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Coincidences and fixed points

of strictly contractive and Lipschitz maps (*%)

1 - Strict contractive conditions and common fixed point theorems

Introduction.

Let (X, d) be a metric space and A : X — X. As a significant generalization of the
well-known Banach contraction principle, M. Edelstein [15] (see also [3], [6], [45],
[65], [78], [83]) obtained the following theorem.

Theorem E. A map A : X — X satisfying:
(E.1) d(Ax, Ay) < d(x,y) for all distinct x,y in X,

has a unique fixed point provided that X is compact.

Theorem E for a self-map, was generalized in various ways by Achari [2], Bailey
[5], Chang and Zhong [7], Chatterjee and Ray [9], Chen and Yeh [10], Chen and Shih
[11], Cirie [13], Das [14], Fisher [16]-[21], Jain and Dixit [28], Janos [29], Khan [41],
[42], Maiti and Ghosh [46], Sehgal [67], Singh [77], Tan and Minh [79], Wong [81], Yeh
[82] and others. For an excellent survey of the basic development of contractive
maps, one may refer to Rhoades [62] (see also [44], [55], [63], [64]).
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vedicmri@gmail.com; A. Kumar: Department of Mathematics, Icfai Tech, ICFAI
University, Dehradun 248002 India; e-mail: ashishpasbola@rediffmail.com

(**) Received April 20t 2005 and in revised form December 3" 2007. AMS Classification:
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Papers proposing extensions and generalizations of Theorem E to two self-maps
are amply numerous (see, for instance, [4], [8], [22], [23], [30]-[33], [40], [49], [50], [61],
[69], [70]). The following fixed point theorem essentially due to Naimpally et al. [49]is
obtained for a pair of commuting and not necessarily continuous maps on a compact
metrie space.

Theorem NSW. Let A and S be commuting maps from a metric space X to
itself such that:

(NSW.1) AX) c SX); and
(NSW.2) d(Ax, Ay) < d(Sx, Sy),Sx # Sy, x,y € X.

If S(X) is compact then A and S have a unique common fixed point.

We remark that similar results satisfying conditions (NSW.1) and (NSW.2),
appear earlier in [30], [31] with the additional hypotheses of continuity of maps A and
S and the requirement of compactness of the space in full strength.

Sessa [68] defined weak commutativity as a generalization of commuting maps.
Jungcek [34] further generalized weak commutativity by introducing the notion of
compatibility (also called asymptotic commutativity cf. [27] and [80]). For an ex-
cellent comparison of various weaker forms of commuting maps one may refer to
Singh and Tomar [76] (see also Murthy [47] and Pathak and Khan [58]).

In due course of time, several common fixed point theorems were obtained by
weakening either the commutativity requirement or strict contractive conditions for
three and four maps on compact spaces (see, for instance, [24]-[27], [35], [39], [43],
[48], [75]).

Definition 1 [68]. Self-maps A and S of a metric space (X,d) are weakly
commuting at a point x € X whenever d(ASx, SAx) < d(Ax,Sx). They are weakly
commuting on X if they commute weakly at each point x € X.

Definition 2 [34]. Self-maps A and S of a metric space (X, d) are compatible
(also called asymptotically commuting) if lim d(ASx,,SAx,) = 0 whenever {x,}
18 a sequence in X such that lim Ax, = ;Li?nooSacn =1 for some t € X. They are
compatible maps of typenH?A) [36n]%ooif lirn dASxy,, SSx,) =0 and
17113010 d(SAx,, AAx,) =0 whenever {x,} s @ Zec(])ztence m X such that
lim Ax, = 'rzanolo Sk, =t for somet € X.

NnN—00

Clearly, weakly commuting maps are compatible. However, compatible maps
need not be weakly commuting (see [76], Ex. 2.2, p.147).
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Notice that A and S will be noncompatible if there exists at least one sequence
{x,} in X such that lim Ax, = lim Sx, =t for some ¢ € X but lim d(ASx,,SAx,)

N—00 N—00 NnN—0o0

is either nonzero or nonexistent (see also [1], p. 183, [52] and [53], p. 328).

Definition 3 [38], (see also [76]). Self-maps A and S of a metric space (X, d)
are weakly compatible if they commute at their coincidence points, that s, if
ASx = SAx, whenever Ax = Sx for x € X.

We cite here the following result of Singh and Mishra [75], Cor. 4.2, obtained
under very tight conditions.

Theorem SM. Let A, B,S and T be continuous self-maps of a compact metric
space (X, d) satisfying:

(SM.1) AX c TX and BX C SX;
(SM.2) the pair (A, S) is compatible; and
(SM..3) d(Ax, By) < max (Mxy), when max (Mxy) > 0,

where Mxy = {d(Sx, Ty), d(Ax, Sx), d(By, Ty), [d(Ax, Ty) + d(By,Sx)]/2}.
Then:

(Ia) A and S have a common fixed point;
(Ib) B and T have a coincidence;

(Ie) A,B,S and T have a common fixed point provided that B and T are weakly
compatible.

Theorem SM improves the result of Jungek [35], Th. 3.2, and Kang and Kim [39],
Th. 3.4, by requiring weak compatibility [38] in lieu of compatibility of the pair (B, T).

The concept of compatible maps has proven useful in the context of metrie fixed
point theory. However, the study of noncompatible maps is also interesting, and
Pant [51]-[564] and Aamri and Moutawakil [1] have recently started work along these
lines.

Definition 4 [51]. Self-maps A and S of a metric space (X, d) are R-weakly
commuting at a point x € X if d(ASx,SAx) < Rd(Ax,Sx) for some R > 0. They
are pointwise R-weakly commuting on X if given x € X there exists an R > 0 such
that d(ASx, SAx) < Rd(Ax,Sx).

We remark that weak commutativity, compatibility, compatibe maps of type
(A), R-weak commutativity, pointwise R-weak commutativity and weak compat-
ibility [37], [38] are equivalent at their coincidences (cf. [72], [73], [76]).
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The following result is due to Pant and Pant [53] (see also [54]).

Theorem PP. Let (A,S) and (B,T) be pointwise R-weakly commuting self-
maps of X satisfying the conditions (SM.1);

(PP.1) ome of the pairs (A,S) or (B, T) is noncompatible; and
(PP.2) d(Ax, By) < max (may), when max (maxy) > 0,

where  maxy = {d(Sx, Ty), kld(Ax, Sx) + d(By, Ty)1/2,[d(Ax, Ty) + d(By, Sx)1/2},
Joralle,y € Xand1l <k < 2.Then A, B, S and T have a unique common fixed point
provided the range of one of the maps is a complete subspace of X.

We make use of the (EA) property, introduced by Aamri and Moutawakil [1], to
obtain our results without using the continuity of the maps involved and complete-
ness of the space. Our results improve several known results (see [12], [36], [37], [56]-
[60], [74]).

Fixed Point Theorems. Throughout this paper, let Y be an arbitrary nonempty
set, (X, d) a metric space and C(4,S) = {u : Au = Su}, the collection of coincidence
points of A and S.

Definition 5 [71]. Let A and S be maps on Y with values in X. Then A and S
satisfy the (EA) property if there exists a sequence {x,} i Y such that
lim Ax, = lim Sx, =t for somet € X.

n—oo

nN—00

If we take Y = X then we get the definition of (EA) property (also called tan-
gential maps by Sastry and Murthy [66]) for two self-maps of X studied by Aamri and
Moutawakil [1].

The following is our first result for noncompatible maps.

Theorem 1.1. Let A and S be noncompatible self-maps of a metric space
(X, d) such that
(1) AX c SX;
(2) d*(Ax, Ay) < max{d*(Sx, Sy) + d(Sx, Ax).d(Sy, Ay)
+ald(Sx, Ax).d(Sy, Ax) + d(Sy, Ay).d(Sx, Ay)], d(Sx, Ay).d(Sy,Ax)}, 12 <a< 1,
when the right hand side of (2) is non zero.

Then C(A, S) is nonempty. Further, A and S have a unique common fixed point
provided that A and S commute at (some) u € C(A,S).

Proof. Since A and S are noncompatible, there exists a sequence {x,} in X
such that lim Ax, = lim Sx, =t for some ¢t € X but lim d(ASx,,SAx,) is either

N—00 NnN—00 NnN—00



[5] COINCIDENCES AND FIXED POINTS ... 5

nonzero or nonexistent. Since t € AX and AX C SX, there exists a point u € X such
that ¢ = Su. Suppose Au # Su, then by (2),

d?(Au, Ax,) < max{d*(Su, Sx,) + d(Su, Au).d(Sx,, Ax,)
+ald(Su, Au).d(Sw,, Au) + d(Sx,, Azx,).d(Su, Ax,)], d(Su, Ax,).d(Si,, Au)}.

Making n — oo yields d?(Au, Su) < ad?*(Au,Su) < d*(Au, Su), and Au = Su.
Consequently C(4, S) is nonempty.
Further, the commutativity of A and S at  implies AAu = ASu = SAu = SSu,
and by (2),
dz(Au,AAu) < max{dz(Su,SAu) + d(Su, Au).d(SAu, AAu)
+ald(Su, Au).d(SAu, Au) + d(SAu, AAw).d(Su, AAw)], d(Su, AAw).d(SAu, Au)}
= d*(Au, AAu).

So Au is a common fixed point of A and S. The uniqueness of the common fixed point
follows easily.

In view of the above proof, we have another version of Theorem 1.1.

Theorem 1.1Bis. Let A,S : X — X be such that conditions (1) and (2) hold. If
maps A and S satisfy the (EA) property then the conclusions of Theorem 1.1 are
true.

Recently, Pant and Pant [53] (see also [54]) obtained a common fixed point the-
orem for a pair of noncompatible, pointwise R-weakly commuting self-maps of a
metric space X satisfying the condition:

P*) d(Ax, Ay) < max{d(Sx, Sy), kld(Ax, Sx) + d(Ay,Sy)1/2, [d(Ax, Sy)
+d(Ay, Sx)]/2},

where 1 <k < 2.

The following example shows that the maps A and S satisfy the condition (2) (cf.
Theorem 1.1) but not (P*).

Example 1.2. Let X = [2,20] be endowed with the usual metric and Ax = 2 if
x=20rx>5 Ar=51f2<x <4, Az =104 <z <5 and S2=2, Sx =8 if
2<x<4, Sx=12 if 4<z<5, Sr=@+1)/3 if b<x<10, Szx=5 if
10<z<15, Se=x—51ifx > 15.
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Then A and S have a unique common fixed point x = 2. We consider the sequence
{2, =5+1/n:m > 1} to see that the maps A and S are noncompatible. Also,
AX = {2,5,10},SX = [2,11/3) U {5, 8,12} U[10,15], and AX cSX. Further, A and
S satisfy the condition (2) (cf: Theorem 1.1). On the other hand, the condition (P*)isnot
satisfied forx € (2,4],y € (4, 5]. Notice that A and S are discontinuous (even) at x = 2.

Now we present a fixed point theorem for a quadruplet of maps on an arbitrary
set with values in a metric space which generalizes, among others, the results of
Jungck et al. [36], Jungck and Rhoades [37], Pathak [56], Pathak et al. [57], Pathak
and Khan [58], Popa [59] and Prasad [60].

Theorem 1.3. Let X be a metric space and A,B,S,T : Y — X such that

() AY C TY and BY C SY;

(4) ome of the pairs (A,S) or (B, T) satisfies the (EA) property;

(5) d*(Ax, By) < max{d?(Sx, Ty) + d(Sx,Ax).d(Ty, By), d(Sx, By).d(Ty, Ax),
ald(Sx, By).d(Ty, By) + d(Sx, Ax).d(Ty, Ax)]},1/2 < a <1, when the right hand
side of (5) is non-zero.

Then C(A,S) and C(B, T) are nonempty. Further, if Y = X, then

(I A and S have a common fixed point provided that A and S commaute at (some)
u € CA,S);

(D) Band T have a common fixed point provided that B and T commute at (some)
we CWB,T);

(III) A,B,S,and T have a unique common fixed point provided that (I) and (1I) are
true.

Proof. If the pair (B, T) satisfies the (EA) property, then there exists a se-
quence {x,} in Y such that lim Bux, = lim T, =t for some ¢ € X. Since BY c SY,

Nn—00 Nn—00

for each x,, there exists ¥, in Y such that Bx,, = Sy,,, and Sy,, — t as well. We show
that Ay, — t. If not, there exist a subsequence {Ay,,} of {Ay,}, a positive integer
M, and a real number » > 0 such that for some positive integer m > M, we have
AAY,t) > r,d(AYm, Br,,) > 7, and by (5),

d%(AY s, Brey) < max{d*(Sy,, Tx) + ASYy, AYy)-d(T2y, Byy),
ASYm, Bity).d(T,,, Ay),
ald(SYm, Bay,).d(Txy,, Bxy,) + d(SYm, AYn).d(Txp, Ayp)]}
= ad*(AYyp, Br,) < A2 Ay, Bay,),

a contradiction, and Ay,, — t.



[7] COINCIDENCES AND FIXED POINTS ... 7

Since t € BY and BY C SY, there exists an element % € Y such that t = Su. To
show that Au = Su, we suppose otherwise and use the condition (5) to get

d?(Au, Bx,,) < max{d*(Su, T'z,)
+d(Su, Aw).d(Tx,, Bx,), d(Su, Bx,).d(Tx,, Au),
ald(Swu, Bay,).d(Tx,,, Bxy,) + d(Su, Au).d(Tx,, Au)l}.

Making n — oo, d>(Au, Su) < ad*(Au,Su), yielding Au = Su. This proves that
C(A, S) is nonempty.

Since AY C TV, there exists an element w € Y such that Au = Tw. If Tw # Buw,
then by (5),

d?(Au, Bw) < max{dz(Su, Tw) + d(Su, Au).d(Tw, Bw), d(Su, Bw).d(Tw, Au),
ald(Su, Bw).d(Tw, Bw) + d(Su, Aw).d(Tw, Au)]} = d*(Au, Bw).

Consequently 7w = Au = Bw, and C(B, T) is nonempty.
Nowlet Y = X.
If A and S commute at their coincidence point u, then AAu = ASu = SAu = SSu,
and by (5),
d*(Au, AAu) < max{d2(SAu, Tw)

+d(SAu, AAw).d(Tw, Bw), d(SAu, Bw).d(Tw, AAuw),
ald(SAwu, Bw).d(Tw, Bw) + d(SAu, AAw).d(Tw, AAu)]} = d*(Au, AAu).

This proves (I). The proof of (II) is analogous, and the proof of (III) is immediate.

To appreciate the generality of Theorem 1.3 consider the following result of
Jungeck et al. [36] obtained for the pairs of compatible maps of type (A) on a complete
metric space wherein ¢:(R")> — R* is an upper semi-continuous and non-
decreasing function.

Theorem JMC. Let (X, d) be a complete metric space and A, B, S and T be self-
maps of X satisfying the conditions (SM.1) and the following:

(IMC.2) thepairs (A,S) and (B, T) are compatible of type (A); and

(JMC.3) d?(Ax, By) < ¢(M(x,y)) for all x,y € X where M(x,y)= {d*(Sx, Ty),
d(Sx, Ax).d(Ty, By), d(Sx, By).d(Ty, Ax), d(Sx, Ax).d(Ty, Ax), d(Sx, By).d(Ty, By)} .

Then A,B,S and T have a unique common fixed point provided that one of
A, B, S or T is continuous.

The following example establishes the superiority of Theorem 1.3 over the
Theorem PP and Theorem JMC.
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Example 1.4. Let X =[2,20] be endowed with the usual metric and
A2=2Ax=3if2<ax<4dorx>15 Ax =124 <x <15,
Br=2ifex=20rx>15Bx=612<ax <5 Bxr=1415 <x <15,
S2=28r=69y2<ax<4dorx>15Sxr=15if4d<x<5S8r=14i5<x <15
and T2=2Te=12 if 2<a<b5Tx=17 i b<a<15Tx=a-13 if
15 <e<17,Te=3x>11.

Then A, B, S and T have a unique common fixed point x = 2 and all the conditions
of Theorem 1.3 are satisfied. To see that the conditions (PP.2) and (JMC.3) of

Theorem PP and Theorem JMC respectively are not satisfied; for example, consider
x € (2,4], y € (5,15]. Notice that all the maps are discontinuous (even) at x = 2.

In case S = T in Theorem 1.3, we obtain a slightly improved version which we
state below.

Theorem 1.4. Let X be a metric space and A, B,S : X — X such that (5) with
S=T,and

(6) AY UBY c 8Y;
(T) ome of the pairs (A, S) or (B, S) satisfies the (EA) property.

Then A, B and S have a coincidence. Further, if S commutes with each of A and B
at their coincidences, then A, B and S have a unique common fixed point.

2 - Strictly contractive Lipschitz type maps and common fixed point theorems

This section is devoted to some coincidence and fixed point theorems for the maps
satisfying strictly contractive Lipschitz type conditions. Our results, obtained
without continuity of the maps and completeness of the space, generalize the results
of Pant [52] and Singh and Kumar [71].

The following is our first result of this section for noncompatible maps.

Theorem 2.1. Let A and S be noncompatible self-maps of a metric space
(X, d) such that
(i) AX c SX;
(i) d*(Ax,Ay) < k{dz(Sac, Sy) + d(Sx, Ax).d(Sy, Ay) + d(Sx, Ay).d(Sy, Ax)
+ ad(Sx, Ax).d(Sy, Ax) + d(Sy, Ay).d(Sx, Ay)},
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forallx,y € X, when the right hand side is non-zero, k > 0 and a > 01s chosen such
thatka < 1. Then C(A, S) is nonempty. Further, A and S have a common fixed point
provided that A and S commute at (some) u € C(A, S) and one of the following holds:
(iii) d(Ax, A%r)#max{d(Sx,SAx), d(Ax,Sx), d(A%x,SAx), d(Ax, SAx), d(Sx, A%x)}
whenever the right-hand side is nonzero for x € C(A,S);
(iv) d(Sw, S?x) # max{d(Ax, ASx), d(Sx, Ax), d(S*x, ASx), d(Sx, ASx), d(Ax, S*x)}
whenever the right-hand side is nonzero for x € C(A,S).

Proof. Since A and S are noncompatible, there exists a sequence {x,} in X
such that lim Ax, = lim Sx, =t for some ¢t € X but lim d(ASx,,SAx,) is either
Nn—00 Nn—00 NnN—00

nonzero or nonexistent. Since ¢t € AX and AX C SX, there exists a point u € X such
that t = Su. Suppose Au # Su, then by (ii),

d*(Au, Ax,) < k{dz(Su,Socn) + d(Su, Au).d(Sx,,, Ax,) + d(Su, Ax,).d(Sx,, Au)
+ad(Su, Au).d(Sx,,, Au) + d(Sx,, Axy).d(Su, Ax,)}.

Making n — oo yields d?(Au,Su) < kad?(Au,Su) < d*(Aw,Su), and Au = Su.
Consequently C(A4,S) is nonempty. Further, the commutativity of A and S at
implies AAu = ASu = SAu = SSu. So using (iii) or (iv) for x = %, we immediately
see that Au = Su is a common fixed point of A and S.

In view of the above proof, we have the following theorem.

Theorem 2.1 BIS. Let A,S : X — X be such that maps A and S satisfy the (EA)
property and the conditions (i) and (ii) of Theorem 2.1 hold. Then C(A,S) is none-
mpty. Further, all other conclusions of Theorem 2.1 are also true.

The main result of Singh and Kumar [71] is obtained under the conditions (i), (iii),
and (iv) with (ii) replaced by the condition:

(S.1%) d(Ax,Ay) < kd(Sx,Sy) + max{ad(Ax, Sx)+ d(Ay, Sy), ad(Ax, Sy) + d(Ay, Sx)},

for all x,y € X where, k > 0,0 < a < 1.
The following example demonstrates the generality of Theorems 2.1 and 2.1 BIS.

Example 2.2. Let X = [2,20] be endowed with the usual metric and
Ar=21f2<x <3, Az =613 <z <4, Ar=81ifx >4,
and Sr=x if 2<2x<3,Sx=7 if 3<ax<7,Sx=@+1)/2 if T<z<11 or
14 <x<20,Sxr=11%11 <z < 14.
Then A and S satisfy all the conditions of Theorems 2.1 and 2.1 BIS and A and S
have infinitely many common fixed points. Notice that there is a discontinuity at
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their common fixed point © = 3. It is also verified that condition (S.1*) is not sa-
tisfied for x € (3,4],y € (4,7], since in this situation

d(Ax,Ay) =2 > 1+ a = kd(Sx, Sy) + max{ad(Ax, Sx) + d(Ay, Sy),
ad(Ax, Sy) + d(Ay,Sx)}, where k> 0,0 <a < 1.

The following coincidence theorem is obtained for a quadruplet of maps on an
arbitrary set with values in a metric space.

Theorem 2.3. Let X be a metric space and A,B,S,T : Y — X such that

(i) AY c TY and BY c SY;

(ii*) one of the pairs (A4, S) or (B, T) satisfies the (EA) property;

(iii*) d?(Ax, By) < k max{d?(Sx, Ty) + d(Sx, Ax).d(Ty, By) + d(Sx, By).d(Ty, Ax),

ald(Sx, Ax).d(Ty,Ax) + d(Sx, By).d(Ty, By)1}

forallx,y € Y, when the right hand side is non-zero, k > 0 and a > 01is chosen such
that ka < 1.
Then C(A,S) and C(B, T) are nonempty. Further, if Y = X, then

I*) A and S have a common fixed point provided that A and S commute at
(some) u € C(A,S) and one of (iii) and (iv) holds;

(IT*) B and T have a common fixed point provided that B and T commute at
(some) w € C(B,T) and one of the following holds:

(iv*) d(Bx,B%x) # max{d(Tx, TBx),d(Bx, Tx),d(B*x, TBx),d(Bx, TBx), d(Tx, B?x)}
whenever the right-hand side is nonzero for x € C(B, T);

v*) d(Tx, T?x) # max{d(Bx, BTx),d(Tx,Bx), d(T?x, BTx), d(Tx, BTx), d(Bx, T?x)}
whenever the right-hand side is nonzero for x € C(B, T);

(I11*) A, B, S and T have a common fixed point provided (I*) and (IT*) are true.

Proof. If the pair (B, T) satisfies the (EA) property, then there exists a se-
quence {x,} in Y such that nh_r}ralo Bz, = nh_r}rolo Tx, =t for somet c X.

Since BY c SY, for each x,, there exists ¥, in Y such that Bx, = Sy, and
Sy, — t as well. We show that Ay,, — t. If not, there exist a subsequence {4y, } of
{Ay,}, a positive integer M, and a real number » > 0 such that for some positive
integer m > M, we have
dAYm, t) > v, d(AYy, Bx,,) > v, and by (ii*),

A2 (AYm, Bry) < kmax{d*(Sym, Tm) + A Sym, AYn).d(T,y, B,y,)
+ d(S?/m, me)-d(TxmyAym)7 a[d(symvAym)~d(T907n7Aym)
+ d(SYum, By). AT, Bry)} = kad*(Ay.m, Bry) < d*(Ay, Bry),

a contradiction, and Ay,, — t.



[11] COINCIDENCES AND FIXED POINTS ... 11

Since t € BY and BY C SY, there exists an element % € Y such that t = Su. To
show that Au = Su, we suppose otherwise and use the condition (iii*) to get

d*(Au, Bx,,) < kmax{d*(Su, Tx,) + d(Su, Aw).d(Tx,, Bx,)
+d(Su, Bxy,).d(Tx,, Au),
ald(Swu, Aw).d(Tx,,, Au) + d(Su, Bx,,).d(Tx,, Bx,)1}.

Making n — oo, d?(Au, Su) < kad?(Au, Su), yielding Au = Su.

This proves that C(A4, S) is nonempty.

Since AY C TV, there exists an element w € Y such that Au = Tw. If Tw # Buw,
then by (iii*),

d*(Au, Bw) < k max{dz(Su, Tw) + d(Su, Aw).d(Tw, Bw) + d(Su, Bw).d(Tw, Au),
ald(Su, Au).d(Tw, Au) + d(Su, Bw).d(Tw, Bw)]}
= kad*(Au, Bw) < d?(Au, Bw)

Consequently Tw = Au = Bw, and C(B, T) is nonempty.

Nowlet Y = X.

The commutativity of A and S at » implies AAu = ASu = SAu = SSu. So using (iii)
or (iv) for x = u, we immediately see that Au is a common fixed point of A and S. This
proves (I*). A similar argument shows that Bw is a common fixed point of B and T,
proving (IT*). Now (I1I*) is immediate.

In case S = 7" in Theorem 2.3, we obtain a slightly improved version which we
state below.

Theorem 2.4. Let (X, d) be a metric space and A,B,S : Y — X such that (iii*)
with S =T, and

(vi) AY UBY c SY;

(vii) one of the pairs (A, S) or (B, S) satisfies the (EA)-property.

Then:

(I) maps A, B and S have a coincidence point u (say);

(IT) maps A, B and S have a common fixed point z( = Au = Bu = Su) provided
that Y = X and S commutes with each of A and B at u and one of (iii), (iv) or the
following holds:

(viii) d(Bx, B?x) # max{d(Sx,SBx), d(Bx,Sx), d(B?x,SBx), d(Bx,SBx), d(Sx, B?x)}
whenever the right-hand side is nonzero for x € C(B,S);

(ix) d(Sx, S%x) # max{d(Bx, BSx), d(Sx, Bx), d(S%x, BSx), d(Sx, BSx), d(Bx, S*x)}
whenever the right-hand side is nonzero for x € C(B,S).
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Abstract

The first section of this paper obtains coincidence and fixed point theorems for strictly
contractive type maps on metric spaces. The second section is devoted to the study of existence
of common fixed points of maps satisfying strictly Lipschitz type conditions. The main tool is
the (EA)-property for a pair of maps on an arbitrary set with values in a metric space. This
helps us to avoid the continuity of maps and completeness or compactness of the space.
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