \in \mathcal{A}\}$ is a point finite (ω) open cover of X. We well-order the set A and let $A = \{1, 2, 3, ..., a, ...\}$. We now construct a collection of (ω) open sets $\mathcal{V} = \{V_a \mid a \in A\}$, by transfinite induction, as follows. Let $F_1 = X - \cup \{U_a \mid a > 1\}$. Since for a fixed n, an arbitrary union of (\mathcal{J}_n) open sets is a (\mathcal{J}_n) open set, it follows that the union $\cup \{U_a \mid a > 1\}$ is $(\sigma\omega)$ open, and hence F_1 is $(\delta\omega)$ closed. Also $F_1 \subset U_1$. So by (ω^*) normality, there exists an $n_1 \in N$ such that for some (\mathcal{J}_{n_1}) open set $V_1, F_1 \subset V_1 \subset (\mathcal{J}_{n_1})$ $clV_1 \subset U_1$. We suppose V_β has been defined for each $\beta < a$. Let $F_a = X - H_a$, where $H_a = (\cup \{V_\beta \mid \beta < a\}) \cup (\cup \{U_\gamma \mid \gamma > a\})$. Then F_a is $(\delta\omega)$ closed and $F_a \subset U_a$. Therefore there exists an $n_a \in N$ such that for some (\mathcal{J}_{n_a}) open set V_a , we have $F_a \subset V_a \subset (\mathcal{J}_{n_a})$ $clV_a \subset U_a$. Now we show that $\mathcal{V} = \{V_a \mid a \in A\}$ is a cover of X. If $x \in X$, then x belongs to only finitely many elements $U_{a_1}, U_{a_2}, ..., U_{a_n}$ of \mathcal{U} . If $a = \max(a_1, a_2, ..., a_n)$, then $x \notin U_\gamma$ for y > a. Therefore $x \in V_\beta$ for some $\beta \leq a$, since if $x \notin V_\beta$ for all $\beta < a$, then x must belong to F_a and hence to V_a . Thus \mathcal{V} is a cover of X and hence it is a shrinking of \mathcal{U} .

For $x \in X$, $A \subset X$ and a (ω)open cover \mathcal{U} of X. We write

$$St(x,\mathcal{U}) = \bigcup \{U \mid x \in U \in \mathcal{U}\}$$

$$St(A,\mathcal{U}) = \bigcup \{U \mid U \in \mathcal{U}, \ U \cap A \neq \emptyset\}.$$

A cover \mathcal{V} of X is called a *barycentric refinement* (resp. $star\ refinement$) (Dugundji [2], p. 167) of \mathcal{U} if for each $x \in X$ (resp. $V \in \mathcal{V}$), $St(x, \mathcal{V})$ (resp. $St(V, \mathcal{V})$) is contained in some $U \in \mathcal{U}$.

Theorem 3.4. If X is (ω) Hausdorff and (ω) paracompact, then every (ω) open cover of X has, for some n, a (\mathcal{J}_n) open barycentric refinement.

Proof. Suppose X is (ω) Hausdorff and (ω) paracompact. Then by Theorem 3.1, X is (ω^*) normal. Let \mathcal{U} be a (ω) open cover of X. Then for some m, \mathcal{U} has a (\mathcal{J}_m) locally finite (\mathcal{J}_m) open refinement $\mathcal{V} = \{V_a \mid a \in A\}$. Since X is (ω^*) normal and since each (\mathcal{J}_n) locally finite cover is point finite, by Theorem 3.3, there exists a shrinking

 $\mathcal{W} = \{W_a \mid a \in A\}$ of \mathcal{V} . For each $a \in A$, there exists an $n_a \in N$ such that $(\mathcal{J}_{n_a})clW_a \subset V_a$, and so \mathcal{W} is also (\mathcal{J}_m) locally finite. Since for all $n, \mathcal{J}_n \subset \mathcal{J}_{n+1}$, we may assume that $n_a \geq m$ for all a. Now let $x \in X$ and

$$G_x = \bigcap \{V_a \mid a \in A, x \in (\mathcal{J}_{n_a})clW_a\}.$$

Since $(\mathcal{J}_{n_a})clW_a \subset V_a$, each V_a in the above intersection contains x. So from the (\mathcal{J}_m) local finiteness of \mathcal{V} , it follows that G_x is the intersection of finite number of (\mathcal{J}_m) open sets V_a . Hence G_x is (\mathcal{J}_m) open. If

$$F_x = \bigcup \{ (\mathcal{J}_{n_a}) clW_a \mid x \notin (\mathcal{J}_{n_a}) clW_a \},$$

then $X-F_x$ is $(\sigma\omega)$ open: Let $y\in X-F_x$. Since $\mathcal W$ is $(\mathcal J_m)$ locally finite, there exists $(\mathcal J_m)$ open nbd D_y of y such that except for a finite number of a, we have $D_y\cap W_a=\emptyset\Longrightarrow D_y\cap (\mathcal J_m)clW_a=\emptyset$. Suppose D_y intersects the sets $(\mathcal J_m)clW_{a_1},...,(\mathcal J_m)clW_{a_k}$ for which $x\notin (\mathcal J_{n_a})clW_a$. Since for all $a,\ n_a\geq m,\ D_y$ intersects at most $(\mathcal J_{n_{a_1}})clW_{a_1},...,(\mathcal J_{n_{a_k}})clW_{a_k}$. Therefore $B_y=D_y\cap (\cap_{i=1}^k(X-(\mathcal J_{n_{a_i}})clW_{a_i}))$ is a $(\mathcal J_l)$ open nbd of y, where $l=\max(m,n_{a_1},...,n_{a_k})$. Also $B_y\subset X-F_x$. Therefore it follows that $X-F_x$ is $(\sigma\omega)$ open. Hence $H_x=G_x\cap (X-F_x)$ is $(\sigma\omega)$ open. So $\mathcal H=\{H_x\mid x\in X\}$ is a $(\sigma\omega)$ open cover of X. For each x, replacing the $(\sigma\omega)$ open set H_x of $\mathcal H$ by the (ω) open sets whose union is H_x , we get a (ω) open cover $\mathcal C$ of X. Let $\mathcal P$ be a $(\mathcal J_n)$ open refinement of $\mathcal U$. It is sufficient to show that $\mathcal C$ is a barycentric refinement of $\mathcal V$.

We take any $y \in X$ and an a such that $y \in (\mathcal{J}_{n_a})clW_a$. Let $y \in C \in \mathcal{C}$ and $C \subset H_x = G_x \cap (X - F_x)$. Therefore $x \in (\mathcal{J}_{n_a})clW_a$, since otherwise $(\mathcal{J}_{n_a})clW_a \subset F_x$ and so $y \notin H_x$. Therefore $G_x \subset V_a \Rightarrow H_x \subset V_a \Rightarrow C \subset V_a \Rightarrow St(y, \mathcal{C}) \subset V_a$. It thus follows that \mathcal{C} is a barycentric refinement of \mathcal{V} .

In Theorem 3.2, we require the following condition: For each n, the topological space (X, \mathcal{J}_n) is regular. In the next theorem, we use Theorem 3.2 and so we need the above condition which is stronger than (ω) regularity.

Theorem 3.5. Suppose for each n, (X, \mathcal{J}_n) is a regular topological space. If each (ω) open cover \mathcal{U} of X has, for some n, a sequence $\{\mathcal{U}_k\}$ of (\mathcal{J}_n) open covers such that \mathcal{U}_1 is a barycentric refinement of \mathcal{U} and for all k > 1, \mathcal{U}_{k+1} is a barycentric refinement of \mathcal{U}_k , then the space X is (ω) paracompact.

Proof. Let $\mathcal{U} = \{U_a \mid a \in A\}$ be a (ω) open cover of X satisfying the above condition. We denote by V_a the set of those points x of U_a for which $St(x, \mathcal{U}_k) \subset U_a$ for some k. Then the collection $\mathcal{V} = \{V_a \mid a \in A\}$ forms a refinement of \mathcal{U} : By definition

 $V_a \subset U_a$. Also for each $x \in X$, $St(x, \mathcal{U}_1) \subset U_a$ for some a and so $x \in V_a$. Thus \mathcal{V} is a cover of X.

We well order set A and let $A = \{1, 2, ..., a, ...\}$. For any $k \in N$, we define

$$F_{k1} = X - St(X - V_1, \mathcal{U}_k)$$
, and for $a > 1$,

$$F_{ka} = X - St((X - V_a) \cup (\cup_{\beta < a} F_{k\beta}), \mathcal{U}_k).$$

Then F_{ka} are (\mathcal{J}_n) closed sets. Obviously for all $a, F_{ka} \cap St((X - V_a), \mathcal{U}_k) = \emptyset$ and so $(X - V_a) \cap St(F_{ka}, \mathcal{U}_k) = \emptyset$. Therefore

(1)
$$St(F_{ka}, \mathcal{U}_k) \subset V_a \text{ for all } a.$$

Also we have

(2)
$$St(F_{ka}, \mathcal{U}_k) \cap F_{k\beta} = \emptyset \text{ for all } \beta \neq a.$$

The collection $\{F_{ka} \mid k \in N, a \in A\}$ forms a cover of X: consider $x \in X$. Let a be the first index such that $x \in V_a$. Then $St(x, \mathcal{U}_k) \subset U_a$ for some k. Since \mathcal{U}_{k+1} is a barycentric refinement of \mathcal{U}_k , it follows that $St(x, \mathcal{U}_{k+1}) \subset V_a$. Thus we can say

(3)
$$St(x, \mathcal{U}_l) \subset V_a$$
 for some l .

If $x \in St((X - V_a) \cup (\cup_{\beta < a} F_{l\beta}), \mathcal{U}_l)$, then $St(x, \mathcal{U}_l)$ intersects $(X - V_a) \cup (\cup_{\beta < a} F_{l\beta})$ and so $St(x, \mathcal{U}_l)$ intersects $\cup_{\beta < a} F_{l\beta}$ (by (3)). Therefore $St(x, \mathcal{U}_l)$ intersects $F_{l\beta}$ for some $\beta < a$ and so $x \in St(F_{l\beta}, \mathcal{U}_l) \subset V_\beta$ (by (1)) which is impossible, since a is the first index such that $x \in V_a$. Therefore $x \notin St((X - V_a) \cup (\cup_{\beta < a} F_{l\beta}), \mathcal{U}_l)$ and so $x \in F_{la}$ (by the definition of F_{la}).

Now for each pair of k and a,

$$G_{ka} = St(F_{ka}, \mathcal{U}_{k+2}) \subset St(F_{ka}, \mathcal{U}_k) \subset V_a$$
 (by (1))

and G_{ka} is a (\mathcal{J}_n) open. Also the collection $\mathcal{G} = \{G_{ka} \mid k \in N \text{ and } a \in A\}$ forms a cover of X. For if $x \in X$, then for some k and $a, x \in F_{ka} \subset St(F_{ka}, \mathcal{U}_{k+2}) = G_{ka}$.

There is no $B \in \mathcal{U}_{k+2}$ intersecting both G_{ka} and $G_{k\beta}$ for $a \neq \beta$. For if B intersects both G_{ka} and $G_{k\beta}$, there exist $B_1, B_2 \in \mathcal{U}_{k+2}$ such that B_1 intersects both F_{ka} and B, and B_2 intersects both $F_{k\beta}$ and B. Therefore $St(B, \mathcal{U}_{k+2})$ intersects both F_{ka} and $F_{k\beta}$. Since \mathcal{U}_{k+2} is a star refinement of \mathcal{U}_k (by 3.4, Dugundji [2], p. 167), some $D \in \mathcal{U}_k$ intersects both F_{ka} and $F_{k\beta}$, and hence $St(F_{ka}, \mathcal{U}_k) \cap F_{k\beta} \neq \emptyset$ which contradicts (2).

Therefore it follows that the collection $\mathcal{G}_k = \{G_{ka} \mid a \in A\}$ is (\mathcal{J}_n) locally finite. Thus $\mathcal{G} = \bigcup_{k=1}^{\infty} \mathcal{G}_k$ is a σ - (\mathcal{J}_n) locally finite (\mathcal{J}_n) open refinement of \mathcal{V} and hence of \mathcal{U} . Therefore by Theorem 3.2, X is (ω) paracompact.

Theorems 3.4 and 3.5 together give a (ω) topological version of Stone's theorem on paracompactness.

References

- [1] M. K. Bose and R. Tiwari, On increasing sequences of topologies on a set, Riv. Mat. Univ. Parma 7 (2007), 173-183.
- [2] J. Dugundji, *Topology*, Allyn and Bacon, Boston 1966.
- [3] E. MICHAEL, A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831-838.

Abstract

In this paper we prove some results on (ω) topological spaces related to (ω) paracompactness.

* * *