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On increasing sequences of topologies on a set (%)

1 - Introduction

A set equipped with two topologies is called a bitopological space. It was in-
troduced by Weston[14]. Kelly[4] initiated the systematic study of bitopological
spaces. Later on this notion was investigated by Lane [8], Patty [10], Fletcher, Hoyle
IIT and Patty [2], Reilly ([12], [13]), Raghavan and Reilly [11] and others. Kovar ([5],
[6], [7]) considered three topologies on a set. In this paper we consider an increasing
sequence of topologies on a set and define (w)topological spaces. We study different
properties of (w)topological spaces concerning compactness, local compactness,
paracompactness and separation axioms.

2 - (mw)topological spaces

We denote the set of real numbers and the set of natural numbers by B and N
respectively. k, [, m, n etc. denote the elements of N.

Definition 2.1. If {J,} is a sequence of topologies on a set X with
Tn C Ty for all n then the pair (X, {7,}) is called a (w)topological space.
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A set G in X is said to be (w)open if G is (J,)open for some n. F' is said to be (w)
closed if X — F is (w)open. It is clear that the unions and intersections of a finite
number of (w)open sets are (w)open. But we cannot say so for arbitrary unions ( see
Example 2.1) and intersections (since a topological space does not have this prop-
erty). We call a set (cw)open (resp. (dw) closed) if it is the union (resp. intersection) of
a countable number of (w)open (resp. (w)closed) sets. Since for any », an arbitrary
union (resp. intersection) of (7, )open (resp. (7,)closed) sets is a (J,)open (resp.
(Tn)closed) set, it follows that an uncountable union (resp. intersection) of (w)open
(resp. (w) closed) sets can be expressed as a countable union (resp. intersection) of
(w)open (resp. (w)closed) sets and hence is a (cw)open (resp. (dw)closed) set. Also it is
clear that the complement of a (cw)open (resp. (dw)closed) set is a (dw)closed (resp.
(ow)open) set.

If for some topology J on X, J, = J for all n then (X, {J,}) is identified with
the topological space (X, 7).

Throughout the paper, unless mentioned otherwise, X denotes the (w)topological
space (X, {J»}). Foranyset A C X, (J,)cl A denotes the closure of A with respect to
the topology J,, Jx|A denotes the subspace topology of 7, on A.

Definition 2.2. IfY C X then (Y, {7,|Y}) is called a subspace of (X, {7, }).

Definition 2.3. For aset A C X, (w)cl A is the intersection of all (w)closed
sets containing A. It follows that (w)cl A is a (dw)closed set.

Definition 2.4. AsetA C X is said to be (w)dense in X if for every nonempty
(w)open set G, ANG # 0.

Definition 2.5. Afilterbase F in X is said to be (w)convergent to xy € X if for
every (w)open set U with xy € U there exists an A € F such that A C U.

Example 2.1. Let 7 denote the indiscrete topology of the set of real numbers
R and 7, denote the power set of the set N, = {1,2,3, ...,n}. We write 71 = TU 71,
Jo =TUTy. In general, we write J,= 7U7T,,. Then (R, {J,}) is a (w)topological
space. For each n, N, is (J,)open. But N = U { Ny, is not (J)open for any n.

3 - (w)compactness and (w)separation axioms

Definition 3.1. X is said to be (w)compact if every (w)open cover of X has a
finite subcover.
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Remark 3.1. If X is (w)compact then it is clear that the topological space (X,
Jr) is compact for all n. But the converse is not true. This is shown in Example 3.1.

Definition 3.2. X is said to be (w)Hausdorff if for any two distinct points
x,y of X, there exists an n such that for some U,V € J,, wehavex c U ,y €V
and UNV = 0.

Remark 3.2. If for some n, (X, J,) is a Hausdorff topological space then X is
(w)Hausdorff. But the converse is not true as shown by the following example.

Example 3.1. Let J be the indiscrete topology of R and 7, be the subspace
topology U|1,, of the usual topology U/ of Ron I,, = ( — n,n). If 7, = J U, then (R,
{Tx})is a (w)topological space on R which is (w)Hausdorff but the topological space
(R, J) is not Hausdorff for any »n. If J,, = [ — n, nl, D, =U|J, and S, = T U D,
then (R, {S,}) is not (w)compact but the topological space (£, S,,) is compact for all
n.

Definition 3.3. X is said to be (w)regular if given a (w)closed set F' and a
point & € X with x¢ F', there exists an » such that for some U,V € J,, we have
xeU, FCVadUNV =0.

Example 3.2. Let us consider the increasing sequence {7} of topologies on
N defined by 7, = {N} U P{1,2,3,...,n}, where P{1,2,3,...,n} denotes the power
set of the set {1,2,3, ...,n}. Then the (w)topological space (N, {7, }) is (w)Hausdorff
but not (w)regular.

Definition 3.4. X is said to be (w)normal if given two (w)closed sets A and B
with A N B = (), there exists an % such that for some U,V € J,, we have A C U,
BcVandUnNV =0.

Definition 3.5. X is said to be completely (w)normal if for each pair A, B of
subsets of X satisfying

AN (Tl B) U ((Tm)el AN B) =10

for some m, there exists an n such that for some U,V € J,,wehave A C U, BCcV
and UNV = 0.

From Definitions 3.4 and 3.5 it is clear that every completely (w)normal space is
(w)normal. But the converse is not true as shown by the following example.
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Example 3.3. Let us consider the increasing sequence {.7,,} of topologies on
N defined as follows

Tu={0,{1}, N}U( ,61{{1,2,3, i1, {1,2,8, 0,0+ 21, {1,2,8, 4 i+ 1,1+ 2.
1=

Then it is easy to see that (NV,{7,}) forms a (w)topological space on N which is
(w)normal but neither (w)regular nor (w)Hausdorff.

If Ny = {1,2,3,4} thenit can easily be verified that the subspace (Ny, {7 »|N4})is
not (w)normal. Hence (Theorem 3.13) (N, {7, }) is not completely (w)normal.

It is easy to see that (w)Hausdorffness, (w)regularity and complete (w)normality
are hereditary properties. But (w)normality is not a hereditary property.

Theorem 3.1. IfX is (w)compact and K 1is a (w)closed subset of X then K is
(w)compact.

The proof is omitted.

Theorem 3.2. If for each n, (X, J,) ts a Hausdorff topological space and
X, {Tn}) is (w) compact then T, = T for all n,n'.

Proof. Letn<#'.ThenJ, C Jn.If GE Ty then F =X — Gis (J,)closed
and hence by Theorem 3.1, F' is (w)compact. Therefore F' is (7, )compact. Since (X,
J ) is Hausdorff, F'is (7, )closed and so G is (J,)open. Therefore 7, C Jo. O

Theorem 3.3. X is (w)Hausdorff iff for each x € X,
{x} = ﬂN{(jn)cl U|UceJ,withxeU}.
ne.

The proof is omitted.

Theorem 3.4. X s (w)Hausdorff iff each (w)convergent filterbase in X
(w)converges to exactly one point.

Proof. Firstly assume X is (w)Hausdorff and F be a filterbase in X which is
(w)convergent tox € X. If y € X is a point distinet from « then there exists an n such
that for some U,V € J,,wehavex € U,y € Vand U NV = (). By hypothesis there
exists some A; € F such that A; C U. Since any two elements of F have nonempty
intersection there can be no element As € F such that As C V. Thus F cannot
(w)converge to y.
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Conversely suppose each (w)convergent filterbase in X is (w)convergent to a
unique point. If possible suppose there exist a pair of distinct points «, % such that for
any » and any U,V € J,, with x € U, y € V we have U NV # (. Then the family
F={UnV | UVeJ, xcU, yecV,ne N} is a filterbase in X which is
(w)convergent to both « and y. Thus we arrive at a contradiction. O

Theorem 3.5. Let X be (w)Hausdorff, x € X and K be a (w)compact subset of
X with x & K. Then there exists an n such that for some U,V € J,, we have
xcU KCcVand UNV =.

Proof. For each yec K, there exists an n, € N such that for some
Un,,Va, € Tn,, we havex € Uy, y € Vy, and Uy, NV, = (. Then the family {V, |
ye K} is a (w)open cover of K and hence there is a finite subcover
(Vi Viyys oo Vi - Let U = ﬂf:lUnyi andV = U;“:IV,M. Since J,, C Jy+1 for each
n, U and V are (J,,)open sets where m = max{n,,,n,,, ...,n,, }. Alsowe havex € U,
KcVandUNV =0. O

In a Hausdorff topological space every compact subset is a closed set. Here we
get the result as follows.

Theorem 3.6. If X is (w)Hausdorff and K C X is (w)compact then K is a
(ow)closed set.

Proof. Letx € X — K. Then by Theorem 3.5 there exists an n,, € N such that
for some U,,V, € Jy,, x€ Uy KCV, and U,NV, =0. Therefore X — K C
U{Uplee X —K}CcU{X-V,|] x€X-K}CcX-—K and so X-—K=U{U,
x € X — K}. Therefore X — K is (cw)open and hence K is (dw)closed. O

We now give an example of a (w)compact set in a (w)Hausdorff space which is not
(w)closed.

Example 3.4. The interval [a,b] C R is (w)compact in the (w)Hausdorff
space (R, {J,}) of Example 3.1. Its complement A = (— oo, @) U (b, o) is not
(w)open, since it is not (7, )open for any n. But A = U2, {( — k, a) U (b, k)} and so it
is (ow) open. Thus [a, b] is not (w)closed but (dw)closed.

Theorem 3.7. X is (w)regular iff for any point x € X and any (w)open set
G containing x, there exists an n such that for some (J,)open set U containing
x, we have (J,)cl U C G.

The proof is omitted.
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Theorem 3.8. If X is (w)compact and (w)Hausdorff then X is (w)regular.
Proof. Follows from Theorem 3.1. and 3.5. O

Theorem 3.9. Let X be (w)regular. If F' be a (w)closed subset of X and K is a
(w)compact subset of X with F N K = () then there exists an n such that for some
UVeTnwehweF CcU KcCVand UNV =0

Proof. Similar to Theorem 3.5. O

Theorem 3.10. X is (w)normal iff given a (w)closed set F' and a (w)open
set W with F C W, there exists an n such that for some (J,)open set U,
FcUcCc(TylUcW.

The proof is omitted.

Theorem 3.11. If X is (w)compact and (w)reqular then X is (w)normal.
Proof. Follows from Theorem 3.1 and 3.9. O
Corollary 3.1. If X is (w)compact and (w)Hausdorff then X is (w)normal.

Before we prove the next theorem(Urysohn’s lemma [3]), we introduce the fol-
lowing definition.

Definition 3.6. A function f : X — [0, 1] is said to be (cw)continuous if for
every open subset G of [0, 1], f~1(G) is (cw)open.

Theorem 3.12. If X is (w)normal then for any two (w)closed sets A and
B with AN B = (), there exists a (ow)continuous function f : X — [0,1] such that
fA)=0and f(B) = 1.

Proof. SinceA Cc X — Band X — B is (w)open, by Theorem 3.10 there exists a
positive integer <%> such that for some U u() € T uy» We have
ACUy,y C Tyl Uy CX —B.
By using similar process we get U, 1) € 7,0 and Uy € J @ such that

AC Un(i) c(J n(i))d Un(%) - Un(%) cJ n(%))d Un(%)

C U,,,(%) C (jn@))cl U?’I(%) C X - B.



[7] ON INCREASING SEQUENCES OF TOPOLOGIES ON A SET 179

By repeating the same process we get fort € D = {% |0<l<2™ [ me N}, aset
Un) € T for some positive integer n(f) such that for s,t € D with s <t we have

(Tus)el Upsy C Ungy-
If we define U, = 0 and U,q) = X then the above relation is also true when s, ¢
coincide with 0 or 1. For ¢ # 0,1, we have
A CUypy C(Tnwel Uypy € X —B.
Now we define the function f : X — [0,1] by
f@) =inf{t | x € Uyp}.
Then f(A) = 0 and f(B) = 1 and for a € (0, 1),
{reX|fl®<a}= tga Uy,

{xeX |f@)>a}= Y (T el Unp)©

Since the sets on the right hand side of the above two equalities are (ow)open, it
follows that f is (cw)continuous. O

Theorem 3.13. X is completely (wymormal iff every subspace of it 1is
(w)normal.

Proof. The necessity follows from the fact that a complete (w)normal space is
(w)normal and complete (w)normality is a hereditary property.
To prove the sufficiency, let A and B be two subsets of X such that

3.1 AN(T el B) U((Tm)cl A)NB) =0
for some m. Let us write
D=X—-(Twel A)UX — (Tw)l B).

Then
DN (Tl A)ND N (T el B) = 0.

Since the subspace (D, {7,|D}) is (w)normal, there exists an [ such that for some
U, Ve Ji|D,wehave DN (T p)clAC U, DN(Tp)lBCVand UNV = 0.

From (3.1) we get AN(Jw)el B=0 and so A C X — (Jp)el B. Similarly
BcX—(Ju)clA. Therefore A Cc DN (Tl Aand B C DN (Tl B.

If Vi=VvnX—(TIw)l A) then DN (Ty)cl B CVi. Also since V € J;|D
and X — (Tp)cl A e Ty it follows that Vi € J,, where n = max{l,m}. Since
U € J,|D there exists U; € J; such that Uy N D = U. Then U;,V; € J,, A C Us,
BcViand U nVicUNnV=UND)NV (sinceVcCD)=UnV=4. O
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4 - Local (w)compactness and (w)paracompactness

Definition 4.1. X is said to be locally (w)compact if for each point x of X,
there exists an » such that for some (7,)open neighbourhood U of x, (J,)cl U is
(w)compact.

Definition 4.2. A collection U of subsets of X is said to be locally finite if
each x € X has a (J,)open neighbourhood meeting a finitely many U € U.

It is clear that (w)compactness implies local (w)compactness.

Definition 4.3. A (w)Hausdorff space X is said to be (w)paracompact if each
(w)open cover of X has a locally finite (J,)open refinement for some 7.

It follows from the definitions that a (w)compact (w)Hausdorff space is
(w)paracompact.

The (w)topological space (R, {J7,}) of Example 3.1, is locally (w)compact and
(w)paracompact but not (w)compact.

Theorem 4.1. Let X be (w)Hausdorff: Then X is locally (w)compact iff for
each point x and (w)open set G containing x, there exists an n such that for some
(Tn)open set U contarning x , we have (J,)clU C G and (J,)clU is (w)compact.

Proof. Suppose X is locally (w)compact and G is a (w)open set containing .
Then there is an [ such that for some (J;)open set V withx € Vand A = (J))cl V is
(w)compact. The subspace (A, {J,|A}) is then (w)compact and (w)Hausdorff and
hence, by Theorem 3.8 it is (w)regular. Therefore, by Theorem 3.7 there is an m such
that for some (J,,]4)open set W containing x, we have (7,,|A)cl W C GNA. Let
W=HnNA where He J,,,. If U=HNYV then U € 7, where n =max{l,m},
x € U and

(Tn)el U= ((Jp)l U)NA (since A is (J,)closed)

Therefore, by Theorem 3.1 (J,,)cl U is (w)compact. Also
(jn)Cl U cC ((._7n|A))Cl W cG.

The converse is obviously true. O

From the above theorem we get the following theorem which is an improvement
of Theorem 3.8.
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Theorem 4.2. If X is (w)Hausdorff and locally (w)compact then X is
(w)regular.

It is easy to see that a (w)closed subspace of a locally (w)compact space is locally
(w)compact. The next theorem gives another source of locally (w)compact spaces.

Theorem 4.3. If X is (w)Hausdorff and locally (w)compact and G C X is a
(w)open set then the subspace (G,{T,|G}) is locally (w)compact.

The proof is omitted.
The next theorem is a sort of converse of the above theorem.

Theorem 4.4. Let X be (w)Hausdorff and Y be (w)dense subset of X. If
Y, {Tn|Y}) s locally (w)compact then Y is (cw)open set in X.

Proof. Fory €Y, wechooseanmn, € N such that for some (7,,|Y)open set U,
with ¥ € U, and (J ny IY) cl U, is (w)compact. For some G, € J,,, we have
U,=G,NY.Leta e G, and H be any (w)open set containing a. Then G, N H # ()
and G,NH is (wopen in X. Since Y is (w)dense in X, (G,NY)NH
= (G, NH) NY # (. It thus follows that a € (w)cl (G, NY) and hence

(3.2) Gy C (@)l(G,NY)

Since (J ny|Y)cl U, is (w)compact, by Theorem 3.6 it is a (dw)closed subset of X.
Now G, NY C (Jy,|Y)cl Uy, and so (w)cl(G, NY) C (Tx,|Y)clU, C Y. Therefore
by (8.2), G, C Y which implies that Y = U{G, | y € Y}. Hence Y is (sw)open. [J

Theorem 4.5. If X is (w)paracompact then every (w)closed subset of X 1is
(w)paracompact.

The proof is omitted.
The following theorem is also an improvement of Theorem 3.8.

Theorem 4.6. If X is (w)paracompact then X is (w)regular.

Proof. SupposeAisa(w)closedsetwitha ¢ A. Foreveryy € A there exists an
ny € N such that for some (J,,)open sets U, and V,,, we have x € Uy, y € V,, and
U, NV, = 0. Then the family {V, | y € A} U{X — A} forms a (w)open cover of X.
Since X is (w)paracompact, for some #, there exists a locally finite (7, )open re-
finement C of this (w)open cover. Let V = U{G € C | GNA # 0}. Then there exists,
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for some m, a (J,,)open neighbourhood W of & meeting only a finite number of sets
Vi,Vo.., Vi of C. Let V; C V,,, i € A, i=1,2,..k. Then U = Wn (N*_,U,) € T,
and V € J; where [=max{m,n,n,,ny,..,n,}. Since xcU, ACV and
UnV =0, X is (wregular. O

Using this theorem and proceeding as above we can show that X is (w)normal if it
is (w)paracompact.

Added remarks in the light of referee’s comments:

1) The possibility of an analogue of Michael’s theorem ([9], p. 831) on regular
topological spaces in the (w)setting remains as an open question. This is a sort
of converse of Theorem 4.6. We will consider it in a separate paper. For
(w)paracompactness, the existence of a (J,)open refinement for any (w)open
cover is a stronger condition. So a stronger (w)regularity notion might be
needed to prove the analogue of Michael’s theorem.

2) If 7=J, then (X,J) is not a topological space and even it is not an
Alexandroff spgce [1] which is a generalization of a topological space requiring only
countable union of open sets to be open. In fact, an arbitrary (or countable) union of
sets € J may not belong to 7. But taking advantage of the topologies 7, we can,
however, get many properties of (X, {7, }), close to that of a topological space which
are not necessarily possessed by an Alexandroff space.

3) A possible field of application of the new topological notions presented in this
paper seems to be in digital topology and in topologies inspired by computer science.

Acknowledgments. We are thankful to the referee for his very positive cri-

ticism.
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Abstract

In this paper we introduce and investigate the notion of a (w)topological space which is a
set equipped with an increasing sequence of topologies on it.
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