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A space-time energetic formulation

for wave propagation analysis by BEMs (**)

1 - Introduction

The present paper summarizes and extends some of the recent works of the
authors concerning the study of wave propagation by boundary integral equations
(BIEs) and boundary element methods (BEMs).

Time dependence is an essential feature in many physical and engineering ap-
plications that are modelled by partial differential equations of parabolic or hyper-
bolic type and, eventually, by BIEs. BEMs have been successfully applied to many
such problems like the heat transfer or diffusion problem, scattering of an acoustic
wave, electromagnetic wave propagation, linear elastodynamics, fluid dynamics, etc.
(see[5,6,8,9, 23, 25, 31, 32, 33, 46] and other references cited therein). When we have
as model a homogeneous partial differential equation with constant coefficients, the
initial conditions vanish, the data are given only on the boundary of the domain and
this does not depend on time, the transformation of the problem to BIEs follows the
same well-known procedure adopted for elliptic boundary value problems.
Frequently claimed advantages over domain approaches are the dimensionality
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reduction, the easy implicit enforcement for radiation conditions at infinity, reduc-
tion of an unbounded exterior domain to a bounded boundary, the achievable high
accuracy and simple pre- and post-processing for input and output data.

Compared to the vast literature about the BIEs related to the elliptic case,
covering both their theoretical properties and their numerical approximation
(12, 17, 24, 26, 34, 35, 39, 40, 47, 48, 52, 55, 57]), the mathematical treatment of
BIEs for parabolic and hyperbolic problems is rather modest in volume. There
have been some significant developments in this area in recent years (see for
example [6, 8, 9, 10, 13, 15, 25, 36, 44, 51, 53, 54]).

One can distinguish three approaches to the application of BEMs on parabolic
and hyperbolic initial boundary value problem: (i) space-time integral equations, (i7)
Laplace transform methods, (ii7) time-stepping methods.

Space-time integral equations use the fundamental solution of the parabolic or
hyperbolic partial differential equations. The construction of the BIEs via re-
presentation formulas and jump relations, the use of single layer and double layer
potentials, and the classification into first kind and second kind integral equations
follow in a large part the formalism known for elliptic problems. Causality condition
and time-invariance imply that the integral equations are of Volterra type in time
variable and of convolution type in time, respectively. Numerical methods con-
structed from these space-time BIEs are global in time. The boundary is the lateral
boundary of the space-time cylinder and therefore has one dimension more than that
of the spatial domain boundary. This increase in dimension at first means an increase
in complexity: the system matrix is much larger and the integrals are higher-di-
mensional; for a 3D problem , the matrix elements in a Galerkin method can require
6-dimensional integrals. Moreover one drawback of Galerkin BEM is just the ne-
cessity of calculating integrals as discretization matrix elements involving singular
and hypersingular kernels. The complexity of the discretization of the integral
equations is in part neutralized by special features of the problem, in fact the system
matrix has special structure related to the Volterra equation (finite convolution
time). When low order basis functions in time are used, the matrix has a block tri-
angular Toeplitz form, and for its inversion only one block needs to be inverted.

Laplace transform methods solve frequency-domain problem, possibly for com-
plex frequencies. For each fixed frequency, a standard BEM for an elliptic problem
is applied, and then the transformation back to the time domain employs special
methods for the inversion of Fourier or Laplace transforms ([7]).

At last, the time-stepping methods start from a time discretization of the original
initial boundary value problem via an implicit scheme and then use BIEs to solve the
resulting elliptic problems for each time step. Here a difficulty lies in the form of the
problem for one time step which has non-zero initial data and thus is not in the ideal
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form for an application of the BEM, namely vanishing initial conditions and volume
forces, and non-homogeneous boundary data. The solution after a time step, which
defines the initial condition for the next step, has no reason to vanish inside the do-
main. Various methods have been devised to overcome this problem (see [5, 21, 44]).

These three approaches for the construction of BEMs can not be separated
completely. The space-time integral equation method leads, after discretization, to
a system that has the same finite time convolution structure one also gets from
time-stepping schemes. The main difference is that the former needs the knowl-
edge of a space-time fundamental solution. Also the Laplace transform appears in
several roles. It can be used to translate between the time domain and the fre-
quency domain at the level of the formulation of the problem, but also at the level
of the solution.

Usual numerical discretization methods include collocation methods ([15, 16, 27,
28, 29, 38]) and Laplace-Fourier methods coupled with Galerkin boundary elements
in space ([12, 30, 36]). The convolution quadrature method for the time discretization
has been developed in [42, 43, 44]. It provides a straightforward way to obtain a
stable time stepping scheme using the Laplace transform of the kernel functions.
The application of Galerkin boundary elements in both space and time has been
implemented by several authors but in this direction only the weak formulation due
to Bamberger and Ha-Duong ([11, 12, 37]) provides natural convergence results.
They obtain the well-posedness of the retarded BIE and stability of the BEM ap-
proximations owing to a coerciveness property of a suitable quadratic form in the
unknown density closely related to the energy functional of the wave equation. Their
approach relies, via Laplace transform, on uniform estimates with respect to com-
plex frequencies of corresponding Helmholtz problem.

Here, first, we consider a Dirichlet problem for a temporally homogeneous one-
dimensional wave equation, reformulated as a BIE with retarded potential and
written directly in space-time domain. Special attention is devoted to a natural en-
ergy identity that leads to a space-time weak problem with robust theoretical
properties. Taking advantage of the simple structure of this BIE, we prove a precise
coerciveness property of the quadratic form related to the energy of the wave
equation, and consequently, unconditionally stable schemes with well-behaved sta-
bility constants even for large times. We believe that the investigation of the coer-
civeness property of the energy functional avoiding the analysis in the frequency
domain is of great interest both from theoretical and numerical point of view. In fact,
a formulation based on the direct analysis in time of the energy functional would
hopefully provide, even for multidimensional problems, an effective alternative to
that proposed in [11, 12], in which the passage to complex frequencies leads to sta-
bility constants that grow exponentially in time.
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Moreover, Section 3 of this paper is devoted to the introduction of (extended)
variational formulations in the spirit of [1, 18, 58], which allow the definition of sui-
table functionals whose stationary point is solution of the given BIEs. It is not always
easy to give a variational formulation to a mathematical problem. Tonti [58] has
proposed a general technique to obtain variational formulations associated to any
nonlinear problem; a similar method with reference to linear non potential operators
has been proposed by Magri [45] and by Ortiz [50]. Few years later, Auchmuty [1]
developed Tonti’s ideas, while independently of this last work, Carini [19] and Carini
and Genna [20] improved the technique with reference to several specific applica-
tions in the field of continuum mechanics. The main difficulty in all the mentioned
approaches is that of introducing a suitable integrating operator (in the Tonti’s
terminology) which symmetrizes the given equation in the appropriate functional
spaces. Here we show that the energy approach, introduced in Section 2, furnishes a
natural solution to this problem providing variational problems whose solutions are
minimum or saddle points of the corresponding functionals.

Using some results of Section 2, the second part of this paper is devoted to the
analysis of one-dimensional wave propagation in layered media, with mixed boundary
conditions, reformulated in terms of BIEs written directly in space-time domain.

An extension of theoretical study and numerical experiments for two- or three-
dimensional dynamic interaction problems is currently under study and will be
discussed in a future work. Of course, in two- or three-dimensional problems, one will
also have to carefully treat the integration of spatial weakly singular, strongly sin-
gular and hypersingular integrals, arising in BEM discretization phase, but one can
refer to a nowadays wide literature on this topic.

Finally, in the last Section, numerical results for one-dimensional problems in
layered media have been collected and discussed, pointing out analogies and differ-
ences with recent literature results ([32, 49]). Instabilities phenomena arising with one
of the classical L? technique can be prevented using suitable time steps in the dis-
cretization phase, of course, with a higher computational cost with respect to the en-
ergetic procedure, which appears to be unconditionally stable. Further, comparisons
between condition number of discretization matrices of energetic and Bamberger and
Ha-Duong techniques ([11, 12, 37]) are presented too, showing the dependence of the
latter on a strictly positive parameter that has to be properly chosen.

2 - Basic model problems and energetic weak formulation

In this section we consider the retarded potential representation of solutions of
the Dirichlet problem for a one-dimensional wave equation, from which we will
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deduce a suitable indirect boundary integral reformulation of the differential
problem.

Let T > 0 be fixed. We denote by Q the finite interval (0, L) C R and let u(x, t) be
the solution to the wave problem:

1) Ut — Uy = 0, xeR\{0,L}, te(,T),
@) u(, 0) = uy(w,0) = 0, xeR\{0,L},
3) u(, t) = gla, 1), (x,t) € Zp:={0,L} x [0, T1,

where g(x, t) is a given function and g(x,t) = 0 for ¢ < 0. Note that u is considered as
the solution on the whole R, not only in Q. Whenever necessary we shall distinguish
the internal solution %™, i.e. for & € Q, from the external one u*, i.e. for x € R\ Q.

In order to rewrite problem (1)-(3) as a BIE, we need to recall the expression of
the forward fundamental solution G(x,t) of the wave operator:

(4) G ) = LHTt — |of) = L HIFI(H: + 1)~ HEz — 1),

where H[t] is the Heaviside step function. Using the fundamental solution (4) we
obtain the single layer representation formula for the solutions of the equation (1),
in terms of the unknown discontinuities density vector valued function
o) = (p(0,1), (L, ) = (o (D), goL(t))T at the end-points of interval (0, L), i.e.:

ou ou~ ou" ) -2 =0
= |l = — h = o’ .
®) [avj e ov, N Gy { 2 w=L
In fact, for t € R, x € R\ {0, L}, it holds:
—+00 “+o0o
6) e = Vo)a,t) = J G, t — Vo0 + J G — L,t — D (D)
1 t ) 1 t a
=5 J H[t — v — |x|lpo(v)dr + 5 J H[t — v — | — L|lp,(t)dz
t—|x| t—|e—L|
1 1
=5 J po(t)dt + 5 J @, ()dz.

Since problem (1)-(3) is formulated on the time interval [0, T'], in order to keep our
notations as simple as possible, hereafter we shall consider functions ¢ defined on the
whole real line but having support only in the fixed time interval [0, T]. From formula
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(6), taking the limits as « — 0 and « — L, we obtain the following system of BIEs at
the end-points of the interval (0, L):

t t—L
V0.0 = [ [oic + [ p0a] =t
0 0
) t € [0,T].
1 t—L t
VoL =3 | o+ 0] = g0
0 0

The system (7) can be written with the compact notation:

where g(t) = (o), gL(t))T and go(t), g1 (t) represent the given boundary function in
x = 0 and x = L, respectively.

In order to formulate the operator equation (8) in a suitable functional frame-
work, we assume V as defined in L2(Z7) := L?(0, T) x L?(0, T'). With this choice,
from (7) it is easy to verify that the range of V lies in H%O}(ZT), the space of
HY0,T) x H'(0, T) functions vanishing for ¢ = 0. Hence hereafter we shall consider
V. L2Zp) — H%O}(ZT).

2.1 - Energetic weak formulation related to the BIE Vo =g

A classical way to introduce a weak formulation for (8) is to project the BIE
using L?(27) scalar product. Now, considering the bilinear form a;:(¢p,w) :
L2(X7) x L*(X7) — R defined by:

9) ar2(0,y) =< Vo, >1205,
we can write the following weak problem:

given g € H}O}(ZT), find ¢ € LA2(X7) such that
(10) ar2(0, ) =< g, ¥ >12zp) Yy € LA(Zr).

There are two major drawbacks in the above formulation: the bilinear form
arz(-, -)is not coercive, in fact choosing ¢ = y, the formula (10) does not give a positive
definite expression; further, it is implicit in problem (10) that the equation (8) must
be understood considering the compact operator V : L2(Xr) — L?(X7), which ob-
viously cannot have continuous inverse. As a consequence, it is not surprising that
problem (10) gives rise to instability phenomena in the discretization phase, as it will
be shown in Section 6.
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An alternative approach is suggested by the well-known conservation law sa-
tisfied by the (real-valued) solutions to the d’Alembert equation:
0 (1 1 0
0 =y — ) = 5, <2u? + zui) — 5 (itke)-
Integrating with respect to space-time in R x (0, 7") and taking into account that «
and u; vanish for £ = 0, we get the energy identity:

+00 T T
(11) E(T) = % J F +udyde| = Jut : [‘Z—ﬂ dt = J(V{p)t pat,

—00 0 0
where the dot denotes the scalar product in R2.
The quadratic form appearing in the last term of (11) leads to a natural space-time
weak formulation of the corresponding BIE (8) with robust theoretical properties. In
fact, the main advantage of this approach is that the quadratic form given by the

energy, i.e.
E(T) =< (V(ﬂ)t, @ >L2(2}7~) )

is, at least in the one-dimensional case, both continuous and coercive in the appro-
priate spaces, i.e. exactly the functional spaces where the Dirichlet problem is well-
posed [41].

In order to derive continuity and coerciveness properties of the total energy (T,
we concentrate our analysis on the operator A: L*(X7) — L?(X7), defined for
t€[0,T] as:

9o + HI[t — Ll (t — L)
(12) Agp@®) = Vou®) =5 .
or,(t) + H[t — Llp,(t — L)
By an application of the Cauchy-Schwarz inequality, we have immediately that 4 is a
continuous operator with norm ||.A|| < 1. More interesting is the positivity property
of the quadratic form associated to the operator A. In fact, having introduced the

bilinear form ag(p, y) : L>(X7) x L2(X7) — R defined by:
(18) ag(p,y) =< Ap, ¥ >125y)

we have the following result:

Theorem 2.1 ([4]). Forevery T > 0, there exists a positive constant c(T) such
that:

(14) ag(p,p) > o) lplFss,y, 0 € LA,
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Moreover, let m € NT be such that T < m L; then one has the explicit bound:

2 T
(15) c(T) > sin (2(7% n 1)>.

At this point we can write down the energetic weak problem related to the BIE
(8), which admits a unique, stable solution:

given g € H%O}(ZT), find ¢ € L2(X7) such that

(16) aslp,¥) =< g, ¥ >r2sy, Y € LA(Z7).

2.2 - Neuwmann problem

Similar considerations as those developed in the subsection 2.1 can be done for
the wave problem with Neumann boundary condition:

(17) Ut — U = 0, xeR\{0,L}, te,T)
(18) u(e, 0) = u(,0) = 0, x e R\ {0,L}
(19) %(x,t) =f(x, ), (x,t) € Xp :={0,L} x [0,T]

where f(x, ) is a given function. In this case we have the double layer representation
of the solution u(x, t) through the unknown retarded potential w:

(20) w(x, t) = (Ky)(,t)

y=0,L -

= Z J —g(x y;t—Dwly, 1) dr

where G(-, -) is given by (4). After a straightforward calculation we obtain the more
explicit formula:

—L

1
w(e,t) = Q% wot — |x|) — 7 wi,(t — |x])

|
from which:

[u](0,8) := u™(0,8) = u"(0,8) = wy(®), [wlL,t) :=u (L,t) —u" (L, ) =y, @)

By deriving formula (20), taking the limits as x — 0 and © — L and using Neumann
data f(x,t), we obtain the boundary equations for the unknown potential y at the end-
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points of the interval (0, L):

0
(21) Dy =5 Ky =,
that is
D0, = v vt~ L] = ft),
(22)

OO0 = — 5 [yt D)~y )] = fot0).

In order to derive a weak formulation of the equation (21), our starting point is again
the energy identity, which for the Neumann boundary condition assumes the form:

T T
&(T) = Ja—“ uldt = JDW -y, dt.
vy
0 0

Thus, having defined the bilinear form:
drg : H%O}(ZT) X H%O}(ZT) i Ra dg(l//7 ¢) =< Dll/v ¢t >L2(ZT)7
the coerciveness of ac(-, -) follows at once from the observation that:

T

as(y,y) = JAI/~/t Sy dt,
0

where y(t) = (y, (), —l//L(t))T, and A is the operator defined in (12). Then, from
Theorem 2.1 we have the following result.

Theorem 2.2. Forevery T > 0, there exists a positive constant c(T) such that
asy,w) > o) i ltas,y, v € Hig(Zn).

The constant c(T) is bounded from below as in (15).

Therefore, Dirichlet or Neumann boundary conditions are similar for what
concerns the analysis of the energetic weak formulations related to the corre-
sponding BIEs.

2.3 - Remarks on energy coerciveness

The coerciveness of the quadratic form ag(p, ), defined in (13), asserts a coer-
civeness property of the total energy of the solution u to problem (1)-(3). This follows



180 A. AIMI, M. DILIGENTI, C. GUARDASONI and S. PANIZZI [10]

at once from the equality:
ag(p,p) = ET).

Thus, remembering (5), Theorem 2.1 assures that:

oul|?

(23) &) > c(T>’ {av]

L2(Z7)

The purpose of this section is to point out some interesting facts about the different
contributions to inequality (23) of the external and internal energies, defined re-
spectively as:

L
=y | b +udeonde 0= [+,
R\(0,L) 0

We shall see that the main contribution to inequality (23) is provided by the external
energy. Indeed, for any given time 7', one may replace in (23) the global energy £(T)
with £ (T), provided a slightly smaller coerciveness constant ¢(7') takes the place of
¢(T). On the contrary, interactions of reflected waves make the contribution of the
internal energy £_(T) almost negligible at least for large times 7' >> L. More pre-
cisely, for any T greater than L, we have:
T

(24) £ =] J lp®)F dt,

T-L
thus £_(T) vanishes provided ¢(t) = 0 in the “small” interval (T — L, T).

Although our arguments rely upon particular features of the one-dimensional
d’Alembert equation, they could suggest a possible approach even for the much more
difficult cases of the 2 or 3 dimensional wave equation. In fact also in the n-dimensional
case, at least for convex domains, the external energy at a given time is strictly positive
and thus may be viewed as a possible coercive quadratic form in the single layer po-
tential variable ¢ with respect to a suitable norm | - |y. Of course, in the n-dimensional
case the main open problem is the identification of the functional space W.

We conclude this short section with other two remarks. Even though the internal
energy is in general only nonnegative, it still enjoys some coerciveness property if we
add to £_(T) its integral with respect to time as in the following

Proposition 2.1 ([4]) . For every T > 0, one has
T

J E_(bdt.

0

8

(25) plFecsy) < 4E-(D) + 7
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Finally, denoted with A" the adjoint of the operator A, by combining the energy
identity on the external domain

T
our
(26) £.(T) = —J o

0

-gedt

T
= J|(V(0)t|2dt =< Ap, Ap >125y=< A"A0, 0 >12z,)
0

with the energy identity (11) and the inequality (25), we can obtain an alternative
proof of the coerciveness estimate (14). In fact, by an application of the Cauchy-
Schwarz inequality in (11), we have:

. 12 ,, 1/2
Et) < (j|¢<r>|2dr> <j|gt<r>|2dr) S A

0 0

Therefore, since £_(t) < £(t), we get from (25) and (26):

8T
0lFzy) < 4E-(D) + - [0lpace,y VEAD),

which yields the following inequality where the internal and external energies play a
distinguished role:

6472
0lF sy < BE(D) + "5 E4(D).

Note that the constant (8 + 647% / L2 lisnot optimal, nevertheless as function of the
ratio 7'/L has the same asymptotic behavior of ¢(7) in (15).

3 - Variational formulations for the BIE Vg = g

A deeper understanding of the physical phenomenon modelled by differential or
integral equations might be obtained by a variational formulation. Nevertheless, it is
not always simple to give a variational formulation to a mathematical problem. In
fact, in absence of symmetry of the problem governing operator, with respect to a
given scalar product, it is impossible to construct a relevant variational formulation.
This is the case of the weak problems (10) and (16), related to the BIE V¢ = g, which
cannot be rewritten as variational problems, since the operators V and A = V;, re-
spectively, are not self-adjoint with respect to the classical L? scalar product.

This difficulty can be overcome in two different directions: the first possibility is
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to change the scalar product choosing a suitable bilinear form in such a way that the
given BIE operator V is self-adjoint with respect to the new one. This way of rea-
soning was followed in [46], where a time-convolutive bilinear form was introduced. A
second different strategy retains the L? scalar product and suitably changes the
given problem Vg = g. Following [58], we have to consider an invertible symmetric
operator K in order to solve the equivalent problem:

27) V*KVp = V' Ky,

and such that the new operator V*KV is self-adjoint and possibly coercive with re-
spect to L? scalar product.

As operator K, one can certainly choose the identity operator, but in this case
the discretization of the weak reformulation of (27) suffers of the same instability
phenomena already cited. In fact, with this choice, we obviously have to consider
the operator V :L2(X7) — L*(Xp) and of course the adjoint operator
V* . L2(Z7p) — L2(Xr). The bilinear form:

(28) <V'V0,0 >pep= Volie,

is certainly positive, but it is not coercive in L?(X7). In fact, being V a compact
operator, the right-hand side of (28) defines a weaker norm with respect to
| * |z2(z,)- To conclude, we can say that the approximations converge, but with a
derivative lost in the Sobolev scale (see [24]). If we instead consider the operator
V:L2Zp) — H %0}(271), i.e. as an isomorphism between Hilbert spaces, and con-
sequently V*:[H }0}(ET)]/ — L2(Xy), where [H}O}(Z ] is the dual space of
H %O}(Z 7), a considerably better choice is:

2)* 9

ot/ ot’

K : Hig(En) — Hiy T, K= (

that is
< Kfag >::<ﬁvgt >L2(ZT)a

where < -, - > is the duality product between H %O}(ZT) and [H }0}(ZT)]' : hence,
having introduced the symmetric bilinear form:

ag(p,y) =< V'KVo,y >12s,)
and remembering the definition (12) of the operator A, it holds:
agy,w) =< KVy, Vy >=< (Vy), V), >L2(Zy)

2 2
=< A Ay, v >125p)= |A‘//|L2(2T) > |‘//|L2<2T)7

1
[
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and the coerciveness of the bilinear form is verified. Therefore we have the fol-
lowing classical variational results.

Proposition 3.1. A function ¢ € L>(Z7) is the unique solution of the BIE
Vo = g if and only if it is the global minimum point for the quadratic functional:

1
Fx@) =5 ax,p)= <V'Egy >pey,  we L*(X7).

On the other side, the general theory in [58] allows to write the following:

Proposition 3.2. A function ¢ € L>(Z7) is the unique solution of the BIE
Vo = g if and only if it is the global minimum point for the quadratic functional:

. 1 1
Fxp) =5 <K(Vy -9, Vy —g>=FxW) +5<Kg9>, ve L*(Z7).

Other characterizations of the solution of the BIE V¢ = g can be obtained con-
sidering the associated problem A¢p = g;, and noting that the operator .4 can be split
as the sum of its symmetric and skew-symmetric parts:

A= As +~Ass;

where A; = (A + A")/2 and Ay = (A — A")/2. The operator A is continuous, self-
adjoint with respect to the classical L? scalar product and also coercive as proved in
the Theorem 2.1 Then, following [1], we have:

Proposition 8.3. A function ¢ € L*(X7) 1is the unique solution of
A" A Ap = A AN g: (or equivalently of Ap = g,) if and only if it is the global
manimum point for the quadratic functional:

1 _ 1
Fy(y) = 5 < A 1(Al// =90, Ay — gt >120)= 5 <Ay, >12sp
1 1
+ 5 < AT — Ass), 9t — Ass >125) — < W0t >12,) -

Remark 1. The functional F(y) can be written starting directly from the
BIE V¢ = g and following the strategy proposed in [58], choosing the operator K
as:

k== [5] = ol G @) a
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4 - One-dimensional elastodynamic analysis
4.1 - Basic Dirichlet-Neuwmann problem

In the following, we will consider the wave propagation problem for a rod of
finite length L, with vanishing external forces, homogeneous initial data and mixed
(Dirichlet-Neumann) boundary conditions on the bounded time interval (0, 7). The
rod under consideration can be represented by a structured three-dimensional
body, with a higher dimension with respect to the remaining ones: the length L
along the x-direction. For this reason its geometry is describable by a line, the axial
line of the rod which passes through the barycenters of all transversal sections.
The displacements and tractions are referred to axial coordinates of the bar.

Having denoted with u(x,%) the longitudinal displacement of the rod and with

0 . . .
px,t) == KA 8% (x,t) the traction, depending on a unitary (outward) normal vector
X
with respect to the transversal section of the rod, therefore direct along the x-axis,
ie. n, = 1y, 0)" and on EA, which represents the axial stiffness of the rod, the

differential model problem reads:

(29) Py — Uz = 0, xe(0,L),te(,T),

(30) w(x, 0) = uy(x,0) =0, x e (0,L),

(31) u0,t) =u®), pL,t)=pd), t€(0,7),

where u(t) and p(t) are given functions. The scalar wave velocity ¢ is given by
¢ = /E/pwith E and p denoting Young’s modulus and mass density of the material,
respectively.

In order to obtain a boundary integral formulation of the problem (29)-(31), we have
to use the following Love’s representation formula (the analogue in the dynamical
case of the Somigliana identity of linear elastostatic) for « € (0,L) and ¢ € (0, T):

(32) u@t) = Y G, &)« pEt) — Y K@, &)+ u,b),

=0L 0L

where the asterisk denotes the time convolution product. Having set » = |x — £|, the
function:
0

oy a 99 e o OH
(33) Kx,&t) = EA ané(x,é,t)— 5 Hlt] %

is the so called Gebbia first fundamental solution and represents the displacement in
point & and instant ¢ due to a unit displacement concentrated in space (point &) and
time (instant 7) and G(x, &;t) (Kelvin solution) is the fundamental solution for the
wave problem (29) applied to the rod (see also (4)).

[ct—7rInge,
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With a limiting procedure in (32), for & tending to the end-points of the rod, we
obtain for ¢ € (0,T) a first BIE of the form:

34) e, )= G, &0 pE D — Y K@ &ty ru,b), «e{0,L}.

E=0.L E=0.L

Remembering the definition of p(x, t), from (34) one can obtain for ¢ € (0, T) a second
BIE (see [3] for details), of the form:

35)  ple,)y= > K@&hp& - Y S@ &ty ru,b), we{0L}.

¢=0,L ¢=0,L

In the BIE (35) we find the second Kelvin fundamental solution:
(36) ’C/(%f;t):EA (96 & t)——H[t] [Ct—?”]%m,

which represents the stress field in point & and instant ¢ due to a unit force con-
centrated in point £ and time instant 7; moreover in BIE (35) we have the derivative
of Gebbia fundamental solution, i.e.:

(37) S, &t = EA ( &) = @ I—I[t]

02 0% [ct rIngen .
The function (37) describes tractions p(x,t) due to unit relative displacement con-
centrated in space (point &) and time instant 7. Of course, derivatives in (33), (36) and
(37) have to be understood in a distributional sense.

Using equations (34), (35)inx = 0 and x = L, respectively, the explicit expression
of the kernels G, K, K, S and the boundary data, one obtains, after an integration by
parts involving the kernel S and some straightforward calculations, the following
integro-differential equation system for ¢ € (0, T):

t
- JP(O,‘C)d‘CJrH[t *%]M(L,t ,%) — (1)
0

EA
(38)
L L EA
—H[t — =1p0,t — =) +— uy(L, ) = fP(t)
C C C
having set:
L t—L/c
U AT C vy
FUO =) o HIE - J p(e)dr,
(39) 0

P = % H[t — —]ut(t - —) +p@).
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In (38) the unknowns are the time history of traction in & = 0 and of displacement in
x = L, i.e. the two time functions p(0, t) and u(L, t).
Now, using the following operators:

t
c EA 0g(t)

(40) Vo)) = 71 Jg(r) dr, DYt ====2=.

0

and the following anticipated and retarded shift operators:
L L L L
(41) STt :H[T—t—zlg(t+5), (S*g)(t):H[t—g]g(t—z),

the system (38) can be rewritten in compact form as:

VoS [p¢ “(t
(42) [ HP()]:V()]’ te,7),
=S~ D || ul) SP@®

where p(t), u*(t) represent the unknown time functions p(0,t) and (L, t), respec-
tively.

4.2 - Weak formulations of the integro-differential system (42)

An usual way to introduce a weak formulation of integro-differential system (42),
taken in account, is based on the classical L2(0, T scalar product (L?-weak formula-
tion). Unfortunately, there is an important drawback in this formulation: the related
bilinear form is not coercive, and consequently is not unexpected that corresponding
problem gives rise to instability phenomena in the approximation phase.

An alternative approach is suggested by the fact that for hyperbolic wave pro-
blem (29)-(31) the positive energy at the final time instant 7" inside the rod can be
expressed as:

T
(43) Eon(T) = ﬁj > wia, typa,tydt > 0.

0 x=0,L
Since the first equation in (42) comes from the representation formula (34), we
have to differentiate it with respect to time before projecting onto the space
L2(0,T), while the second equation, coming from the representation formula for
the traction (35), has to be projected onto the space of time derivatives of functions
belonging to H }0}. Therefore, if we define the spaces W := L?(0,T) x H%O}(O, ),
W:=H }0}(0, T) x L?0,T) and we consider the bilinear form:

(44) ae(, ) = <[_‘gt %}> W x W—R



[17] A SPACE-TIME ENERGETIC FORMULATION FOR WAVE PROPAGATION ANALYSIS, ETC. 187

we obtain the following energetic weak formulation of the problem (42):

given (f,, f,)" € W, find (p°, u=)" € W such that
0

45 POy ) = (e, (Y VY, 9) €W.
(45) as((B).(0)) = (). (1)) vwoTe
Under the assumptions made, the following result holds.

Theorem 4.1 ([3]). The real bilinear form ac(-,-) of the energetic weak for-
mulation is continuous and coercive on W x W.

This theorem assures the existence and uniqueness of the weak solution of the
problem (45).

An alternative weak formulation, which has the same robust theoretical back-
ground as (45), is that one proposed in [11] and [12]. It comes from a direct Laplace-
Fourier transform of the differential problem, which then is formulated and ana-
lyzed in terms of BIEs and treated in standard weak form. This problem is finally set
back in space-time domain by means of inverse transform. Following this procedure
we have to introduce the continuous and coercive bilinear form (see e.g. [11, 12]):

Vi Sy
(46) %“VW[§5}ﬁwWXWﬂR
where the scalar product is defined as:
+00
(47) <figza= | g0,

where the real parameter ¢ has to be strictly positive and properly chosen. Hence, we
can obtain the following weak formulation of (42):

given (f*, fP)" € W, find @°, uL)" € W such that
0

) (5 () = () (4 W0 €W,

U
From now on, problem (48) will be referred to as o-weak formulation of our wave

problem.

4.3 - Time discretization

Now, we introduce a uniform decomposition of the time interval (0, T') with time
step At = T'/n, n € N, generated by the » + 1 instants:

(49) te=kAt, k=0, n.
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Let P, be with » > 0, the space of polynomials of degree less than or equal to », we
consider the standard finite element spaces:

(50) X'y = {wy € L*0,7) : Vit o € Pro 720, k=0,---,n~1}

and

61 X ={ps € C°O, D) ¢ ppprpy € Prot, 7 >0, k=0, n—1}.
Then, considering the finite dimensional space W’;" = X7, x X’;*°, we can write

down the discrete form of L2, & and energetic weak problems. For instance, referring
to [3] we have:

given (f*, )" € W, find (p%, uk)" € W72 such that

(1] U
B alELGL) (G v e <

where ¢, denotes derivative of the function ¢, with respect to the time. Now, in-
dicating with {y,} a basis for X, and with {¢,} a basis for Xﬂl‘o, the unknown
functions pgt(t), uﬁt(t) can be expressed as:

(63) PR =D piw®,  wh®) = up )
k k

and the discrete problems can be equivalently written, respectively, as linear systems:
(54) ALZQCLZ = bLZ y Ag%g = bg, Aaxa = ba;

in the unknowns the coefficients pg and uﬁ Matrices Az, Ae and A, have a2 x 2 block
structure and are not symmetric. In fact the corresponding bilinear forms a;:(:,-),
as(-,-) and a,(-,-) are not symmetric and the related weak formulations can not be
written as equivalent variational problems. Anyway, owing to the coerciveness of as(-, -)
and a,(-, -), the diagonal blocks of matrices A¢ and A, are positive definite.

Remark 2. When we consider only the BIE (34) in both the end-points of the
rod and we use constant and linear shape functions for the unknown tractions and
displacements, respectively, the final linear system of the energetic weak for-
mulation is completely equivalent to that obtained using the standard collocation
technique. In fact, the energetic weak formulation starts from (43), where the time
integral can be equivalently rewritten, with an integration by parts, in the form:

T

T
(55) > Jut(ac,t)p(% tdt= > ue, T)p,T)— Y Ju(ac, t) (e, t) dt.

x=0,L 0 x=0,L x=0,L 0



[19] A SPACE-TIME ENERGETIC FORMULATION FOR WAVE PROPAGATION ANALYSIS, ETC. 189

Hence, the BIE (34), instead of being differentiated with respect to time, can be
alternatively projected onto the space of time distributional derivatives of functions
belonging to L?(0, T). If we consider Heaviside step functions y,(t), related to a time
mesh with nodes t;, as test and trial functions for the discretization of tractions p,
time integral of Dirac distributions z//k"t(t) in the right-hand side of (565) leads to a
collocation procedure at time instants ;.

5 - Layered media

5.1 - The case of a bi-material rod

Let us consider a rod of length L, constituted by two portions of length
Ly, Ly = L — Ly, respectively, made up by different materials, with constants
p1 # po, B1 # Eo, A1 # As. As a consequence, the wave propagation velocity in the
two parts of the rod will be different, i.e, ¢; # c2. We want to study the wave pro-
pagation problem with assigned condition of mixed type at the end-points of the rod.
Hence, considering (29) written in the local reference system of each portion, we
have to solve the differential problem:

(56)  CFuj pp(a, 1) — wi (e, 1) = 0, xe,L), te©D), i=1,2,
(57)  wi(x,0) = u;y(x,0) = 0, x € (0,L;), i=1,2,
(68)  u1(0,) = (), po(le,t) =pot), te(0,7),

with further continuity and equilibrium condition for the solution at the interface
between the two materials:

(59) w1 (L, ) = u2(0,8) =: ws (@), p1(ln,t) = —p2(0,8) =: pr(®).

For what concerns the boundary integral reformulation of the problem (56)-(58), we
have to consider for the first portion of the rod, the BIE (34)inx = 0 and « = L1, and
the second BIE (35)in« = L;. For the remaining part of the rod, i.e. for x € (0, Ly) in
the local system, we have to consider the equation (34) in « = 0, and the equation (35)
in ¢ = 0 and « = L. Imposing conditions (59), with a straightforward computation
one gets fort € (0, 7):

Vi NR% Sy 0 P fr@)

(60) S1Vi Vi+ Ve 0 —Ss pr(®) _ fU® 7
-8 0 Dy +Dy —S3Dy ur(t) fPI(t)
0 Ss —S2 Dy D, uéz @® fP @

in the unknown functions p(l’(t) = p1(0,8), pr@®), us(t), ugz(t) = ug(Lg, t). The subscript
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1, 1 = 1,2, of the operators in the left-hand side of (60) means that they have to be
considered in the i-th part of the rod and to simplify the notation we have denoted the
operator S_;(-) with S;(-), ¢ = 1,2, while functions in the right-hand side are of the
following form:

@ =wm@,

t*Lz/Cz
L1 _ L1 Co L2 _
ur — _ - . e
£ = ~HIt = 2~ )+ HlE = 2] J By de,
EA,

I _ LZ — LZ L1 _ Ll
fr) = Hit = 1pat =5 + HIE =21t =),

C1
SP2(t) = Do(t) .

At this stage, one can proceed introducing a weak formulation of (60), which can be, as
in the case of a single domain, of L2, ¢ or energetic type, and then operating a suitable
discretization of the derived problem. The final linear systems (54) present a matrix
with the same block structure as that of the operator in the left-hand side of (60).

5.2 - Generalization

Let us consider a rod of length L, constituted by » parts of length L;, i = 1,--- | n,
made up by different materials, with proper constants p;, E;, 4;,i=1,---,n. As a
consequence, the wave propagation velocity in the ¢-th component of the rod will be in
general different from each other and will be denoted by c¢;. The previously given de-
finitions can be straightforwardly extended to the wave propagation problem in this
multi-material rod, with assigned condition of mixed type at the end-points of the rod,
ie u1(0,t) =wi(@®), pnLn,t) =p,{). The 27 unknown functions are: traction
pY(t) == p1(0, t) at the first end-point of the rod, traction and displacement py, (t), uz,(t)
at every interface I,, £ =1,---,n-1, between two consecutive portions of the rod,
displacement uﬁ; @) := uy(Ly,t) at the other end-point. In particular, we want to give
the expression of the multi-domain integro-differential operator, which reads for
te,7):

LT[R ] [O]
Ly, 2, (@) In®
: : : pzk(t)}
. b =
(61) ﬁ]k Z[k(t) = f[k(t) s ZIk() [Ulk(t) ’

k=1,--,n—1,

R IERG
L uk@y | L@ |




[21]

where:

and
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Li=[Vi S$iVi S O --- O],
£}12[81V1 Vi+Ve O —-8S;V5 —Sz],
L} =[-S1 O Di+D: -8z —S:Dq],
Ly 0.0
Lr=12 0---0
1 N e’

2n—>5

3

for k=2---.m—2
Lr =[-SVi Sk Vi+Vi O —SkaVier —Skl,
£} =[Sk —SiDr O Dp+Dpy Sk —SkiiDisal,

O---0 E}k O---0
L, =10 -0 £§k O---0f{,

[ —
2k—3 2(n—k)—3
E} = [—Sn,1Vn,1 Snfl Vn—l + Vn O —Sn},

n-1

£

n—1

O---0 /;}M
‘Cln—l = O O E? )
——

n—-1
2n—5

L:n = [0 e O Sn _SnDn Dﬂ ]7

:[Sn—l _Sn—an—l 0 Dn—l +Dn _SnDn]a

0 =m0,
[ H-Pme -2
C1 C1

£ty
ﬁl(t) = |: P :| = )
IO Bl Dy oy
C1 C1

L C1
11, = [ﬁzgg] = 8}, for k=2,---,n—2,
_ I t—Ly,/cy
Cn n —
= [ | B [ moa
N VG Ly ’
Cn Cn

fr@® =p,@.
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6 - Numerical results

In this section, a series of significative examples and several numerical results for
one-dimensional wave propagation problems in layered media are reported in order
to verify the efficiency of the new energetic formulation we have proposed.

e As one-domain test problem, taken from [32], let us consider a rod of unitary
length L, = 1, fixed in 2 = 0 and subjected to a uniform traction at the other end-point.
Hence, we introduce the following boundary conditions: %(0,t) = 0, p(L,t) = H[t].
The wave velocity is set ¢ = 1; further A = 1, E = 1. The observation time interval is
(0,20). For the discretization, we have considered two time steps: the first, 4t = 0.1, is
such that the time L/c required by the elastic wave to cover the distance between the
two end-points of the rod is a multiple of it; the second, At = 0.08, has not this property.
Tractions in = 0 are approximated by constant shape functions and displacements in
x = L by linear shape functions. In Figure 1 we show the numerical solution obtained
with 4t = 0.1, starting from L? weak formulation. The same graph is obtainable
starting from energetic and from ¢ weak formulations. The approximate solution
overlaps the analytical one and it is in perfect agreement with that reported in [32],
obtained with a collocation technique using the first BIE (34) alone.

T T T

o 5 10 15 20
t

Fig. 1. — Numerical solution obtained with At = 0.1, starting from L? weak formulation.

In Figures 2, 3 the sparse structure of matrices A;:, A¢ and A, are reported. For
what concerns their spectral condition number we have: u,(A4;:) = 3.4610* and
Us(Ag) = 6.8210%.
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non-zero elements: 21831

Fig. 2. — The sparse structure of matrix A;..

A A
0 ' e’ ¢ '

501 1

150 J

200 1

250

300

350

400

0 100 200 300 400
non-zero elements: 822

Fig. 3. — The highly sparse structure of matrices A¢ and A,.

In Table 1 we show spectral condition numbers of A, for different values of the
parameter g, for two different time steps. As one can see, the condition number of A,
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rapidly increases even for small values of o. In Figure 4 we show the numerical
solution obtained with At = 0.08, starting from energetic weak formulation, com-
pared with the analytical one. Also in this case the approximate solution is in perfect
agreement with that reported in [32]. In Figure 5 we present numerical results
obtained with At = 0.08, starting from L? weak formulation. As one can see, they are
affected by huge instability phenomena.

Table 1. — Spectral condition numbers of matrix A, for different values of o and At.

o 0.1 0.2 0.3 0.4 0.5
At =0.1
1o(Ag) 8.41FE + 03 3.30E + 05 1.62E + 07 8.40F + 08 4.44F 410
At = 0.08
1o(Ag) 1.23E +03 4.91F + 05 2.48E 4+ 07 1.31E +09 7.26E + 10

0 5 10 15 20

numerical
----- analytical

u(L,b)

0 5 10 15 20
t

Fig. 4. — Numerical solution obtained with At = 0.08, starting from energetic weak
formulation, compared with analytical one.

e Now, we analyze a rod of unitary length, fixed in = 0 and subjected to a
uniform traction at the other end-point, as in the first test problem. We consider a
subdivision of the rod in two equal parts having: A; = Ag, E; = Ej, the same
velocity of propagation: ¢; = ¢z = 1 and, of course, L; = Ly = 0.5. The observation
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x 10

1+
S 0
=
—1r
2

-2+

u(Lt)

5 10 15 20 o 5 10 15 20
t t

Fig. 6. — Numerical solution obtained with A¢ = 0.1, starting from L? weak formulation.
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time interval is (0,20). For the discretization, we have used the same two time
steps of the first test problem, i.e. At = 0.1, such that the time L;/c;, i = 1,2 re-
quired by the elastic wave to cover the distance between the two end-points of
each portion of the rod is a multiple of it; and At = 0.08, which has not this
property. Tractions in « = 0 and at interface are approximated by constant shape
functions, while displacements at the interface and in & =1 by linear shape
functions. In Figure 6 we show the numerical solution obtained with 4¢ = 0.1,
starting from L? weak formulation. The same graph is obtainable starting from
energetic and ¢ weak formulations. The approximate solution overlaps the ana-

A 2

100

200

300

400

500

600

700

800 -
0 200 400 600 800

nz = 83296

Fig. 7. — The sparse structure of matrix Ay..

lytical one. Note that this bi-domain formulation allows to know the time history
of displacements and traction in an interior point of one-material rod. In Figures
7, 8 the sparse structure of matrices A;», A¢ and A, are reported. For what
concerns their spectral condition number we have: uy(A;z2) =9.1210* and
Us(Ag) = 2.6010%. Table 2 contains spectral condition numbers y,(A,) for different
values of the parameter o, for two different time steps. As in the previous test, on
a large observation time interval the condition number of A, rapidly increases
even for small values of . In Figure 9 we show the numerical solution obtained
with 4t = 0.08, starting from energetic weak formulation, compared with the
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nz = 2464
Fig. 8. — The highly sparse structure of matrices A¢ and A,.

analytical one. If instead we start from L? weak formulation, we observe high
instability phenomena, as those presented in the one-domain numerical test.

Table 2. — Spectral condition numbers of matrix A, for different values of o and At.

o 0.1 0.2 0.3 0.4 0.5
At =0.1
1y (Ag) 246F + 04 8.43F + 05 3.85F + 07 1.90F + 09 9.84F + 10
At = 0.08
1y (Ag) 3.51E + 03 1.20E + 06 5.62F + 07 2.87TE +09 1.50E + 11

e In this benchmark, taken from [49], we consider a rod of length L consisting of
two parts having the same material properties, as in the previous test. But while till
now we have treated dimensionless problems, here we consider the following
constants: length of each portion: L; = Ly =5m, transversal section area:
A=A =10"*m?, Young modulus: E;=FE>=2110kN/m?  density:
p1 = py = 7.85t/m? and therefore wave velocity: ¢; = ¢z = 5172m/s. The analysis is
carried out until 7 = 0.025s. The rod is fixed in one end-point and subjected to a
Heaviside load applied at the other end-point at the time instant ¢y = 0. Tractions in
x =0 and at interface are approximated by constant shape functions, while dis-
placements at interface and in x = L by linear shape functions. In Figure 10 we show
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u(L,t)

5 10 15 20 5 10 15 20
t t
25 . . . 15 . .
- analytical
1 —— numerical
E N\] U\/
>
0 . :
-05 . : : -05
0 5 10 15 20 0 5 10 15 20
t t

Fig. 9. — Numerical solution obtained with A¢ = 0.08, starting from energetic weak
formulation, compared with analytical one.

the numerical solutions obtained starting from energetic weak formulation and

5 .
20 5172 s, in such
away that time L; /c; is amultiple of it. The same graphs are obtainable starting from
o weak formulation. For what concerns the spectral condition number of matrices A¢
and A,, for the first time step we have: 1,(A¢) = 1.1710'! that coincides with y,(A,)

for o = 0. In this test, since we analyze the wave propagation on a small observation

using two time steps: the same At = 5.10"® sused in [49] and A4t =

time interval, the spectral condition number of matrix A, increases very slowly for
small values of parameter o.
The approximate solution, for At =5.1075s, is better than that reported in [49],
where a Duhamel integral based approach and a convolution quadrature method are
used for the numerical solution of the benchmark. For the other time step, the nu-
merical solution overlaps the analytical one and can be obtained starting from L?
weak formulation, too. On the contrary, for the former 4%, with this classical weak
formulation we have observed huge instability phenomena.

e In this numerical example, a rod of length L consisting of three parts, two of
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“ee At=5/(5172*20)

|

0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025
t t

Fig. 10. — Numerical solutions obtained with two different time steps, starting from
energetic weak formulation.

them, the first and the final, having the same material properties and lengths, is
considered. The constants for this example are: length of each portion:
Li=Ls=5m, Ly =10m, transversal section area: A; =Ay;=As=10"*m,
Young’s modulus: E; = E3 = 1.110%kN/m?, Es =2.1108kN/m? and density
pL = py = 8.96t/m?, p, = 2.7t/m?; the wave velocity are: ¢; = c3 = 3.50383 10° m /s,
co = 8.8192103 m/s. The analysis is carried out until 7 = 0.05s. The rod is fixed in
one end-point and subjected to a Heaviside load at the other end-point. Tractions in
x = 0 and at interfaces I; and /5 are approximated by constant shape functions, while
displacements at interfaces and in « = L by linear shape functions. The problem has
been studied for different time steps; in Figure 11 we show the numerical solutions
obtained starting from energetic weak formulation and using 4t = 6.25107° s. Since
there is a discontinuity in the Young’s modulus, the waves travelling downwards will
be partly reflected and partly refracted when reaching the interfaces between the
first and the second part, the second and the third part of the rod.

e The present benchmark, always taken from [49], is once again a rod con-
sisting of two parts, one of them extended to infinity. These parts have different
material properties and the corresponding constants are: L; = oo, Le = 5m,
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0.5 2.5 -4 :
0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05 0 0.01 0.02 0.03 0.04 0.05
t t t

-60 -12 -50
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t t

Fig. 11. — Three coupled finite rods under a Heaviside load: numerical solutions obtained
starting from energetic weak formulation.

Ay =As =107 m?, E; = 2110 kN /m?, B2 = 0.8108 kN /m?, p, = p, = 1.85t/m?;
as a consequence c¢; = 5172m/s, co = 3192m/s. The analysis is carried out until
T = 0.015s. The rod is loaded at the end-point of the bounded portion with a rec-
tangular impulse at time #, =0.001s with a duration of ¢ — ¢, = 0.001s. A
Sommerfeld radiation condition is satisfied by displacements at infinity. Traction at
interface is approximated by constant shape functions, while displacements at the
interface and at the end-point of the bounded portion are approximated by linear
shape functions. For the discretization, we have used the largest time step used in
[49] for the approximation of this benchmark, i.e. 4t = 5.107° 5. In Figures 12, 13 we
show respectively the interface traction and the loaded end-point displacement,
obtained starting from energetic weak formulation: our numerical results perfectly
agree with those reported in [49] for what concerns displacement and are sub-
stantially better for what concerns traction. Note that if we want to use L? weak
formulation preventing instability phenomena we would have to consider for this
problem a time step 4¢t=3997110"35s~25105s, such that times Ls/cz and
to = t1 — ty are multiples of it. This of course enlarges very much the computational
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Fig. 12. — Approximated traction at interface.
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Fig. 13. — Approximated displacement at loaded end-point.

cost of the procedure, both for linear system generation time and for memory re-
quirements.

e The final benchmark, which extends that one involving the above semi-in-
finite bi-material rod, is again a rod now consisting of three parts, one of them
extending to infinity. These parts have different material properties and the



202 A. AIMI, M. DILIGENTI, C. GUARDASONI and S. PANIZZI [32]

0 0.01 0.02 0 0.01 0.02

t t
b b
Gl ]\
Al
ol |
ob—...... S i
0 0.01 0.02 0 0.01 0.02
t t

Fig. 14. — Numerical solution at both the interfaces in the semi-infinite three-material rod,
starting from energetic weak formulation.

corresponding constants are: L; = oo, Ly = Ly =5m, A; =10"*m?, i =1,2,3,
E; =2110kN/m? Ez = 1.1kN/m? 108, E3 = 0.8 108kN /m?, p, = p3 = 7.85t/m>,
ps = 8.98t/m?; as a consequence c¢; = 5172m/s, ¢z = 3500m/s, c3 = 3192m/s.
The analysis is carried out until 7 = 0.025 s. The rod is loaded at the end-point of
the bounded portion with a rectangular impulse at time f; = 0.001s with a
duration of ¢; — ¢y = 0.001s. A Sommerfeld radiation condition is satisfied by
displacements at infinity. Tractions at interfaces are approximated by constant
shape functions, while displacements at interfaces and at the end-point of the
bounded portion by linear shape functions. For the discretization of the energetic
weak problem, we have used different time steps 4¢. In Figure 14, we show
tractions and displacements of the two interfaces, obtained with A4t =5.105s,
while in Figure 15 we present the loaded end-point displacements obtained with
At =5.107 (dotted line) and with 4t = 5.107° s (solid line), compared with the
three analytical solutions related to semi-infinite homogeneous rods each con-
stituted by one of the above three materials. Since there is a discontinuity in the
Young’s modulus, the wave which starts to travel from the loaded end-point will
be partly reflected and partly refracted when reaching the two interfaces. After
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Fig. 15. — Approximated displacements at z =1L, for At=05-10"%(:) and
At =5-107°( —), starting from energetic weak formulation, compared with semi-infinite
single-material analytical solutions.

being reflected on the loaded end-point, the wave starts travelling again and
refraction and reflection occur again. This happens repeatedly until the whole
wave has left the two bounded portion of the rod and is travelling towards infinity.
Before the reflected wave reaches the loaded end-point of the rod at time
to+2 [g—g, the behavior of this end-point must be equal to that of a homogeneous
rod with B3 = 0.810% kN /m? subject to the same rectangular impulse. For larger
values of ¢, the loaded end-point displacement must converge to the analytical
solution for a semi-infinite homogeneous rod with B; = 2.110% kN /m?.
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Abstract

In this paper we consider one-dimensional wave propagation problems, with suitable

boundary conditions, reformulated using space-time boundary integral equations with re-
tarded potential. In the first part, special attention is devoted to a formulation based on a
natural energy identity that leads to a space-time weak formulation of the corresponding
boundary integral equations with robust theoretical properties. Continuity and coerciveness
of the bilinear form related to energetic formulation are proved.
Then we compare the new energetic weak formulation with different other time-domain
boundary element method procedures applied to wave propagation analysis in layered
media. The paper concludes with several numerical tests to demonstrate the effectiveness of
the introduced technique in the numerical solution of Dirichlet-Neuwmann problems in their
mtegral formulation, pointing out the numerical properties of the derived linear systems.
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