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Asymptotic behaviours of hydromagnetic boundary

layer flows past a semi infinite flat plate (**)

1 - Introduction

Hydromagnetic flows have been receiving considerable attention due to their
applications in astrophysics because much of the universe is filled with widely spaced
charged particles permeated by magnetic fields. Due to this reason, noticeable work
has been done on the hydromagnetic flows by Shercliff [1], Rossow [2], dealing with
the various phenomena in hydromagnetic boundary layers. Cobble [3] showed the
conditions under which a similarity solution exists to hydromagnetic flow over a
semi-infinite flat plat in presence of magnetic field and a pressure gradient with or
without suction and injection. The heat transfer aspect of hydromagnetic boundary
layer flows has been studied by Soundalgekar and Ramanamurthy [4].

The study of the asymptotic behaviours of the solutions of equations governing
problems of physical significance in boundary layer theory is an interesting aspect of
discussion in fluid mechanics. One of the most important problems in the study of
differential equations and their applications is that of describing the nature of the
solutions for large positive values of the independent variables and this purpose is
completely served by the study of the asymptotic behaviours. Thus the asymptotic
behaviour pays particular attention towards a desired problem for finding conditions
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under which a solution approaches zero as the independent variable tends to infinity,
or is very small for all the independent variables, or is bounded as the independent
variable tends to infinity.

As a matter of afore-mentioned facts, the study of the asymptotic nature of the
solutions of the Falkner-Skan [5] equations governing a steady two-dimensional
flow of a slightly viscous incompressible fluid past a wedge was initiated by
Hartman [6]. Serrin [7] also studied the asymptotic behaviours of the velocity
profiles in the Prandtl boundary layer equation for the steady two-dimensional
laminar flow of an incompressible viscous fluid past a rigid wall. Later, the study of
the asymptotic behaviours of the differential equations governing the various flow
fields was carried out by Singh [8], [9], [19], Singh and Singh [10], [14], Singh and
Kumar [15], Lu et al. [16], Harris and Pucci [17], Parhi and Das [18], [20], Singh and
Verma [21], Tiryaki and Yaman [22], etc.

The objective of the present paper is to study the asymptotic behaviours of the
solutions, as the similarity independent variable # — oo, of the equations governing
the flow of an electrically conducting incompressible viscous fluid in presence of a
transverse magnetic field past a semi-infinite flat plate. The asymptotic behaviours
of the corresponding heat transfer equation have also been studied. The mathe-
matical analysis of the problem is based on an important method of asymptotic in-
tegration of second order linear differential equations. The asymptotic behaviours of
the principal and linearly independent solutions have been studied for accelerated
(# > 0) and decelerated flows (f < 0). The results pertaining to the asymptotic be-
haviours have been expressed in terms of theorems.

2 - Mathematical analysis

The similarity equations governing the low-speed laminar boundary layer flow of
an electrically conducting incompressible viscous fluid with density p, specific heat at
constant pressure C,, kinematic viscosity v in the presence of a transverse magnetic
field H past a semi-infinite flat plate are (Soundalgekar and Ramanmurthy [4])

(1) fll/ +ff” 4 ﬂ(l _f12) + M(l _f/) — 0
@) g +Pfy =0

under the boundary conditions

3) f0) =£(0) =0, f(c0) =1

@ 9(0) = 1,9(c0) = 0
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together with the side condition
6)) 0<f <1 on [0,00).

Here 5, M and P are respectively longitudinal acceleration, magnetic parameter and
Prandtl number. Also f” and g are the dimensionless velocity and temperature profiles.

Now, for getting the asymptotic formulae of (1) - (5), we shall base ourselves on
the following arguments given in the form of theorems :

Theorem 1. The autonomous, third order, non-linear differential equation
@), 3), (5) will have one and only one solution for f > 0 such that f” > 0 on [0, c0).

Proof. From (1), f”+ff"+I[A+f")+MI1—f)=0. Since f' >0 and
S >0, hence f(1 +f") + M > M + f > 0. Therefore, the proof of above theorem is
similar to the proof of Theorem 6.1 (Hartman [23], p. 520).

Theorem 2. Let f§ be fixed and f < 0 such that M + f < 0. Then there exists a
number A = A(B, f) and a continuous increasing function y(a) defined for a > A
with the properties that y(A) = 0 and that if f (i) is the solution of (1), (3), (5), then
0 < f"(0) < y(a), such that f"(n) > 0 on [0, 00), where f(0) = a =0, f'(0) = f = 0.

Proof. From ), f" +ff" +[pA+f)+M]J1—f")=0. Since f' >0, <0
and M + f < 0, hence (1 +f') + M < 0. Therefore, the proof of this theorem is si-
milar to the proof of Theorem 7.1 (Hartman [23], p. 525). Here it may be stressed
that while Theorem 1 provides sufficient conditions for the existence and uniqueness
of the solutions, Theorem 2 gives necessary conditions for its existence.

3 - Asymptotic behaviour

If f(n) is the solution of (1), let us put

(6) h(n) =1 —f'(p).
Then h(n) satisfies the differential equation
(7 "+ — k(1 + 1+ M]=0.

In order to eliminate the middle term in (7), let us put

"
&) h = xexp (— % Jf(s)ds) ,

0
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so that x(7) satisfies
9) 2 —qpe =0,

where

(10) q(ﬂ):ﬁ+M+(ﬂ—|— )f+ 2= fZ[ 4(/3+M)+2(2ﬂ+1)f'].

12 12
From (10),

qn) = (ﬁ+%)f”+%ﬁ”;
=3 Jorsmw(p o o) oo

Since 0 < f" < 1,f”" > 0andf' ~ 1, f ~ nasn— oo, hence for large 5 a constant K
can be so chosen that

q"’/zS [J%Q+J;:+n }
|

In addition, [ f”dpis absolutely convergent, since f'(7) — 1 as 7 — oo, so that

T q2dy l"ldn _
(11) J e < oo and J T < 0,
provided that
o0 f//Z d’7
12) J < o0
7d
ocf//d;/]

< 0oQ.

az) [ 5

The validity of (12) can be proved by integration by parts by taking f— and f” as
the first and second functions, so that

f//2 d”/ - f/f//
PP

f//

Jf/ [ﬁ(l M -fy+ 2

using (1). The last integral is absolutely convergent and liminff” = 0 as n — co.
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Thus, (12) holds. On similar lines, the integral (12’) will be absolutely convergent and
hence the validity of (12’) can also be established. Consequently, (11) holds.

Moreover, q(y) is a continuous and positive function on 0 < 5 < oo, hence (9) has
the principal solution x(#) satisfying, as n — oo,

n

13) X~ Klq’l/4 exp ( - Jql/z(s)ds),

where K; # 0 is a constant, while linearly independent solutions satisfy

n

14) x~ Kiqg ' exp (Jql/z(s)ds), Ky #0;

cf. Exercise XI 9.6 (Hartman [23], p. 382). From the last part of (10) and f ~ #;

, _1/2
@20 =gf + (84 e o )~ )

1 I
hence Jql/z(r/)d;y = %den + (ﬂ += ) log f+WM +/3)J +c® 4+ 0(1), where ¢ is a

f
constant.
Therefore (13) and (14) become
n
(15) x~ Kt exp(—J [—f(s)+M+ﬁ}ds>;
f(s)
h M
(16) wamﬁexp<—|—J[—f(s)+ f(+)ﬁ]ds).
In view of (8), the equation (7) has the principal solution satisfying
1
a1 h ~ Kin#lexp ( - J [f(s) + 1‘;{ (:)ﬁ } ds>, Ki #0,

while the linearly independent solutions satisfy
(M
(18) thm'gexp<—J[f(——;ﬁ]ds>, K 40,

as n — oo.
Differentiating (7), one gets

19) K" 4 "+ [ —2R)f — M1} = 0.
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Treating (19) as the second order differential equation in /' in the same way that (7)
was handled, (19) has the principal solution satisfying

n

M
I gt —2f . i
(20) h = Kin " exp < J [f(s) +f(8)]ds), K| #0,

and that the linearly independent solutions satisfy

n
21) B = K lexp ( + J []%} ds) , Ki #0,

as 1 — oo.
If (6) satisfies (17), then, since f(y) ~ 7, it follows that

j ah(dn < oo

thus
7

2
FO) =+ Ko + o(1), den=%+Kzn+Kg+0(1)

as 17 — oo.
Substituting this in (17), (20) gives

(22) 1—f ~ Koy ™7 exp ( —~ g - Kz'?) !~ =),

as 7 — oo, where Ky > 0, K are the constants.

If (6) satisfies (18), then f ~ 5 implies that b = 1 — f' ~ KipM*+2/+°0 a5  — oco.
Hence f() = n+ O +%-149) as y — oo for all € > 0.
If this is substituted into (18), (21) and if it is supposed that M + f < 0 (and
M + 2+ €< 0), then

(23) 1—f ~ Ko™, " ~ —(M + 2B) KoM 1

as 57 — oo, where Ky > 0 is constant.
Finally, for the equations (2), (4), (5), the principal solutions satisfy

(24) g ~ Kjexp (—P{§+Kzn}>; g ~ 1%,

as 7 — oo, where Kj, > 0 is constant, while the linearly independent solutions
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satisfy
25) g~ K% g ~ 0,

as 7 — oo.

4 - Results

The results pertaining to the asymptotic behaviours of the principal and
linearly independent solutions of (1) - (5) can be put in the form of following
theorems:

Theorem 3. For f > 0, there exist constants Ky > 0, Ko such that (22) holds
as n — oo.

Proof. For a given f(y), it has to be decided whether » =1 — f’ satisfies
17),(20) or (18),(21). If > 0, (18) can not hold, for otherwise h =1 —f" — 0 as
n — oo fails to hold. Thus (17), (20) are valid as # — oc. As was seen, (17) and (20) give
(22). Hence (22) holds as 7 — oo.

Theorem 4. There exist constants K > 0, Kz such that (24) holds as n — oo.

The proof is similar to that of Theorem 3.

Theorem 5. Let M+ <0,a>AB,B) where AB,B),y(a) are given by
Theorem 2. Let f () be a solution of (1), (3), (5). Then there exist constants Ky > 0, Ky
such that (22) holds iff f"(0) = y(a); for other solutions f() of (1),3),(5) with
a>AQP,p)and 0 < f7(0) < y(a), the asymptotic relations (23) hold with a switable
constant Ky > 0.

Proof. If f*(») is the solution of (1), (3) and f*"(O) = 9(a), then (22) holds.
Let z*(f) = f2 > 0 and let y(f) be a solution of Weber’s equation v + fv — 2cv = 0

where b = 3—;, satisfying SN —f as f — oo, and y(f) > 0 for large f.
Letv*(f) = — % ,and 7(f) = i—j, where 7 denotes the logarithmic derivative of

a non-trivial solution 7 = g; the corresponding Riccati equation being

t= -1+ Q2c —f1).
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Then, for large f,r*(f) < z(f). For suppose that r*(f) > 7(f) for some large
f=h. 5

In this case, (f) > ©(f) for f = fyif 2(f) = 1
with f”(0) = p(a) + ¢ for small |¢|. But then, it follows that »(f) > z(f) for all f > f;
and that f(») satisfies (1),(3),(5). This contradicts the main property of y(a).

Hence r*(f) < t(f) for large f, and so 1 — 2*(f) < c*o(f) for large f and some

belong to a solution of (1), (3)

1 ,
constant ¢* > 0. Since v(f) ~ —éfz as f — oo, it follows that h =1 — f* can not

satisfy (23) and therefore (18). This gives the conclusion that (22) will hold as 7 — oo,
thereby proving the theorem.

5 - Concluding remarks

The asymptotic integration method to find out the solutions of non-linear
boundary layer equations is the corner-stone of Applied Mathematics. This is a
method to find the approximate solutions for velocity profiles for very large
values of the independent variables. One of the other corner-stones of Applied
Mathematics is scientific computing and it is interesting to note that these two
subjects have grown together. However, this is not unexpected given their re-
spective capabilities. By using computers, one is capable of solving problems
that are non-linear, non-homogeneous and multi-dimensional. Moreover, it is
possible to achieve very high accuracy. The drawbacks are that the computer
solutions do not provide much insight into the physics of the problem, parti-
cularly for those who do not have access to the appropriate software or com-
puter and there is always a question as to whether or not the computed solution
is correct. So, the main objective behind the use of the asymptotic integration
method, at least as far as the author is concerned, is to provide reasonably
accurate expression for the solution for large values of #. By doing this, one is
able to derive an understanding of the physics of the problem. Also, one can use
the result in conjunction with the original problem, to obtain the more efficient
numerical procedures for computing the solution.
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the paper.
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Abstract

This paper deals with the asymptotic behaviours of the solutions, as the similarity in-

dependent variable tends to infinity, of equations governing the laminar flow of an in-
compressible viscous fluid in presence of a transverse magnetic field past a semi-infinite flat
plate; the entire mathematical analysis being based on the asymptotic integrations of second
order linear differential equations. The results pertaining to the asymptotic behaviours of the
principal and linearly independent solutions have been expressed in terms of theorems.
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