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ToMAS BARTA (*)

A generation theorem for hyperbolic equations

with coefficients of bounded variation in time (¥*%)

In this paper, we are interested in the nonautonomous abstract Cauchy problem

u®) = Au), fortel[0,T1],

(0.1) 1(0) = 2.

There are many generation theorems giving sufficient conditions on A to be a
generator of an evolution family U(-,-). The solution of (0.1) is then given by
u(t) := U(t,0)x. Usually, these generation theorems have three assumptions. The
first assumption is stability (or weaker quasi-stability) of the family A(¢), which
guarantees nice behavior of compositions of semigroups (¢*4"),-, generated by A(t)
on the Banach space X.

We say that (A(#));c(0, 77 is quasi-stable if there exists an integrable function £ such
that

(02) ”eskA(tk)eSkqA(tkq) o eslA(tl)”X < Mes1BE++siBt)

holds for all sq,...,s;, > 0,0 <t <--- <t <T.If fis independent of ¢ in (0.2) then
A is stable.

The second assumption wants that domains of A(¢) for various t’s are not much
different. In fact, we can assume that there are equal, or that they have a common
subspace Y C D(A(?)) dense in X such that Y is A(t)-admissible. There are some
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sufficient conditions for A(f)-admissibility, which need existence of a family of
isomorphisms S(t) of Y onto X that have some regularity in ¢ and SHA@)S(®) ™
= A(t) + B(t) with B(t) € B(X). Kato proved in [Kat70] that S € BV ([0, T], B(Y, X))
works.

Third, we have to assume some regularity of the mapping ¢ — A(¢). For instance
strong Lipschitz continuity ([Kat85]), norm continuity from Y to X ([Kat70],
[Kat73]). Kobayasi takes A strongly continuous in [Kob79] but he assumes S to be
strongly continuously differentiable. Ishii in [Ish82] needs A strongly uniform-
measurable and ||A( - )|| upper integrable and S to be an indefinite strong integral of
a strongly measurable function S. Okazawa and Unai work in a Hilbert space and
assume A to be norm continuous (see [OU93]) and Tanaka in [Tan99], [Tan04-1]has S
constant and A strongly continuous and in [Tan04-2] A strongly integrable and S
norm-continuous.

If DA(@) =Y for all t € [0,T], then S(t) = A(t) or S(t) = A(t) + A can be the
wanted isomorphism of Y onto X, if it satisfies the time regularity conditions.
However, stronger assumptions on S disallow to take S = A + 4. We present a
generation theorem for the case A € BV([0, T'], B(Y, X)) which is not contained in the
results mentioned above. We show the existence of an evolution family which is
differentiable with exception of countably many points (let us mention that we cannot
expect in general that the evolution family is differentiable in every point since it
would be a contradiction with results by Colombini and Spagnolo, see [CS89]).
Moreover, we generalize a criterion by Kato (see [Kat70], Proposition 3.4) on A to be
stable.

The abstract results mentioned in the previous paragraph are proved in
Section 1. Section 2 is devoted to applications to hyperbolic second order equa-
tions with coefficients of bounded variation

Pu

(0.3) e m(t, ) Au(t, v),
resp.
oPu NG ou - ou
4 — = — | aj a i . .
(0 ) atz igl a.%'l (a’lj(t; x) 8%‘] (t, 96)) + ; bl(t7 x) 8.%'1 (ta x) + C(t7 x)u’(t7 x)

In Section 2 we work in Hilbert spaces. However, the abstract result can also be
applied to (0.4) in L? spaces in dimension 1, or to first order hyperbolic equations
in LP. In Hilbert spaces De Simon and Torelli [DT81] showed the existence of a
solution in W'2([0, T, L?) N L2([0, T1, H') for (0.4) with u(0) € H', #'(0) € L?. Here
we show that the solution is in CY([0,7T1,L%) N C(0,T],H') and if u(0) € H?,
w'(0) € H', then the solution is C1([0, 71\ N,H") N C([0,T1\ N, H?), N countable
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and the second derivative of u : [0, T] — L? exists with exception of countably
many points. Moreover, the solution of (0.3) is bounded on R, if
m € BV(R,,L*>).

1 - Main results

In this section we present the main results of this paper. They are based on the
following lemma, which is a generalization of Proposition 3.4 in Kato [Kat70]. This
lemma allows to generalize a result on existence of an evolution family, since it is
sufficient to assume (S());>¢ to be of bounded variation (not necessarily S strongly
measurable and upper integrable), see Theorem 1.2.

In this paper, Varla means the variation of @ from s to ¢, i.e.

N

Varﬁ,a = sup{z la(r;) —a(ri)]|:s=ro<rm <---<ry=t,N € N}
i=1

By Vara we mean the function ¢+— Var! a.

Now, we can formulate the lemma.

Lemma 1.1. Let X;=X,|-|l,) be a family of Banach spaces and
a:[0,T] — R a function of bounded variation. Assume that

||l < glat-aw)
llll

holds forall x € X and s, t € [0, T]. If A®t) € G(Xy, 1, f(t)) and f is upper integrable
on [0, T1, then (A(t))ero.r) is quasi-stable with M = eVarga . pla—al)
Proof. Let0<t <---<t, <Tanddefinet,,; =T, 1t = 0. We can estimate

HH?:I(A(U) + )vi)*leT < eluUD—att)]

[Ty (At + 20) ],
< D0, — pe) T TSN AG) + 207,
< I G T (G — B(E) g < €Dl G — Bt el
< MIT' (i — B&)) |l
since x|y < €@~ Dl||x]| ;. -
If § is a constant function in Lemma 1.1, then the family (A(f));c(o 77 is stable.

Denote 4 = {(t,s) € RZ: 0<s<t< T}. Let X, Y be uniformly convex Banach
spaces, Y densely continuously embedded in X.
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(i) The family (A(¢));epo,7 of closed linear operatorsin X is stable with constants f, M
(ii) Y € D(A(t)) and there exists a family of uniformly convex Banach spaces
Yi=,| |y, and a:[0,T] — R a function of bounded variation such that

an H?/||Yt pla—a(s)
”Z/HYe

holds for all y € Y and T > s, t > 0 and the parts A(t)y of A(t) in Y belong to

G(Yt7 1 ) /))Y)'
(iii) The mapping t+— A(%) is of bounded variation with values in B(Y, X).

Theorem 1.2. Let the assumptions ()—(ii) hold. Then there exists a family of
operators U(t,s) € B(X), (t,s) € 4 such that

(a) U(t, s) is strongly continuous in X in s, t, U(t,t) = Land | U, s)||x < MeP@2),

(b) U(t,s) = U, rU(r,s) fors <r <t

© U, 9)Y CY and |UE,$)||ly < Myéfr@=9.

(d) For every y € Y there exists a countable set N1 C [0, T] such that the map-
pings s— U, s)y and t— U(t, s)y are continuous in (t, s) in the norm of Y, provided
(t,S) SV %Nl, t €N1

(e) For every yeY there exists a countable set Ny C [0,T] such that
DU, s)y = —U(t,9)A@)y and DU, s)y = A@)U(, s)y hold for all (t,s) € 4,
S ¢ Nz, t Q Nz.

Proof. We will follow the proofs of Theorems 4.1, 5.1 and 5.2 in [Kat70] and
we will show that the assumption of norm continuity and strong Lipschitz con-
tinuity is not necessary.

First of all, it follows from (ii) and Lemma 1.1 that A(f)y form a stable family
with constants fy, My on Y. Now, we approximate A(f) by step functions
A,@t) .= AT |nt/T|/n). Then we have

T
JHAn(t) —A@®)|ly_x dt — 0,
0

since the integral is estimated by

-1
Z sup ||ATk/n) —A®)|y_x < VarO(A)—>0
n

E(Tk Tk+1)

We define U,(t,s):=e® 94 if ¢t and s, t > s are in the same interval where
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A, =const =A.Fors € [TL TE1]and t € [TEL, T we define U, (¢, s) by

n
-1
e

e+ e+l
Ut ) 1= 7540 (
h=1

<T%>A<TW>> oTEEL-9)A(TY)

From the stability of A(f) and A(f)y it follows that
(1.2) UL, )|y < MEPCS, U, )|y < MyePr@.
Moreover, we have

% Ut, )y = An(OUn(t, 5)y,

S0, 9y = ULt 94,60y

provided s # Tk/n,k=0,1,... . n,y €Y.

We show that nlgrolc U,(t,s)y exists (in the norm of X) for every y €Y.
Differentiating U,,(t, s)U,,(s, r)y with respect to s and then integrating from » to t we
obtain the identity

t
Unt,m)y — Un(t, 1)y = JUn(t, $)NAL(S) — An($)IUn(s,7)y ds.

r

Hence,

t
1T, 7Yy — Un(t,mylly < JIIUn(L lx[An(s) = Ay x| Un(s, 1ylly ds

t
< MMy Oyl [14,9) = Al ds — 0

as n, m tend to oo (f = max (f, Py ). So, Uy(t, r)y converges uniformly in r, t. We
denote the limit by U(t, s)y. It follows from estimates (1.2) that U can be extended to
a bounded operator on X. It is obvious that U satisfies (a) and (b).

We will show (c) and that for y € Y, U(t, s)y is weakly continuousin Y. Lety € Y.
First of all, since ||U, (%, s)||y are uniformly bounded and Y is reflexive, there exists a
weakly convergent subsequence of { U, (¢, s)y }. Its limitis U(¢, s)y. Hence, U(t,s)y € Y
and the growth estimate holds. Take s; — s and ¢; — t. Since U(s;, ;) is bounded, it
follows that any subsequence of { U (s;, t;)y } has a weakly convergent subsequence and
its limit is U(t, s)y. Hence, U(t, s)y is weakly continuous in ¢ and s in Y.

We will show the strong continuity in Y. Denote N, the set of points where
t— Varf) ais not continuous. Then N, is countable. If we replace the interval [0, T'] in
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Lemma 1.1 by [s, t], we obtain
H U(t, S)”Y . < eZ\a(r)fa(t)\ ” U(t, S)”Yt < eZ\a(r)fa(t)\62Var§ae/fy(tfs).

Hence, limsup [|U(,s)||y, < 1ifr ¢ N,. Let y € Y. Since U(¢, s)y — y weakly as ¢,
t,s—r '

s — 1, we obtain U(t,s)y — ¥ strongly by uniform convexity of Y, and the fact that
lylly, > liminf |U9)yly, > lyly, -

Let s > r. Then we have ||U(t, s)y — U, »ylly < || U, 9|y - lly — UGs, Pylly — 0
as s—1r or r—s, s>r for all y €Y. We have proved that s— U(t,s)y is
continuous in s € (0,¢)\ Ny. Similarly for ¢ r>s, |UE sy — U, s)yly
<||UE, ) —=DU@r,s)y|ly =0 as t—r, t>r and the right continuity of
t— U(t,s)y follows for ¢ e (s,T)\ Ny. The left continuity for all ¢ except a
countable set follows from the monotonicity of the mapping

(1.3) ti e 2V U, sy |y,

Since this mapping is nonincreasing (as we show later), it is continuous for all
t €[s,T1\ N,, where N, is countable. So, for t € (s,T)\ (N, |UN,) we have

IUE, syllyy — [UEsylly, as ' —t.
Since
U@, 9y llyy — 1TE, Dylly ] —0 as t -t
for t € (s,T)\ N, by Lemma 1.1, we have
U, ylly, — IUEylly, as ¢ —t

for all t € (s,7) \ (N, UN,). Since U(t',s)y — U(t,s)y weakly in Y and || - ||Y7t is
uniformly convex, we have U(t', s)y — U(t, s)y strongly in Y.

To complete the proof of (d) it remains to show monotonicity of (1.3). By as-
sumption (i) we have for ¢ > ¢/

1T lly, < UG Oy, [UE, )]y, < e/ D Ja0=Ol g )|y,
< Vet =D Sy
Hence,
e Vet | Ut s)y |y, < EVvaVaO Bt -0 ey )
= e 2B U ylly

The strong continuity in Y norm is proved.
Now, we will show that U satisfies (e). Let us fix s € (0, T) such that A is right
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norm continuous in s and define a constant family A’ of operators by A’'(r) = A(s) for
all » € [0, T]. It holds that U'(t,r) = e "4® where U'(t,r) is the evolution family
generated by A’. Then we have

t
HU@$%4W£MkSMMW”“MH“AW—A@quf
s
Since the right-hand side is o(t — s) as t | s, we have
D/ U(t,s)y =D U'(t,s)y = Als)y
att =s. Ift > s we have

U+ h,s)y — U, s)y
h

D/ =1
;U 9y m

. U+ h,t) - UG,
= lim
710 h

U, sy =AU, s)y.

To show the existence of D, U(t,s)y, let us fix s € (0,7) such that A is left norm
continuous in s and define A'(r) = A(s) for all » €[0,7]. Then we obtain
D; U@, s)y = —U(,8)A(s)y by arguments similar to the above ones.

Now, we will prove D} U(t, s)y = —U(t, s)A(s)y. Let A be right norm continuous
insand t > s. Then

Ut,s+hy—Utsy
! _

DU, sy = 1}%1

= lim Utt.5+1) w — U, 9AG).

To show Dy U(t, s)y = A®)U(¢, s) let us compute

D, U@, sy = 1}%1 W = 1/1?014h Uit —h,s)y.
We have
H UGt =I =T b, sy + AU, sy
h X
Ui, t—h)—1 Ut,t—h)—1
<[ TR - nsy- vy + | [TESP= 0| ve sy
h Y—X h X

The last norm on the right-hand side tends to zero as & |0, since
D;U(t,s) =—-U(t,s)A(s) = —A(t) at s =t. The second norm tends to zero by
strong continuity of U(t,s) in B(Y). It remains to show that the first expression
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in norm is bounded. It follows from the fact that
t—h
U,tt—hy—y=— J U,(t,8)A,(s)y ds
t
and

t
UGt — Ry —ylx < Me™ J IA®|ly_x dslylly < h-Me™ sup A ly_xl¥lly-
selo,
t—h

The proof is complete. |

In fact, better description of countable sets Ny, Ny follows from the proof of Theo-
rem 1.2. We collect them in the following proposition. This proposition yields better
properties of the evolution family U in ease of a continuous or A norm continuous.

Proposition 1.3. The evolution family U(t, s) from Theorem 1.2 satisfies.

1) UL, s)y s right (left) continuous in Y-norm in s = sy if Vara is right (left)
continuous in Sy.

2) U(t, s)y is right continuous in Y-norm in t =ty if Vara is right continuous
m to.

3) U(t, s)y 1is left continuous in Y-norm in t = ty if Vara is left continuous in ty
and ty ¢ N.

4) D; U, 8)y =—-U(,8)A(s) holds in s =sg if A is left continuous in sy in
BY ,X).

G) DFUt,s)y = —U(t,s)A(s) holds in s = sy if A is right continuous in sy in
B(Y,X) and Vara is right continuous in s.

6) DU, s)y = AU, s) holds in t =ty if A is right continuous in ty in
BY ,X).

(M Dy U, 8)y =AU, s) holds in t =ty if A is left continuous i ty in B(Y,X),
Vara is left continuous in to and to € N.

If the domain D(A(t)) = Y for all t € [0, T'], then the assumptions of Theorem 1.2
can be weakened in the following way.

(") There exists a family of uniformly convex Banach spaces X; = (X, || - ||,) and
a:[0,T] — R a function of bounded variation such that

(14) ]| < glath—a(s)]

llells ~

holds forallx € X and T > s,t > 0 and A(t) € G(Xy, 1, ).
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Corollary 1.4. Let (") and (iii) hold. Then the assertions of Theorem 1.2
remain valid.

Proof. According to Lemma 1.1, (i’) implies (i). We can assume without loss of
generality that f < 0 (otherwise we take A(f) — / instead of A(f) for some 4 > /). For
y € Yandt € [0, T] define [|y|y, := [[A®)y;- Since A(?) are isometric isomorphisms

of Y; := (Y, - [ly,) onto X;, we have immediately that ¥; are uniformly convex, in-
equality (1.4) holds and A(t)y € G(Yy, 1, ). Hence, the assumptions of Theorem 1.2
are satisfied. O

2 - Hyperbolic equations of second order

In this section we present two examples where the generation Theorem 1.2 can be
applied. In both examples, Q is a bounded open subset of R” with C2-boundary. As a
first example assume the following equation (non-autonomous non-homogeneous
wave equation)

oPu

v m(t, x)Au(t, x), x e

2.1) -

where m € BV ([0, T], L>°(Q)), m(t,x) > ¢ > 0forallt € [0, T], x € Q. Such equation
appears for instance during investigation of an integrodifferential equation coming
from a model of heat flow in materials with memory, see Barta [Bar07].

Denote

(Cu)(x) := m(t, 2)dulx), D) =D := H(l)(Q) NHA(Q).
Moreover, we define

0 7

AlD = <C(t) 0

) ) DA®)) = D x Hy(9Q),
X = HY\(Q) x LA(Q), Y = D x H\(Q). We apply Corollary 1.4 to show that there
exists an evolution family, which is strongly continuous and differentiable for all ¢, s
with countably many exceptions.

We first show that (i’) holds. Define a family of equivalent scalar products on L? by

(u,v); 1= Ju(m)v(x) m de.

Q

Then C(¢) is self-adjoint with respect to (-, -);. We now apply Lemma 1.1 to show that
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A(t) is a stable family. We define equivalent sealar products on X by

((ul), (7)1)) = JV@Llel dx + Juzvz; dx
U2 V2) )¢ m(t, x)
Q Q

According to Stone’s theorem (see, e.g., [EN00], Theorem I1.3.24), an operator
generates a group of contractions if it is skew-adjoint. We show that A(¢) is skew-
adjoint with respect to (-, -);. In fact,

_ Uz U1 _ —
Au,v); = ((C(t)ul)’ (W))t_ JV@LZVvl dx + szwg de =
Q Q

B u1 —V2 . _
— Jzuzm)l dx — Jz Vu1Vve de = <(u2)’ (—C(t)v1>>t (u, —A)v);.

So, A(t) € G(X;,1,0).
If we show that the mapping ¢ — || - ||, is of bounded variation, assumption (i’) will
be verified. We have

1

1 L m(t,x) — mt', x)
m() m)

2
m(t, xym, x) el

x < sup

2 2
o = o < [
o reQ

Moreover, there is K > 0 such that

1
[ loelly +Treelly | = 2 lleellx -
Hence,

[l = llullZ] _ K /
wll, — ||u|l,| = < —= sup|m(t,x) —mE,x)| - ||u|y.
||| ”t H ||t/| |Hth + ||th/| = Cz Teg‘ ( ) ) ( ’ )| || ||X

Denote
K K n
M) = C—ZVarf)m = c—zsup{kz; lme) —mEe_1)]|: 0=t <t <--- <t = t},

where 0 < ¢ = itnf m(t, x). Then
&

K ,
el = llelle| < 5 - llm@® = m@) - lJully < 1ME) =M - [l

It follows that

g 110 o (1Ll 1) ety ey Lo
el el Sl S el

<C-|M®) - M)
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and

Jeell < QleMO-CM@) |
floelly —

Since m € BV ([0, T],L>(L)), t— CM(t) has also bounded variation. Hence, as-
sumption (i’) holds.
To show (iii), let us estimate

(2.2)  |JA®u — AS)ullx = |[[m@) — m(s)]du1||;2 < sup |mt,x) — m(s,x)| - ||ully.

Since m is of bounded variation, A is of bounded variation, too.

According to Corollary 1.4, there exists an evolution family for (A(?));co 1. So, for
initial conditions «(0,-) € D, %/(0,-) € H (1)(9) there exists a unique solution
u e C([O,T],H})(Q)) N CY([0, T1, LA(Q)) to (2.1), such that for all ¢ with countably
many exceptions it holds that ¢ — u(t, -) is continuous with values in H(l) N H? and
t — u'(t,-) is continuous with values in I-I(l) and differentiable with values in LZ.
Moreover, if T = + oo then the solutions are bounded on R .

As a second example we assume the following equation in the divergence form

Pu D
(2.3) 5 ”221 o, (azj(t xr) — (t x)) + Zb (t, oc) (t x) + c(t, 2)ult, ).
Let
a; € BV([0,T], Wh(Q)) N L>([0, T1, Lip (2)), Q= Qji
and

bi,c € BV([0,T],L>(£))

and there exists y > 0 such that

D ayt,0&E > E)E, &= (&) e R

i,j=1
In Kato [Kat85], there is proved the existence of an evolution family provided the
coefficients are Lipschitz continuous in time variable.

Denote
0 < ) D(C@®t) =D
Cltu = a;i(t,x t,x =
®) Z; s it ) ( )

and

Ciitu = Z b;(t, x) (t x) + c(t, x)ut, x), D(Cy(t)) = H(l)(.Q).

=1
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We want to show that

S 0 I P 1
A) = <C(t) Lo O)’ DA®) =D x Hy(2)

(withX = H} x L?and Y = D x H}) satisfies the assumptions of Corollary 1.4. First
of all we show, that

(0 1 _ !
A(t) = ( o) 0), D(A(t)) = D x H)(Q)

satisfies ().
We define equivalent scalar products on X by

U 3u1(90) ovi ()
((u2>, ( >) J Z (ll](t ) 890] dx X+ Juz’l)g da.
Q

i,j=1

It is easy to show that A(?) is skew-adjoint with respect to (-, -);. Hence, according to
Stone’s theorem (see, e.g., [ENO00], Theorem I1.3.24), A(t) € G(X;,1,0). Since
A — A@) is uniformly bounded, we have A@) € G(X;, 1, M) by Proposition 3.5 in
[Kat70].

It remains to show that the mapping ¢~ || - ||, is of bounded variation. Then as-
sumption (i’) will be verified. We have

a ouy Ou
[l = ul2] < j > fagt,2) — agtt, 2] 2L 0L gy
5 =1 Ow; O
’ u c’)ul 8%1
< — )
1gllax7 ||afL](t) azl](t )H J i; axl axj

< max [la® - oy | Von - Vs de < max. Jag®) - a5l
1<i,j<n 1<i,j<n
Q

The rest follows by the same arguments as in the previous case. In fact, we have for
some K > 0

1
[ loelly + leelly | = 7 lleellx
K

by ellipticity of (azj(t) Hence,

i,j=1*
Hleelly = llelly| < 1M@ — M@ [lully,
where

M) := C - Vari(maxa;).
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Finally, we obtain

llle PlCMO-CH )|

lfeell,r

hence the assumption (i’) holds.
We show that A is of bounded variation. It holds that

(2.4)

+

where

AU — A@s)ully <

"9 ou
> ([aij(w — a;(s)] (,m:)

1,j=1

L2

n

> 1bit) = bi(s)|

=1

8u1
8907',

+le® = e(shuall 2 < CBE,s) - [Jully
L2

B(t, 8) = max{m;lx ||a/2](t) - aij(s)||W1=°°am?X Hbl(t) - bZ(S)Hoca ||C(t) - C(S)Hoc}

Hence, variation of A is estimated by variation of the coefficients a;;, b;, and c.
Corollary 1.4 now yields existence of an evolution family for (2.3) and solutions in
the same space as in the previous example.
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Abstract

We present a new generation theorem for evolution families which is suitable for hy-
perbolic equations of first and second order with coefficients of bounded variation in time.
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