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1 - The Boltzmann Equation

The Boltzmann equation governs the evolution of the distribution of molecules in

rarefied gases. Originally, the equation was written by Boltzmann for monatomic gases.

Various generalizations have been proposed more recently (for polyatomic gases, with
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exchange of internal energy at the molecular level or chemical reactions). However, for
the sake of simplicity, the present survey will only address the case of monatomic gases.

This chapter follows mostly the presentation in [12], [55] and [8].

In kinetic theory, the state of a (rarefied) gas is adequately described by the
distribution of molecules in phase-space (also called the distribution function or the
number density), F' = F(t, x,v) which is the density of particles located at the posi-
tion # € R® with velocity v € R? at time ¢ > 0.

In the absence of external forces (such as gravity, Coriolis force, electromagnetic
force in the case of ionized gases), the number density F' = F'(¢, x, v) satisfies

1) OWF +v-V,F = BF,F)

where B(F, F) is the Boltzmann collision integral.
The following simple remarks have important consequences on the structure of
the Boltzmann equation:

e because the Boltzmann equation is meant to describe a rarefied gas, molecular
collisions other than binary are neglected,

e at the kinetic level of description, the molecular radius is neglected every-
where except in the expression giving the mean free path, so that

e in Boltzmann’s theory, collisions are a purely local and instantaneous process.

In view of these remarks, one anticipates that

e the collision integral is quadratic in the number density F', and
e the collision integral acts only on the v variable in F(¢, x, v).

1.1 - The Boltzmann collision integral

For a gas of hard spheres with radius r, the action of the Boltzmann collision
integral on a function f = f(v) is

2) B(f, /w) = 2r* ” (fONfW,) — f) f@)|(v —v,) - w|dwdv, ,
R*xS?
where the velocities v' and v/, are defined in terms of v, v, and w by the formulas

vV =0,0,,0)=v—®—-12,) 00,

3
(3) V=0 0,0,0) =0, + W —0,) 0.

*

That the collision integral acts only on the v variable in /' means that the right hand
side of the Boltzmann equation (1) is

B(FaF)(t7x7 ’U) = B(F(t7 X, '),F(t,.%', ))(,U)
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with the definition (2) above for the collision integral acting on a function of v alone.
The following notation may seem unfelicitous; it is however customary in the
literature devoted to the Boltzmann equation and must not be ignored.

Notation: one designates F(¢,x,v.), F(t,x,v") and F(t,x,v.) respectively by F,,
F'and F'.
With this notation, the collision integral in the right hand side of (1) is written as
B(F,F) = 2/* “ (F'F. — FF,)|(v —v,) - o|dodv, .
R*xS?
Later on, we also designate by B the symmetric bilinear operator associated to the
quadratic expression above:

B(F,G) = %(B(F +G,F+G) —BF,F)-BG,G).

Let us discuss the geometrical and mechanical meaning of the relations (3).
Observe first that these relations can be equivalently formulated as

v+ =0+,
V= =w—2) 20—, o0=TR,w—0,)

(4)

where R, designates the specular reflection on the plane orthogonal to the vector w.
In particular, one has

(5) W == v -2
Therefore the 4 points v, v., v’ and v/, lie on a same circle, and w is one of the (external)
bissectors of the angle (v — v,, v — v) — see figure 1.

Fig. 1. The pre- and post-collision velocities in the reference frame of the center of mass of the
particle pair.
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From the mechanical viewpoint, the origin %(v + v,) is the velocity of the center of
mass for any pair of molecules with velocities v and v,; in (4), the first equality is the
conservation of momentum for any pair of colliding molecules with velocities v, v, after
collision, and ¢/, v/, before collision. The equality of relative speeds before and after
collision is equivalent to the conservation of kinetic energy by the collision process —i.e.
the collisions considered are purely elastic. In other words, v'(v, v., w) and v, (v, v, )
represent all possible solutions in the unknowns v" and v/, of the system of equations

V4V =0+,
(6)
WP+ WL = [0 + o
Momentum and kinetic energy, together with the number of gas molecules, are the only
natural conserved quantities at the microscopic level.

In this survey, when considering a gas of hard spheres, we shall assume without
loss of generality that the molecular radius is 1/v/2.

The most important properties of the Boltmann equation, described in the next
two sections, are straightforward consequences of the structure of the collision in-
tegral, and more specifically of the conservation laws at the microscopic level es-
tablished above.

1.2 - Local conservation laws

First, one expects that the conservation laws (6) should have analogues at the
macroscopic (fluid) level. These analogues are formulated according to the gen-
eral recipe for defining macroscopic observables starting with microscopic
quantities.

Proposition 2.1. Assume that f =f() € Llloc(R?’) 18 rapidly decaying at
mfinity, t.e.
F@ =0(v|™) as [v] = +oo foralln >0,
while ¢ € C(R?) has at most polynomial growth at infinity, i.e.

() = O([v|™) as |v| — +oo  for some m > 0.

Then one has

| g1 ||| r-goe+s.-¢ - Dl -0 wldwduan..

R® R*xR?xS?
Since the proof of this proposition involves some of the most fundamental tricks in
the theory of the Boltzmann collision operator, we give it in detail.
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Proof. Theassumptionsonthe decay off and the growth of ¢ at infinity guarantee
that all the integrals considered in the course of this proof are absolutely convergent.
Start with the obvious equality

| g =[]« -ggiw-v) - oldwdus..
R’ RO xR*xS*
In the right-hand side of this equality, for each fixed w € S%, apply the change of

variables (v, v,) — (v, v). The formulas (3) show that, under this change of variables
W, v.)— ., v'). Hence

| 507 o - (Ff! — 58l — v.) - oldodudo,
R’ R*xR*xS*
= (f'fl = 9.l — v.) - o|dw dvdv,
RSXR:BXSZ
= (f'f! —ﬂ)#m)—v*)-@dwdvdv*.

R? ><R§><S2
Next, apply the change of variables (v,v,)— (v/,v.) for each fixed w € S? in the last

integral above. In the reference frame of the center of mass, this change of variables
essentially reduces to the specular reflection R, that exchanges the relative velocities:

Re:v—v,—=0 —0,.
Because R, is an involution (meaning that RZ) = Id), the change of variables above
also is an involution and maps (v', v),) onto (v, v.). Moreover, the second relation in (6)

implies that this change of variables is an isometry of R® x R?, and therefore leaves

the Lebesgue measure dvdv, invariant. Since (v/ —v.) - w = —(v — v,) - », applying
this change of variables in the right hand side of the above equality implies that

| Ber. pea

R3

- FF = 02525 10— 0.) - woldo dvd.

2
R*xR®xS?

= (ff —fﬂ)%l(v—v*)'wmwdvdv*

R*xR*xS?

- L A S

1 |(v = v,) - w|dw dvdw,

oJ
R*xR?xS?

as announced. O
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In view of the proposition above, the following class of functions is of particular
importance.

Definition 2.2. A collision invariant is a measurable a.e. finite function
¢ = ¢(v) such that, for each (v,v,) € R? x R? and each o € S2, one has
¢) + ¢v.) = ¢(v') + $(v)) .

Constants are obviously collision invariants. In view of (6), other interesting
examples of collision invariants are ¢(v) = vy, for k = 1,2,3 — i.e. the 3 components
of v — or ¢(v) = |v]°.

An important result in the theory of the Boltzmann equation asserts that the
examples above provide all the collision invariants, up to linear combinations.

Proposition 2.3. Any collision invariant is a function of the form
¢(V) = @ + byvy + bavs + byvs + clvf*,
where a, by, be, by and c are arbitrary elements of R.

The proof of this proposition is far from obvious; see for instance [12] on pp. 36-42.
In any case, whenever ¢ is a collision invariant and f is a measurable, rapidly
decaying function, it follows from Proposition 2.1 that

| Bt pgav—o.
R3
This entails in particular the following
Corollary 2.4. Let F = F(t,x,v) be a solution of the Boltzmann equation (1)
that is locally integrable and rapidly decaying in v for each (t,x). Then
(M) J BF, F)dv = J BF, Fyv,dv = J B(F, F)[v|*dv = 0
Jor k =1,2 3 and the following local conservation laws hold:
Oy J Fdv + div, J vFdv =0,
R3 R3
) Oy J vFdv + div,, J VR UFdv =0,
R? R?
1 2 . 1 2
0y J §|v| Fdv + div, J vé|v| Fdv=0,

R} R?
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respectively the local conservation of mass (or continuity equation), momentum
and energy.

Define the following fields:

p:JFdQ), u:ljvmv, P= J(v—u)®2de,
RS pR3 RS

C= J (v—u)|v—u|2de.
RS

Notice that, by definition of %, one has

J v2Fdy =pu®? + P,
R3
J WwPFdv =plul® + trace(P),
R3
J v\v|2de :(p\u|2 + trace(P)u +2P -u + C'.
RS
Therefore, the system of conservation laws above can be put in the form
Op + divy(pu) = 0,
(9) Oy(pu) + divy(pu @ u +P) =0,
1 .1
O §(p|“|2 + trace(P)) + div, i((PWz + trace(P)u + 2P -u+C)=0.
If we knew that P = pI and C' = 0, this system would coincide exactly with the Euler
equations for compressible fluids, with perfect gas pressure law.

However, one should bear in mind that (9) is satisfied by any solution of the
Boltzmann equation, and therefore by any perfect gas in a kinetic regime. Thus one
cannot expect that such a gas in a kinetic regime be in local thermodynamic equili-
brium. In other words, one cannot hope that, for a generic solution of the Boltzmann
equation, the tensor field P be of the form plI, for instance, or that C = 0. As we shall

see, deriving the compressible Euler system from the Boltzmann equation requires
additional arguments.

1.3 - Boltzmann’s H Theorem

Undoubtedly, the most important feature of the Boltzmann equation, along with
the conservation laws stated in Corollary 2.4 is Boltzmann’s H Theorem. As in the
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case of the conservation laws, we begin with a statement that bears exclusively on the
collision integral.

Theorem 3.1. (Boltzmann’s H Theorem). Let f = f(v) > 0 be a locally in-
tegrable function that is rapidly decaying and such that Inf has at most poly-
nomaial growth as |v| — + oo. Then

4 Vg

R? R*xR*xS?

st(f,f)lnfazp:—1 m (f’f*’—ﬁ‘*)ln<fﬂ>|(v—v*)-w|dwdvdv*§0.

Moreover, the following conditions are equivalent:
(@) B(f,f)=0a.e.,
®) | Bef, Hinfitn =0,

RS
(e) f s a Maxwellian density, 1.e.

\v—u\z
20

) _
J@) = Mpup@) = We

for some p,0 > 0 and u € R®.

Proof. Applying Proposition 2.1 with ¢ = Inf leads to the first equality above;
since the logarithm is an increasing function, the right hand side of this first equality
is nonnegative.

As for the equality case, observe that (a) obviously implies (b); that (¢) implies (a)
follows by inspection. The only non trivial point is that (b) implies (c). If one takes
Proposition 2.3 for granted and assumes that f is continuous, it is immediate. Indeed,
Inf is then a collision invariant, which is clearly equivalent to the fact that f is a
Maxwellian. O

Since we do not know in general whether f is continuous, the implication (b) = (¢)
is a consequence of the following

Lemma 3.2. (Perthame [49]). Let f > 0 a.e. be a measurable function such
that

J 1 + o) f@)dv < +oo.

R3
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If
f@)fw) =f@)fw,)
for a.e. (v, vy, w) € R? x R? x S? with v/ and v, given by (3), then f is a Maxwellion.
Perthame’s proof uses the Fourier transform of the functional equation on f in a
very clever way; see also [8] on pp. 47-48.

From the above statement on the collision integral, we deduce the following
important consequence on solutions of the Boltzmann equation.

Corollary 3.3. LetF = F(t,x,v) > 0be a solution of the Boltzmann equation
that is rapidly decaying and such that In F' has at most polynomial growth as
|v| — 4o00. Then, one has

(10) Oy J FlnFdv + div, J v In Fdv

R? R?

1 - P
=-7 J” (F'F,—FF,) In <FF*) (v — v,) - w|dodvdy, <0.

R*xR*xS*
Defining
S = —1 J FInFdv, N=- J (v —w)F In Fdv
pR3 R’
we see that the differential inequality (10) takes the form
(11) O(pS) + divy(pSu + N) > 0.

Again, this differential inequality is formally reminiscent of the Lax-Friedrichs
criterion that selects admissible solutions of hyperbolic systems of conservation
laws, of which the Euler equations for compressible fluids are the most famous ex-
ample. See [13], §4.3 for a discussion of this criterion. In the case of the Euler
equations for perfect gases, N = 0, so that the above differential inequality means
that the specific entropy S is a nondecreasing quantity along the trajectory of each
infinitesimal fluid element.

However, the inequality (11) is satisfied by any solution of the Boltzmann
equation, therefore by any monatomic gas of hard spheres in kinetic regime.

A considerable difference with the theory of ideal fluids is that Boltzmann’s H
Theorem provides an expression for the entropy production rate in terms of the
number density that is local in (¢, x). In the theory of ideal fluids, one only knows that
the entropy is produced across shock waves, but there is no expression of the entropy
production there.
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14 - A priori estimates

In the mathematical literature on the Boltzmann equation, Boltzmann’s H
Theorem is very often used as a tool for obtaining a priori estimates on the number
density. In the discussion below, we describe two important examples of such
bounds.

14.1 - The Euclidian space with Maxwellian equilibrium at infinity

Consider first the case of a gas which is in Maxwellian equilibrium at infinity. In
other words, we consider the Cauchy problem
OHF +v-V,F =BF,F), (txv)cR xR xR,
F(t,x,v) = Mpup, [©]— 400,
F’t:o _ Fin )

An important notion in this context is that of relative entropy.

Definition 4.1. Let F >0 a.e. and G > 0 be two measurable functions on
R? x R3; the relative entropy of F with respect to G is

HF\G) = ” (Fln (g) —F+G)dxdv.

R*xR?

Notice that the integrand in the definition of H(¥'|G) is an a.e. nonnegative
measurable function, so that the relative entropy H(¥'|G) is well defined as an ele-
ment of [0, +oo].

Going back to the Cauchy problem above, we shall assume that F' converges to the
Maxwellian state M, g rapidly enough so that the relative entropy

HEF®|Mpaug) = ” (Fln ( > -F+ /\/l(pﬁuyg)>dacd?} < 400

R*xR?
for each ¢t > 0. We claim that

(pu.0)

t
(12) % J J ”J (F'F. — FF,)In <I;,§::) |(v — v,) - w|dvdv,dodxds
0 ps

R® R®xR®xS?
= H(F(0)|M(p,u,0)) - H(F(t)|M(p,uﬂ)) 5

for each ¢t > 0.
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Indeed,
F
J (Fln ( ) —-F+ M<p,u‘0)> dv = J FlnFdv
M0 '
+iJ(| ? + [uf)Fd —lj Fd
a5 | (v U v | wvFdv
R3 R3
—(1+ In (%)) Jde+p,
@2r0)*/
RS
while
F
J v(Fln ( ) —-F+ M(p‘u‘g))dv = J vF' In Fdv
Mpu0) '
R? R?

1 2 2 1
—1—% J v(|” + [u|H)Fdv — i J vu - vFdv

p
R3
In other words,

J (Fln ( d ) . MW.@)) dv = J FlnFdv
i M0 '

R R?
+ locally conserved quantity

while
F
J v(Fln ( ) —F+ M(,,,u.g)>dv = J vF In Fdv
M0 ' .
R® R?
+ flux of that locally conserved quantity
so that

F
Fl —F d
o J < ! (Mwﬁ)) Mo ’“"6)> Y

RS
, F
+ div, J v(F In ( > —F+ M(,]Au‘m)dv
i M0 .
R

=0 J Fln Fdv + div, J vFInFdv.
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Hence

F
Oy J (Fln (M@7u,0)> —F + M(p,u.g)) dv

R3
. F
+ div, J v(F In ( ) —F+ M(,m,())) dv
5 M) '

!

!
F'F — FF)In (%) @ — v.) - oldvdv.do.

IO,

R*xR*xS§?

Integrating further on [0, ] x R3, one arrives at (12).
To summarize, we deduce from (12) that

e the relative entropy bound
0 < HF®)|Mup) < HF"|Mup), foreachi>0;

e the entropy production estimate

I
+

[ F'F’
J J ”J (F'F. — FF,)In (FF*> | — v,) - w|dvdv,.dodxds
0 R’ R*xR’xS ’

S H(FinlM(p,u,())) .

14.2 - The Euclidian space with vacuum at infinity

Next, we consider the case of a cloud of gas expanding in the vacuum. This case is
slightly more involved than the previous one. Consider the Cauchy problem
WF +v-V,F =BF,F), (ta,v)cR xR xR,
F(taxv?])_)07 \x|7|v|—>+oo,
F| o =F".
We shall assume that F' vanishes rapidly enough at infinity so that the relative en-

tropy
HF®)|G) < 400 foreacht >0,

where G is the centered reduced Gaussian

1
Glx,v) = We

In addition to the relative entropy H(F(t)|G), another important quantity is
Boltzmann’s H function:

_ P4
2
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Definition 4.2. Let F > 0 a.e. be an element ole(R3 x R?) such that

” |F' In F(x, v)|dedv < +00.
R*xR?
One denotes by H(F) the quantity

HF) = ” FInF(x,v)dxdv .
R*xR?
Whenever there is no risk of ambiguity, we use the notation H(f) to designate
H(F(,-,-)), when F'is a solution of the Boltzmann equation.
Assume that
F([InF™| + |x® + [v]* + Ddadv < +oo.
R*xR?

We claim that, for each > 0,

(13) “ & — P F (¢, x, v)dady = “ |2[2F (0, ¢, v)dadv .
R*xR? R*xR®
Indeed
d 2
pr “ le — to|"F (¢, ¢, v)dedv
R*xR?
= 0 (jx — to[PF (¢, 2, v)) ded
R*xR?
= || @+v-Vo (|oc — tw]PF(t, x, v))dacdv
R xR®
= | — tv|2(8t +v - Vu)F(, 2, v)dedv
R*xR?
= J (J e — tv\ZB(F,F)(t, x, v)dv) de=0.
Observe that

H(F|G) =H(F)+% “ (|2 + |v[?)Fdwdy
R*xR?
+BIn@n) —1) “ Fdadv +1.

R*xR?
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Because of (13), one has
” |e[2F (t)dwdv
R*xR?

<2 ” | — toPF(¢)ddv + 262 ” wPF(t)dedv

R*xR? R*xR?
. ” (PR (O)dadv + 26 ” 2P (0)dady
R’xR? R’xR?

so that
_ ” PR dady — (% + ) ” W2 F ™ daudy
R*xR? R*xR?
—@BIn@r) —1) ” Fi"dady —1 < H(t) < H(0).
R*xR?
Integrating on [0, ] x R® the local entropy equality (10), one arrives at the equality
H(F(0)—-H(F(®)

t
_1 ) F'F,
(14) =1 J J J” (F'F’ — FF,)In (FF* | — ) - o|dvdv,dwdxds
0 R® R®xR®xS*
<00 +£) “ (A + 2 + o2 + [InF" D" duds
R*xR?

In particular, whenever F is a classical solution of the Boltzmann equation that sa-
tisfies H(F'(t)|G) < + oo for each ¢t > 0 and decays rapidly enough at infinity, H(¥'(t))
is a nonincreasing function of ¢; it was precisely this property that Boltzmann called
«the H Theorem». Moreover, H(F) is stationary only if F' is a Maxwellian (see the
case of equality in Boltzmann’s H Theorem above).

Hence, from the physical viewpoint, it is natural to think of H(F'(t)) as minus the
entropy of the system of particles distributed under F'(¢, -, -).

The case of the Euclidian space with Maxwellian equilibrium at infinity is the
most natural setting where to consider the hydrodynamic limit; the case of a cloud
of gas expanding in the vacuum is also very natural, albeit not for the hydro-
dynamic limit. However, several important results on the Boltzmann equation (for
instance the derivation of the Boltzmann equation by Lanford [36], the original
version of the DiPerna-Lions global existence result [17]) have been established in
this case.
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1.5 - More general collision kernels

The Boltzmann collision integral considered so far involved the collision kernel
b — v., w) = 2r%|(v — v.) - ©|

that corresponds to pairwise elastic collisions between hard spheres of radius ». But

gas molecules are more complicated objects than just hard spheres, and their

pairwise interaction is a rather complex combination of the electrostatic potential

created by the elementary constituents of the molecules (electrons and protons).
In general, the collision operator is

(15) B(f, ) = ” F ' = o b — v, 0)dv.do
R*xS?
while the collision kernel b has the classical form

Vi —V

W —
[v. — |

(16) b, —v,m) = v, — v|2(v* — )|,

).

In the formula above, 2 > 0 is the specific differential cross-section, which has units
of area (length?) over mass.
The specific dependence of b on (v, v,, @) — more specifically the fact that b only

depends on |v — v,| and ‘w ﬁ::ﬁ‘ — implies that
(17) b — v, w) = b, —v,w) = bW, — v, w)

for each (v,v,,w) € R? x R? x §%. These relations imply that the collision integral
(15) satisfies Proposition 2.1 and the resulting local conservation laws (Corollary 2.4),
as well as Boltzmann’s H Theorem (Theorem 3.1) and its consequences (mainly
Corollary 3.3 and the a priori estimates in section 1.4).

Of course all these properties are subject to the obvious requirement that the
Boltzmann collision integral should converge in some sense. This is however far from
obvious whenever the molecular interaction is given by a long-range potential.

A typical example of such a situation is the case of an inverse power-law repulsive
potential of the form

c
U =,

where c and k are positive constants, and r is the intermolecular distance. Instead of
giving a complete derivation of the collision kernel b — or equivalently of the cross-
section 2 — in this case, we refer the interested reader to pp. 67-71 of [11], and
summarize the results there.
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In this case, one can show that b has the factored form

4

Vi — .
—7)|D’ with /)’_I—E.

. 0,

b, —v,w) = v, — v|ﬁ3(‘w

This will be locally integrable with respect to dv, provided f > — 3, which leads to the
constraint

k>1

meaning that the marginal case of the Coulomb potential ¢/r is excluded.
We will not give the function b here. We will however remark that b is well-be-

haved except for a singularity at w - |Z::Z\ = 0 of the form

B(S)NS’ﬁ as s — 0, with /3’:14—%.

This singularity arises due to the infinite range of the ¢/#* potential. It reflects the
fact that there are many collisions in which the colliding molecules do not pass very
close to each other and are therefore deflected only slightly. This singularity has
proved difficult to analyze. For example, the fact that this singularity is not in-
tegrable with respect to dw means that the gain and loss part of the Boltzmann
collision integral, defined respectively as

B (f, f) = ” 16, — v, w)dv.dw
R’ xS§?

B (f,f)= ” .o, — v, w)dv.dow

R xS?

(18)

do not make sense. So-called cut-off collision kernels have therefore been in-
troduced. These replace the exact b above with a more benign one, by replacing the
angular part of the cross-section, i.e. the function b with its truncation for s below
some small value sy, that can be defined as

b(s) = inf (b(so), b(s)) .

H. Grad [31] argued that this truncation is legitimate on physical grounds for neutral
gases, since grazing collisions (which are responsible for the singularity of bats = 0)
are statistically negligeable in that case. In the case of plasmas such a truncation is of
course not valid and grazing collisions are important in some variety of physical
regimes.

In any case, these considerations led Grad to propose the notion of «cut-off po-
tential» — a slightly improper terminology, since in this procedure, it is the collision
kernel that is truncated and not the potential.
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More specifically, we shall say that the collision kernel b comes from a «hard cut-
off potential» if, for each (z,w) € R? x S?

1
0 < b(z,w) < C(1 + |z]) and J b(z,w)dw > =1 + |2/}
S ’
for some f € [0,1] and Cp, > 0. Instead, we shall say that it comes from a «soft cut-off
potential» if b satisfies the above conditions with € (— 3,0).

In addition to the case of hard spheres mentionned above, a notable particular
case is that of a «cut-off Maxwellian interaction» corresponding to

).

with 0 < b € C([0,1]). This particular case attracted Maxwell’s attention since the
linearized collision integral can then be reduced to diagonal form explicitly by using
Sonine polynomials (a multidimensional variant of Hermite polynomials).

In the sequel, we shall mostly consider hard cut-off potentials, and sometimes

Vi — 0
[0, — 2|

(19) bz, o) = b(’w

only the particular case of hard spheres.

1.6 - The linearized collision integral

In this section, we return to the hard sphere case. Let M,, 4 be a uniform
Maxwellian. The linearization at M, , g of the collision integral is given by the
formula

£M(p.u.())¢ = ZM(p}u,H)B(M(p,u,H)a M(p7z(,,(9)¢)
~[| @+ 6. -4 - 8010 -0 0lMpupIdv.do

— here we have used that
M0y @OM (p00.0) (V) = M .00 0V M .00 V) .

Because of the translation and scaling invariance of the collision kernel, we can
actually restrict our discussion to the case where M = M o) is the centered re-
duced Gaussian.

Indeed, if 7,, and m, denote respectively the translation and scaling isometries on
LY(R?) defined by

0, F @) = Fw —w), (m,F)(©) =i FG " w)
one has

Bty 1F) = v,BF, F), B F,m;F)=Im,BF F).
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We then deduce that

(20) L, @ = pVOTm LA, o 1y ) 5T ud) -

1.6.1 - Hilbert’s decomposition

In order to establish the Fredholm alternative for the linearized collision op-
erator £y (wWhere M is the normalized centered Gaussian), the first step is to obtain a
convenient decomposition, showing that £;; is just a compact perturbation of some
multiplication operator:

Theorem 6.1. (Hilbert [33]). In the case of a hard sphere gas, the linear col-
liston operator Ly can be decomposed as

Lyd() = v(|v))g(v) — K(v)
where K is a compact integral operator on L>(Mdv) and v = u(|v|) is a scalar called
the collision frequency that satisfies, for some C > 1,

1
S+ o) < o)) < O+ o]

Sketch of the proof of Theorem 6.1. First, an explicit computation gives

[v]
o)) = ¢27<exp< — 3 1oP)+ o j ep(— w|2>dw) 7

0

from which the upper and lower bounds on the collision frequency v are easily es-
tablished.

As for the integral operator K, one first computes its integral kernel k. This
computation is not entirely straightforward, as it is based on a clever change of
variables sometimes called «Carleman’s collision parametrization» although it goes
back to Hilbert [33].

More precisely, one further splits the operator K as K = —K; + Kz, where

m@m:”mm—wmwmmm
and

mmm=”@+@m_mwmmww
The integral kernels Ky = ky(v, w) and ke = ko2(v,w) of K1 and Ky are defined by

WWWDZJ@mwmew,szz
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R dv’
v’ Vi
A O
7 Bedsy)

Fig. 2. Carleman’s parametrization

One easily finds that

1 1
ki(v,w) = v—w|e ——|w|" .

The computation of kg is more complicated and Carleman’s parametrization is used
at this point. One changes variables in the integral defining ICy above, by using the
transformation (see figure 2)

(., w) € R x 8 — W, v) eC,
where
C={W,v)eR xR} | (W, —v)- W —v) =0}.

This transformation sends the measure |(v —v.)- w|dv.dw on the measure
dv'dS(v.), where dS is the surface element on the plane orthogonal to (v' — v) passing
through ». With this change of variables
1 ( 1wl — o] + v — w|2)2>

exp| —= .

ko(v,w) =

2
V2 |v —w| 8 lv — w|?
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That K; and /Cy are self-adjoint is easily seen on these formulas. That K; is compact
on L2(Mdv) is obvious; that /s is also compact on L2(Mdw) follows from observing
that IC‘Z1 is in the Hilbert-Schmidt class on L2(Mdv). To see this, one computes from ks,
the integral kernel of IC‘ZI, say k(24), and observe that

M)
M(w)l/z
belongs to L2(R? x R?; dvdw). O

W, w) > kP (v, w)

Further properties of the compact operator X were studied in detail by H. Grad in
his fundamental paper [31]. His estimates, later improved by R. Caflisch [9], are
recalled below.

Theorem 6.2. (Grad [31], Caflisch [9]). With the previous motations, the
compact integral operator K gains integrability with respect to the v-variable in the
sense that

o it maps L>(Mdv) continuously into L>(MY?(1 + |v|1/ 2)dv);

o for each s>0, it maps LXMY*(1+ |v])dv) continuously into
LM + [ Hdw).

1.6.2 - The relative coercivity estimate

With the above preliminary results, we establish the main property of the line-
arized collision operator Ly, i.e. that it satisfies the Fredholm alternative in some
weighted L? space.

Theorem 6.3. (Hilbert [33]). For a hard sphere gas, the linear operator Ly is
a nonnegative unbounded self-adjoint operator on L*(Mdv) with domain
D(Ly) = {¢ € L2Mdv) | |v|¢ € LA(Mdv)} = L2R?; (1 + [v|))M (v)dv)

and nullspace

ker(Ly) = span{l,v;, ve, vs, \v|2}.

Moreover the following coercivity estimate holds: there exists C > 0 such that, for
each ¢ € D(Ly) N (ker(Ly))*"

JqﬁEMqﬁ(v)M(v)dv > CJ¢(v)2v(|v|)M(v)dv.

Sketch of the proof of Theorem 6.3. The first step consists in char-
acterizing the nullspace of £j,. It must contain the collision invariants since the
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integrand in
Lut=[| @+ 6. - ¢ - 0l -0 0iM.dv.do

vanishes identically if () = 1,1, v2, v3 or [v]*. Conversely, the same symmetries of
the collision integral as in section 2 imply that

JW£M¢M0ZU = HH(WJN//* —y —y)p+¢,—¢ — )| —v.,) - o|MM .dv.dvdw .

Letting ¢ = y implies that £, is a nonnegative self-adjoint operator on the weighted
L? space

{¢ € LA(Mdv) | |v|¢ € LA(Mdv)} = LAR?;(1 + [v))M@)dv) .
In particular, if ¢ belongs to the nullspace of £y,

%”J @ +9, — ¢ — &)~ v.) - 0|MM.dvdv.deo = 0,

so that, for almost all (v, w) € R? x §?
o+¢. =¢ +4.

In other words, ¢ is a collision invariant, which, as explained in Proposition 2.3, en-
tails that ¢ is a linear combination of 1,v;,vs,vs and |v|%.
Next we prove the coercivity estimate. First the multiplication operator

¢ u(v)¢

is self-adjoint on L? (R3; Mdv) and has continuous spectrum which consists of the
numerical range of v, i.e. [inf _ps u(|v]), + 00). By Weyl’s theorem, as K is self-adjoint
and compact on LZ(RS; Mdv), the spectrum of £y, consists of [inf,_ps u(|v]), + o) and
of a sequence of eigenvalues in the interval [0,inf,_gs v(|v|)] with inf,_ps o(|v]) as its
only possible accumulation point.

In particular, there exists a smallest positive element of the spectrum of £y, say
A1, and one has

J¢£M¢(v)M wdv > 11 Jcﬁ(v)?M (w)dv

for each ¢ € D(Ly) N (ker(Ly))*.
The identity

ngﬁMng(v)dv = JgﬁzuM(v)dv - ngngbM(v)dv



[23] HYDRODYNAMIC LIMITS FOR THE BOLTZMANN EQUATION 23

together with the continuity of X and the coercivity estimate above imply the
stronger, weighted estimate announced in the statement of Theorem 6.3. O

1.6.3 - Invariance properties

Elastic collisions involving pairs of point particles are a purely isotropic process.
It is therefore natural that the Boltzmann collision operator — or the linearization
thereof about a centered Maxwellian distribution — should reflect the rotation in-
variance of this collision process.

Lemma 6.4. For a hard sphere gas, the linear operator Ly commutes with
rotations, which means that

Lyu¢p = LuPr
where
¢p() = GRTV) if ¢ is a scalar function,
¢p(v) = R (R™) if ¢ is a vector field,

Ppv) = Rgb(RTv)RT if ¢ is a 2 — contravariant tensor field.

Proof. The explicit computations in the proof of Theorem 6.1 show that the
kernels k; and ks depend only on |v — w)|, |v| and |w|, while the collision frequency v
depends only on |v]. In particular, for each R € O3(R), one has, for each v,w € R?

ki(Rv, Rw) = k1(v,w), k2(Rv, Rw) = kz(v,w), v(Rv) = v(v).

These relations entail the announced invariance properties of £, under the ortho-
gonal group O3(R). O

In the derivation of viscous hydrodynamic models from the Boltzmann equation,
the following quantities play an important role, especially in the computation of
transport coefficients such as the viscosity and heat conductivity in terms of the
collision integral:

(21) AW) =rv®@v — % \v|21, Bw) = %v(lv|2 -5).

Easy computations show that

1 1
(22) JA(v)( v )Mdv: JB(v)( v |Mdv=0, j=1.23.
[of? [of?
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By the Fredholm alternative applied to the linearized collision integral, there is a
unique tensor field A and a unique vector field B such that

(23) LyA=A, LyB=B,

1 1
JA(v)( v; )Mdv JE(?})( vj )Mdvo, j=1,23.
[of? [of?

As an important consequence of the rotation invariance of £;;, we obtain some ad-
ditional information on the structure of A and B. This additional structure explains

and

why the viscosity and heat conductivity are nonnegative scalar fields.
Proposition 6.5. (Desvillettes & Golse [16], Golse & Saint-Raymond [30]). There
exist two scalar functions a and f§ such that
L AW) = a([v)AW), L B@) = B(|[v))BW®)

(where the operator LMI is the pseudo-inverse of Ly defined on ker(Ly)™ by the
Fredholm alternative).

For a hard sphere gas, the functions a and f satisfy furthermore the growth
estimate

laClwD] + B(vD] < CA + [v]).

Sketch of the proof. The existence of the functions a and f established by
Desvillettes and Golse [16] comes from the previous invariance properties (which are
satisfied for all hard cut-off potentials coupled with geometrical arguments).

By definition of B, for each R € O3(R®),

Br() = B(Rv).
On the other hand, according to Lemma 6.4,
Ly(Br) = (LuB)g = B,
and
B(Rv) = (LuB)Rv) = Ly(B o R)(v).
As (B)r and B o R are both orthogonal to the nullspace of £y, we deduce that

(B)p =BoR.

An elementary geometrical argument shows that the only such vector field is of the
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form
B() = b(|v|w
which is equivalent to
B@) = p(|v))B®).

We proceed in the same manner to establish the analogous formula for A.
In order to obtain estimates on a and S, we first use the rotation invariance to
reduce the relations

Lua(wDA)=A,  Ly(B(DB) =B

to scalar integral equations bearing on the functions a and S.
Let v be any fixed vector of R? \ {0}. Denote by R the rotation of axis v and angle 6:

R = (w_@j'l?”) st + (wg) Y in.
v v

|v |v|

Using the spherical symmetry of a and § as well as the invariance properties of A
and B

ARgw) = Ryw ® Ryw — % wPId, B(Row) = RyBaw),

so that

2n 2 2, 12
iJA(ROw)dezg(” W= Pl g
2n 2|

0

1 2n (‘ |2 5)

w| — )W - v
— | BRow)do = """ " Bw).
2nj ([v]* = B)[v|?

0

This averaging process leads then to the expected scalar integral equations, the only
integration variables being |w| and cos (v, w).

Then the growth estimate on a and f comes from a fixed point argument, coupled
with Laplace asymptotic evaluation of the Gaussian integrals involved in the equa-
tions defining a and f.

Because of the explicit form of v, k; and k2 in the case of hard spheres, the fixed
point argument can be done in the domain of £y, and this eventually implies that a
and f$ have exactly the same growth as the collision frequency.

For more general hard cut-off potentials, one must use weighted spaces which are
strictly smaller than the domain of £j;, thereby degrading the growth estimate on a
and f (which remains in any case polynomial). O
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2 - Velocity Averaging

All kinetic models have in common the advection — or free transport — operator
o +v-V,

which is the prototype of hyperbolic operators. A consequence of the formula giving
the solution of the advection equation by the method of characteristics is that sin-
gularities of the initial or boundary data are propagated at finite speed |v| inside the
domain where the equation is posed. This is particularly annoying when dealing with
nonlinear transport problems, because the interaction of the nonlinearities with the
singularities coming from the data will in general be uncontrollable.

However, in the particular case of kinetic models such as the Boltzmann equation,
additional structure comes to our help. With a view towards hydrodynamic limits, we
anticipate that macroscopic observables — i.e. moments in v of the distribution
function of the type

p¢(t7 xr) = Jf(t, &, v)¢p(w)dv
R3
should be of particular importance. At the level of the Boltzmann equation itself, we
noticed in the presentation of the Boltzmann equation above that the collision term is
local in (¢, ) only, and global — i.e. some kind of convolution operator — in ». The
importance of this fact should not be underestimated, and is a key to the existence of
global solutions of the Boltzmann equation for initial data of arbitrary size.

Whether it be for constructing global solutions of the Boltzmann equation or for a
rigorous treatment of hydrodynamic limits, one is led to seeking regularity or,
better, compactness results on kinetic equations of Boltzmann type. In view of the
remarks above, one cannot hope to gain regularity or compactness on the solutions of
the Boltzmann equation itself — besides, since the collision integral is a convolution
in the v variable, it is not needed. However, the structure of the Boltzmann equation
and of hydrodynamic limits in general suggests that the regularity or compactness of
moments such as p, should be investigated instead. This is precisely the essence of
the class of results known as «Velocity Averaging», to be described below.

However, before entering the discussion of Velocity Averaging properly speak-
ing, we recall a few basic results on the advection equation, which we shall use rather
systematically in the sequel.

2.1 - Fundamental formulas for the transport equation
Consider first the Cauchy problem
of +v-Vof +alt,x)f =St,x), t>0, xcR?

24 \
& flig =f"@),
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with initial data f™ = f"(x), source term S, amplification/absorption rate a, and
unknown f = f(¢, ). Here one can either assume that a, f and S are smooth (say,
C") functions and that f is the solution of the above transport equation in the classical
sense, or assume that @ € L%, while /™ and S belong to L}, in which case f is the

solution of that same transport problem in the weak sense.
In all cases, the solution f is given by

¢

ft,2) = f"(x — tv) exp (— Ja(t —8,%— sv)ds)

(25) t "

+ JS(t — 8,& — Sv)exp (— Ja(t —o,x— av)da) ds.
0 0

To see this, apply the method of characteristics: solve the transport equation above
as alinear ODE in the variable ¢, observing that both sides of the transport equation
evaluated at (f,z + tv) can be recast in the form

%f(t,z + ) +alt,z + ) f(t,z + tv) = S,z + tv).

Then, in the resulting formula

¢
ft,z+tv) :fi”(z) exp (— Ja(s, 2+ sv)ds)

0

t t
+ JS(s, Z + sv) exp (— Ja(a, z+ av)da) ds

0 s

set z = x — tv and change s into t — s and ¢ into ¢ — ¢ to arrive at (25).
Next, we shall also need the formula giving the solution of the analogous steady
problem

(26) pf +v-Vof + al@)f =Sk, xecRP

where p>0, a=a) Ly is again the amplification/absorption rate,
S=8Sk) e Llloc is the source term, and f = f(x) the unknown. The same remarks

about regularity issues as in the case of the Cauchy problem (24) also apply here.
Then, the solution f to (26) is given by

+ oo t
(27) fl) = J S(x — tv) exp (—pt — Ja(ac - sv)ds) dt.
0 0
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To see this, apply the Laplace transform to the Cauchy problem
Op+v-Vep+ag=0, ¢ _,=8

with
+ oo

Fla) = J Pt 2)dt
0

so that
+ 00

J e P o(t, w)dt = pf (@) — S(x) .
0

2.2 - Velocity Averaging in L?

The first regularity results bearing on moments of the solution of a transport
equation were obtained in the L? setting. Indeed, the key idea in the proof of such
results is a kind of reduction to the one dimensional case, which is especially simple
when expressed in terms of Fourier variables.

The setting is as follows: the advection operator operates on functions defined for
a.e. (x,v) € R? x R? where D > 1 with values in R (or RN ); moments are defined in
terms of m, a finite, positive Radon measure on RP? that satisfies the geometric
condition

(GCy) m(H) = 0 for any hyperplane H 5 0.

Under these assumptions, we can state the following Velocity Averaging result.

Theorem 2.1. Let F be a bounded subset osz(Rf X Rf; dx @ dm©®@)) such
that

{(v-Vof |f € F} is bounded in L*(R? x RY;dx ® dm(v)).

Then the set of velocity averages

{ J [, v)dm(v) ‘ ferF } 1s relatively compact in leoc(Rf ;dx) .
RI)

This result was stated and proved by Golse-Perthame-Sentis [25]. Earlier reg-
ularity remarks of the same type were reported by Agoshkov in [1]. Some years

later, a systematic discussion of regularity and compactness results in all L? settings
was published in [24].
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Before giving the proof of Theorem 2.1, we first recall

Rellich’s compactness criterion: let G be a bounded subset of L2(R?). The set G
is relatively compact in L2 (RP) iff

loc
16(&)[?dé — 0 as R — + oo uniformly in g € G,
[<[>E
where we denote by ¢ the Fourier transform of g:

g(é) = J e~ ““g(x)dx for each g € L' N LA(RP).

RI)

Proof of Theorem 2.1 The argument is based upon using the partial Fourier
transform of f in the x variable, henceforth denoted by

fEw = J e~ (0, v)dac
RP
By Plancherel’s theorem, the assumptions of Theorem 2.1 are translated into
{f|f € F}and {(w- Ef |f € F} are bounded in L*(dé ® dm(v)).
Equivalently, the assumptions on f can be formulated as follows
{p=Q0Q+w- é)f |f € F} is bounded in L2(d¢ @ dm(v)).
Denote

#(&, v)dm(v) .

(@) = Jf(x’v)dm(v)’ so that  p(¢) = J 1+i-v
RD

RD

By Cauchy-Schwarz,

POF < A<|§|,é|> J |6(&, v)[Pdm(v)
RD
where
dm()
A -
(r,w) Jl PR

Since m({v - @ = 0}) = 0 for each unit vector w, one has, by dominated convergence,

Alr;w) — 0as r — +oco, pointwise in weSP1.
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Moreover, A(r,-) is continuous on the unit sphere, and A(r,w) | 0 as r — + oo; by
Dini’s theorem,

A(r,w) — 0 as ¥ — + oo, uniformly in w € 1.

Then
| moras < swaro || 1acoradmo - o
w|=1 .
[<I>R ! RPxR?
as R — + oo uniformly as f runs through F
and one concludes by Rellich’s compactness lemma. |

Remark. Noticethatthe geometric condition (GCy) on the measure m excludes
in particular the case where m is a linear combination of Dirac masses, as would be the
case in all discrete velocity kinetic models. As a matter of fact, the Velocity Averaging
method does no apply to discrete velocity models in kinetic theory.

In the sequel, we shall need a variant of the Velocity Averaging Theorem 2.1 that
applies to evolution problems. In fact, the case of the time-dependent advection
operator is already included in the above result, after some suitable modification of
the measure m.

Setz=(,x) R xRD,w: (u,v) € R x RP and

/1:5u:1 Km.

Iff(t,x,v) = F(t,x,u, v)| then we observe that the condition

u=1’

w-V.F € L*(R x RP) x (R x RY); dtdx ® du)
is equivalent to

Of +v-Vof € L2(R x RP x R?; dtdudm(v)).

Remark. The choice of 4 = d,-1 ® m may seem dangerous at first sight, be-
cause this measure has a Dirac component. However, the fact that u satisfies the
homogeneous geometric condition (GCy) reduces to a very natural condition on m, as
explained below.

Indeed, the homogeneous geometric condition (GCy) on u is equivalent to the
following affine geometric condition on m:

(GCy) m(H) = 0 for any affine hyperplane H c R?.

Based on these observations, we can state the time-dependent variant of the Velocity
Averaging Theorem in the L? setting.
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Theorem 2.2. Assume that m satisfies (GC,). Let F be a bounded subset
of LZ(Ri? X RvD Jdxdm()) and assume that G 1is a bounded subset of
LR, x R? x RY dtdxdm(®)).

For each f™ € F and each g € G, let f be the solution of

8tf+v'vxf:g7 f’t:O :fm

Then, the set of velocity averages

{ Jf(t, 2, 0)dm)

RD

fme]-'andgeg}

1s relatively compact in LZZOC(R+ X Rf s dtd).

2.3 - Velocity Averaging in L

So far, we have been concerned with Velocity Averaging in the L? setting.
However, for the purpose of studying the Boltzmann equation, we shall need to adapt
these results to the L! setting. Such an extension, however, is by no means
straightforward, as will be seen below. We start with a

Counterexample. Let D >1 and g, = g,(x,v) be a bounded sequence in
LY(R” x RP) such that

Gn — Op=0 @ Op—yr
where v* # 0. Let f,, = f,,(x, v) be the sequence of solutions of the steady transport
equation

ﬁl+v'vxfn:gn7 (xa/v)eRDXRD~

Applying formula (27) shows that, for each ¢ € C.(R?)

oo

J ¢(9€)< J fndv> de = i ” e g, (2, )¢z + tv)dvdzdt — !e%(tv*)dt

RI) RD RD x R[)

as n — + oo. Hence

J frndv — a density carried by the half-line R, v*

RD
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in the weak sense of measures as n — + oco. In particular
J fudw is not relatively compact in L} (R”)
RD
although
”anLl(RDxRD) < HQnHLl(R”xR”) =0,
v Vafullrwr crry < 2190l g0 <gry = 0Q).

This counterexample, which is taken from [24], shows that the analogue of
Theorem 2.1 in L is false. In fact, this counterexample also suggests that one should
try by all means to control concentration effects. Therefore, we first collect some
classical results on uniform integrability in L.

2.3.1 - The Dunford-Pettis criterion

A sequence of functions f;, in LY(RY) converges weakly to f if and only if

J Fo@d@)da — J F@d@de, forall € L¥RY).

RN RN
A bounded subset of L'(R") may not be weakly relatively compact:

a) there may be concentrations (for instance, it may happen that || f,|/;: = 1 and
fn — 0 in the sense of Radon measures)

b) there may be vanishing at infinity (i.e. || ful/ =1 and f‘lx\SR — 01in L! for
each R > 0).

Exercise. It may even happen that | f,|,. = 1, thatf,, — f € L' in the sense
of Radon measures but not in the weak L' topology.

In fact, the obstructions to weak compactness in L! listed above are the only
possible ones, as shown by the following classical criterion.

Theorem 8.1 [Dunford-Pettis]. A bounded subset F c LX(RN) is relatively
compact for the weak topology of L' if and only if

e F is uniformly integrable, meaning that

J|f(z)|dz — 0 as |A] — 0 uniformly in f € F
A
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o F is tight, meaning that

| f(®)|dz — 0 as R — + oo uniformly in f € F.

|z|>R

Hence the problem of verifying that a subset of L' is weakly relatively compact
reduces to proving uniform integrability and tightness. There is in fact a very simple
and nice way to show uniform integrability, as explained below.

First, F is uniformly integrable if and only if

| f()|dz — 0 as ¢ — + oo uniformly in f € F
[f@]>e

(the direct implication follows from observing that the set {|f(z)] > c} has small
measure, while the converse follows from dominated convergence). This last for-
mulation of uniform integrability leads to the following natural criterion for uniform
integrability.

Theorem 3.2 (De La Vallée-Poussin Criterion). A subset F of LYRY) is
uniformly integrable if and only if there exists a function H : R, — R, satis-
fying

I# — +o0asr— +oo

and such that

sup J H(f(z))dz < + 0.
feFRN

Example. In kinetic theory, it is natural to choose H(r) = »(In7), as the
nonlinearity in the de la Vallée Poussin criterion; in other words, in the context of the
kinetic theory of gases, an entropy bound implies the uniform integrability of the
number densities.

Good references where to get acquainted with the Dunford-Pettis theory are for
instance [14], [32], [18].

2.3.2 - Velocity Averaging in L!: a first result

In this section, we begin with a first compactness statement concerning moments
of a family of solutions of the transport equation that is an analogue to Theorem 2.1 in
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the L! setting. Although this result is not optimal, it is a very important step in all
statements about Velocity Averaging in L' known so far.
We begin with the statement for the steady advection operator.

Theorem 3.3. Let F C L*R? x R”;dxdv) be weakly relatively compact and
such that {v - V.f |f € F} is bounded in L' and uniformly integrable. Then the set

{ J fe,v)dv|f € F } is relatively compact in L'(R?).
RD

The analogous result for the time-dependent advection operator is as follows.

Theorem 3.4. Let F c LY([0,T] x RP XRD;dtdacdv) be weakly relatively
compact and such that {0:f +v-V,f|f € F} is bounded in L' and uniformly
ntegrable. Then the set

{ Jf(t,ac, v)dv ]f IS ]—'} 1s relatively compact in L0, T] x R?).
RD

Both theorems were proved in Golse-Lions-Perthame-Sentis [24].

Proof for the steady case. By the Dunford-Pettis criterion, F is tight, and
therefore one can assume without loss of generality that all the functions in F are
supported in {|x| 4 |v| < 7} modulo a small error in L' norm.

Consider the resolvent of the transport operator: for 1 >0, we define

=l +v- Vx)_l by the formula

+ o0
R;S(x,v) = J e 8w — tv, v)dt
0

(i.e. R,S is the solution f = f(x,v) of Af +v -V, f =S).
One checks that, for each p € [0, + oo,
+ oo

RS |10 J e S — tv,v)|| dt

IN

+ 00

_ |S||Lp J e*itdt HSHLI’
0

At this point we recall a very useful criterion to check that a subset of a Banach space
is relatively compact.
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Compactness Criterion. Let £ be a Banach space, and H C E. The set H is
relatively compact in E, if

for each ¢ > 0, there exists a compact subset K, of £
s.t. H C K, + B(0, ¢).

Here is how this is applied to the situation under consideration. By assumption,
the set G={g=f+v -V.f|f € F} is uniformly integrable; for each ¢ > 0, de-
compose

F=I5+10 £ =Ri(glg<), £7 = Ri(gLigsc)-
First
P2 (@) = J £7 @, 0)dv
Wl<R
satisfies
197 s < 157 5y, < ghyocll, — 0 88 ¢ — -+ o0 uniformiy in g € G.

Then, for each ¢ > 0, g1;5 <. is bounded in Lazw and compactly supported, and hence,
by the L?-case of Velocity Averaging (Theorem 2.1)

pela) = J f.o(, v)dv is relatively compact in LY(RD).
[v|<R

Conclusion: therefore, for each ¢ > 0, we have found a compact K, C LY(RP) such
that

| r@odo =g 7 < K Bry0.0).
RD

Applying the compactness criterion above leads to the announced result. O

2.3.3 - Velocity Averaging in L' : a first improvement

Although a consequence thereof, the following statement significantly improves
Theorem 3.3 by discarding the uniform integrability condition on v - V, f.

Theorem 3.5. Let F c L*(R” x RP; dxdv) be weakly relatively compact and
such that {v-V,f |f € F} is bounded in L . Then the set

{ J [, v)dv ‘ ferF } 18 relatively compact in LYRD).
RD

The analogous result for the time-dependent advection operator is as follows.
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Theorem 3.6. Let F c LY([0,T] x RP XRD;dtdacdv) be weakly relatively
compact and such that {0:f +v-V.f|f € F} is bounded in L*. Then the set

{ Jf(mc,v)dv ‘f IS _7-'} s relatively compact in L0, T] x RY).
RD

Proof. Foreach >0, setR, = (U +v-V,) \. We recall that

1Rileas, <
Write
f=R,(Uf +v-V.f) =AR;f + R;(v- V.[f)
so that

J iy = ) J R fiv + J R, V. f)dv.
RP RP RP
Since {v- V,.f |f € F}is bounded in L} ,, the second term on the right hand side of
the equality above can be made arbitrarily small in L , for some 4 > 0 large enough.
For such a 4, the first term on the right hand side of the equality above is rela-
tively compact in L! by Theorem 3.3.
We then conclude by applying the compactness criterion recalled in the proof of
Theorem 3.3. d

2.34 - A uniform integrability criterion

In some cases, it may not be obvious that the the family F is weakly relatively
compact in L1(R? x RP). In this section, we give a useful criterion for checking the
uniform integrability of a family of solutions of the transport equation.

We start with a definition of the notion of partial uniform integrability in a pro-
duct space.

Definition 3.7. Let u and v be two regular, positive Borel measures on RP;
we say that a bounded family ¢, of Ll(Rf X Rg s du(e)do(y)) is uniformly integrable
m the variable y if

J ( sup J 16,(@, y)|du(y)> du(@) — 0

v(A)<n
A

as n — 0, uniformly in e
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Example. Assume thatvis afinite measure;then, for each p > 1, any bounded
family in L'(du(x); LP(du(y)) is uniformly integrable in . Indeed, if ¢, is any such
family, one has

j (gp j|¢g<x,y>|du<y>> dute) < n? j 16,0, ol
vAa)<n
N A RY

where p’ = 2%, by applying Hélder’s inequality to the inner integral.

As usual, we shall say that a family ¢, € Ll(Rg X Rg s du(x)do(y)) is locally uni-
formly integrable in y if, for each compact K ¢ R? x R, the family 1x¢, is uni-
formly integrable in y.

Theorem 3.8. Let f; be a bounded family in L}OC(RD x RP: dudy) such that
o v -V, f, s bounded in L} (R” x RP s dxdy), and

loc
o the family f, is locally uniformly integrable in the variable v.

Then the family f. is locally uniformly integrable (in both variables (x,v)).
This result was stated and proved in [27]; it extended an earlier remark by L.

Saint-Raymond who observed in [50] that, under the extra assumption that f; is
bounded in L}C(L?jo), the family of averages

J S, v)¢(v)dv
RN
is locally uniformly integrable.
Sketch of the proof. We shall explain how to prove the result obtained by
L. Saint-Raymond under the assumptions of the Theorem above.
Step 1: let y = x(t, ,v) be the solution of the free transport equation

O +v-Vay =0, t>0, (x,v) € R” xR",
700,2,0) = 15(x), (x,v) € R” x RP.

Clearly, y(t,x,v) = 14(x — tv): it can therefore be put in the form
gt e, v) =1y, W), t>0, (x,v) e R® xR”,
where, for each t > 0,

A, ={veRP|x—tveA}.
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Further, A, is measurable and, for each t > 0 and « € R”, one has

|At | = J 1, 2, v)dv = J 14(x — tv)dv

RP RP
1 Al
RV

Step 2: without loss of generality, assume that f; and ¢, in the statement of the
theorem are nonnegative, and that all the f;’s are supported in the same compact K of
R? x R”. Then

JRJDfa(ac, v)$()dvdr = RJD AL £, v)b)dvda
(28) t

— J “ x(s, 2, v - Vy fole, v)p(w)dadvds
0 RPxRP
as can be seen by integrating by parts the second integral on the right hand side of
the equality above.

Pick n > 0 arbitrarily small; the second integral on the right hand side of (28)
satisfies

<o Vefellpa gl L=

t
J X(Sv X, 'U)'U . Vgcfs(x7 v)gb(v)dﬁ(;d’l)ds
0

RPxR?

and therefore can be made less than # by choosing

U
1+ [l Vo fill 1@l

For this ¢ > 0, the first integral on the right hand side of (28) satisfies

0<t<

| [ £@ vz —o

RN At.x

as |A| — 0 uniformly in ¢, since f; is uniformly integrable in v and |A; .| = |A|/t", as
established in the first step above.
Therefore, for each # > 0, there exists a > 0 such that |A| < a implies that

J st(%, v)$()dvda < 2y

A RD
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uniformly in ¢ > 0, which entails that the family of averages

J S, v)¢(w)dv
RD

is uniformly integrable. O

By putting together Theorem 3.5 and Theorem 3.8 we arrive at the following
statement.

Theorem 3.9. Let f, be a bounded family in L} (R x RP; dxdy) such that

loc

o v-V,f, is bounded in L} (RP x RP;dxdy), and

loc
o the family f, is locally uniformly integrable in the variable v.

Then, for each compactly supported ¢ € L(RP), the family
J [, v)¢()dv is strongly relatively compact in L}OC(RD ).

As we shall see below, Theorem 3.8 is the key to one essential step in the proof of
the hydrodynamic limit of the Boltzmann equation leading to the incompressible
Navier-Stokes equations.

3 - Global Existence Theory for the Boltzmann Equation

Historically, the first global existence result for the (spatially inhomogeneous)
Boltzmann equation is due to Ukai [56], who considered initial data that are per-
turbations of some uniform Maxwellian. He proved the global existence of a solution
of the Cauchy problem for the Boltzmann equation under the assumption that this
initial perturbation is smooth and small enough (in a norm that involves derivatives
and weights so as to ensure decay for large v’s). Subsequently, Illner and Shinbrot
[34] considered the same Cauchy problem in the case where the initial data is a small
perturbation of the vacuum state.

For the purpose of deriving hydrodynamic limits (and especially incompressible
limits), it would seem that Ukai’s result is exactly what is needed. However, it cannot
be used as a black box, because of the potential lack of uniformity in the hydro-
dynamic limit on the threshold on the size of the initial perturbation that guarantees
global existence.

For that reason, one has to use a global existence theory for the Boltzmann
equation that holds for initial data of arbitrary sizes. This theory goes back to the late
80s and is due to R. DiPerna and P.-L. Lions. We shall give a rather detailed account
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of that theory, which is a crucial part in our discussion of hydrodynamic limits.
Besides, our presentation of the subject deviates from the original article [17] and
incorporates later developments of the theory of renormalized solutions.

In particular, an important part of the original proof [17] related the notion of
renormalized solutions to that of mild solutions (a more classical object). Since the
notion of mild solution is not really useful in the context of hydrodynamic limits, we
have replaced that part of the original proof with a simplification of a more recent
argument by P.-L. Lions [41] that applies to the mean-field Vlasov-Poisson-
Boltzmann model.

3.1 - Notion of renormalized solution

The main difficulty in obtaining global solutions of the Boltzmann equation is that
the collision integral is a quadratic operator that is purely local in the position
variable. In other words, the Boltzmann collision integral acts as a convolution
product in the v variable, and as a pointwise multiplication in the ¢ and x variables.
Since on the other hand, the natural a priori estimates satisfied by solutions of the
Boltzmann equation are of the form

J a+ |v\2 + | InF@, e, v))F(E, x,v)dedv < C
R*xR?

as a consequence of the global conservation of mass and energy, and of the H
Theorem, the Boltzmann collision integral is not even a well-defined distribution in
the x variable — similarly f2 is only a measurable function, which may not be locally
integrable when f is a L! function.

P.-L. Lions and R. DiPerna made the following observation: although the loss
term in the Boltzmann collision integral, i.e. B_ (¥, F') may not be a locally integrable
function in view of the remark above, the quantity

B_(F,F) F
1+F 14F

” F.b(v —v,, w)dv,do = LF *y b,

1+F
R*xS§?

where
b(z) = J bz, w)dw,
SZ

belongs to L} (R, x R? x R?) provided that

loc

——— belongs to L™
1+ [z
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and F satisfies the bound

“ A+ [pPFE, x, v)dedy < C
R*xR’
(that is implied by the global conservation of mass and energy). Since on the other
hand the entropy production rate controls in some sense the difference between the
gain and loss terms in the Boltzmann collision integral, one can hope to establish the
same type of bound on
B.(F,F)
1+F

This observation suggested that instead of considering the original Boltzmann

equation
(O +v-V)F = BF,F),

it might be advantageous to consider instead the equation

B, F)
1+F

Obviously both equalities are equivalent for rapidly decaying smooth distribution

Gr4+v-Va)ln(l+F) =

functions F.
Actually, one can make the discussion above slightly more general.

Definition 1.1. A nonnegative function F € C(RJF;LI(R3 x R?) is a re-
normalized solution of the Boltzmann equation iff

BWF,F)

V1+F

and for each f € CY(R.) s.t. |f'(Z)| < \/%_ﬁzfor all Z > 0, one has

O +v- Vo )pWF) = fE)BEF, F)

€ L}, (dtdxdv)

in the sense of distributions on R’ x R? x R®.

The significance of this definition is explained by the following a priori estimate.
Lemma 1.2. Assumethatf = f(t,x,v) > 0is a measurable function such that

J A + [P ft, x, v)dedv < E
R*xR?

and

T
J J ”J d(/Hb(w — v, w)dvdv.dwdxdt < C(T),
0 p

R? R’xR*xS*
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with

(29) d(f) = (f'f. = ff(nf'f; — Inff).

If the average collision kernel satisfies

0 < b(2) < Cy(1 + |2) for each z € R?
then
T

” J B¢, f)‘d dacdt < = C(T)+8\/C(T)CbR3(1 + R2ET.
0 s\v|<R

Proof. We recall the elementary inequality

Wa - VoY < }1(@— b)(Ina — Inb)
for each a, b > 0. Since
! 1.1 = I~ VI + Vi)
< IWFF = VP + 2VFINFF = VI,

a straightforward application of the Cauchy-Schwarz inequality shows that

“ [ Dl e

0R? \u|<R

< m T — V. Pbdvdv,do

R*xR*xS°
+2 m I — V|V bdvdv.dw
R*xR*xS"
so that
T
JJ J B/, f)ld dadt < %C(T)
0 g3 \v\<R

1/2

( J b(v — m)dv) [, x,v,)dv,.dxdt
[v|<R

T
+ 20 J
0

R*xR?
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Since

0< J b(v — v,)dv

[v|<R
< CH@2RP(1+2R? + 2. ") < 2C,2RP*(1 + R + v.[*)

we finally arrive at the bound

T
” J B, f )‘d dxdtg}lC(T)JrS\/C(T)CbR?ﬁ(l +R2ET.

0R? |v|<R

With this definition (actually a slightly more restrictive one), R. DiPerna and
P.-L. Lions proved the following remarkable result in [17]. O

Theorem 1.3. Let F'" > 0 a.e. satisfy

“ (A + & + [vf + [InF" D" dad < + oo,
R*xR®
and assume that the collision kernel b in Boltzmann’s collision integral satisfies
the weak cutoff assumption

1
1+ |e?

beLl (R xS, J bw)dw — 0

|z—w|<R

as |z| — + oo for each R > 0.

Then, there exists a renormalized solution of the Boltzmann equation satisfying
the initial condition F|,_, = F™. Furthermore, this renormalized solution has the
Sfollowing properties

e 1t satisfies the continuity equation
0; J Fdv + div, J vFdv =0,
R’ R’

and the following variant of the local conservation law of momentum:

Oy J vFdv + div,, J v vFdv + div,m =0,

where m 1S a monnegative symmetric matrix whose entries belong to
L*R ; MRP));
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e it satisfies the total mass and momentum conservation
” F(t)dxdv = ” Fdxdv
R3 XRS RS XRS
” vF(t)dxdv = “ vF™dxdv
R*xR? R*xR?
together with the following energy inequality: for each t > 0,
1 1 ;
” 3 W2 F(t, 2, v)dadv < “ 3 w2 F™"dxdv
R’xR’ R’xR’

more precisely, for a.e. t > 0, one has

” %|v|2F(t,9c, v)dxdv + J %trace(m)(t) = ” %|v|2Fi”dacdv;
R*xR? R? R*xR?
o finally, it satisfies the entropy inequality: for each t > 0,
t
1 & F'F i
4st J dx “J (F'F, — FF,)In < T bdw dvdv,

*

0 R®  RxR’xS*
< ” F™In F™dxdv — ” FInF(t)dxdv .
R*xR® R*xR®
In the sequel, we shall describe the proof of Theorem 1.3, in the case where

(30) 0<b=b(z,w) € Cy(R® x §%).

3.2 - The approximation scheme

The renormalized solution whose existence is asserted by Theorem 1.3 will be
obtained as the limit of a sequence of distribution functions that satisfy some ap-
propriate truncation of the Boltzmann equation. The most natural truncation of the
Boltzmann equation for that purpose is as follows.

BF,,F
atFn“"v'van:Ma
(31) 1 “r%JFnd’U
Fﬂ|t:0 — Fin.
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One can show that, for each » > 1, the truncated collision integral
B(f, )

= +%dev

is Lipschitz continuous on the positive cone of LI(R?; X Ri). This remark, together
with a few estimates that are fairly classical in spirit but too technical to be reported
here, leads to the following result.

Proposition 2.1. Let F" = F"(x,v) > 0 a.e. be a measurable function such
that

(32) ” (A + [ + [ + | In F™ (e, v))F™ (e, v)dowdv < + oo
R*xR’
Then, for each n > 1, the truncated Boltzmann equation has a unique solution (in

the sense of distributions) F € C(R,; L\(R® x R®)). Moreover, this solution satisfies
the following form of Boltzmann’s H Theorem: for each t > 0, one has

t

” F,InF,(t,x,v)dxdv + %J J d(?ﬁ_’ - bdvdv,.dwdxds
(33) R3xR? 0R !
= ” F™1n Fi"(ac, v)dadv
R3xR?
together with the a priort estimate
(34) ” A+ [2f + [vf + | InFy(t, @, 0))F,(t, ¢, v)dedv < C™(1 + )

R*xR?

where C™ is a positive constant that depends on F™ only — and is in particular
mdependent of n.

See [17] pp. 358-361 for more details on the proof of this result.

3.3 - A priori bounds and weak L' compactness

Let F',, be the sequence of solutions of the truncated Boltzmann equation con-
structed in Proposition 2.1. We begin with a result that is in itself a first justification
for the notion of renormalized solution.
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Proposition 8.1. Foreach ¢ > 0, the sequences

BY(Fy, Fy) and By (Fy, Fy)
1+ 0F, 1+ 0F,

are both bounded in L}

ZOC(R+;L1(R3 x R®) and relatively weakly compact in
Ll (R, x R® x R®).

Proof. Both the L! bound and uniform integrability are obvious for B", since

B (Fy, Fy) _ Fy
14 0F, Aull) 1+ 0F,
where we recall that
) =5 = [ oo,
14— J Fdv e
R3

In other words

” F.b(v —v,,w)dwdv, J F.b(w — v,)dv,

A, (F) :R3><82 - _FR -
1+—Jde 1+—Jde
n n

R? R?

so that
0 < AF) < [1b]l J Fdv.
R3

As for B', pick R >> 1 and write

7/F‘ F 1 FIF/ —FF*
B"( I3 n)_ JJ nd'n ]-F,’YF{,*SRFanbdv*dw

n" nx
14+0F, 1+ dF, 1+1 [ F.dv
R3xS? R3
1 ” FF . —F,F,,

+ n- nx
1+ 0F, 141 [ F.dv
R3xS* R?

1F1’1F7/z* >REF. bdv*dw

The first term is bounded pointwise by

BL(Fy, Fy)

& -1) 1+ 0F,
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while the L1([0, T'] x R? x R?) norm of the second is bounded by the entropy pro-
duction as in (14):

T
1 Fal’LF;z* FnFn* F;ZF;M _ 1
el el 5 L R " (FF) belvdv.do> = O(lnR> |
0 R

R R’xR*xS*

Hence, for each R >> 1,

v
E’(Fn,Fn)EB<O 1 ) LKy
1+ oF, InR )/ 110m<r? <R

where K is locally uniformly integrable on R, x R® x R? for each finite R.
Therefore
B"(Fy, Fy)

1+ JF, is locally uniformly integrable on R, x R® x R”.

Finally

B (Fy,Fy)  B'(Fy,F,)  B"F,F,)
14+6F, 1+ 6F, 1+ 0F,

is uniformly integrable, being the sum of two locally uniformly integrable
sequences. (|

In particular, it follows from Proposition 3.1 that

Bn(FTLJF'ﬂ)
(35) O +v- V. ) In(1+ oF,) = Tt oF, OW)pao.11xR <% -

Proposition 3.2. One has Fy(t,-,-)—F(,-,-) in Ll(Ri X Ri) uniformly in
t € [0,T] for each T > 0 as n — + oo, modulo extraction of a subsequence.

Proof. For each 6 > 0, the sequence 1 In (1 + JF,) satisfies

L

ln 1+ 0F,) < —
7

so that in particular

1
(86)  (I+[e]+[oD5In(1+0F,) is bounded in L=((0, T1, LA(R? x R?))
for each T > 0. It follows from (35) that

at% In(1 + 0F,) = O(1) in L>([0, T1, H'(R? x R®)) + L'([0,T]1 x R? x R?)
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for each 0 > 0 and each T > 0. By Sobolev’s embedding and duality, one has
LY(R? x R?) c H*(R? x R?) for s > 3, so that

a% In(1 4 0F,) is bounded in L!([0, 7], H*(R? x R)).
By Appendix C of [42], this last control and (36) imply that
(37) é In (1 + 0F,,) is relatively compact in C([0, T'], w—LQ(Ri X Ri))

for each T > 0 and each 6 > 0.
On the other hand,

0<F,— % In(1L+ 0F,) < 6F215, < + Folp -z

so that
‘F asor)| <raF, -1 [[ FoinFdeds
n 5 n L}m = n Lllw h’lR n n .
R*xR?
This last control clearly implies that
(38) F, - % In(1 + JF,) — 0 in L=([0, T, L*(R? x R?))

as 0 — 0, uniformly in n. Proposition 3.2 is a direct consequence of the compactness
properties (37), (38) and of the estimate (34). O

3.4 - Applying Velocity Averaging

A first application of Velocity Averaging in L' leads to the strong convergence
statement below.

Proposition 4.1. Let ¢ = ¢(t,»,v,v,) € CR, x R x R} x R3)) be such that

|p(E, 2, v, .|
1+ [v.[?

uniformly in (t,x,v) € [0,T] x B(0,R) x B(0,R), for each R, T > 0. Then, modulo
extraction of a subsequence, for each p € [1,+ co)

—0as v = +o0

J Fo@t x,v.)¢¢, x,v,v.)dv, — J F(,x,v)9(, ¢, v,v,)dv.

in LP([0, TT; L}, (R> x R?)) and a.e. as n — + cc.

loc
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Proof. The estimate (34) shows that the sequence F), is both uniformly in-
tegrable and tight on [0, 7] x R® x R® for each T > 0. This is also true of

1
5 In (1 + OF,,) for each 6 > 0, since
1
Ofgln(l‘f‘aFn)SFn-

By (35) and Velocity Averaging in L' (Theorem 3.6), one concludes that, for each
T > 0 and each ¢ € CA(R, x R? x R? x Ri*), the sequence

J % In(1 + OF,)(E, x, v.)P(E, 2, v,v.)dv.

R3

is strongly relatively compact in L1([0, T'] x Rggc X Ri).
Because of the uniform (in n) convergence statement (38) as 0 — 0, one deduces
that, for each p € [1, + oo) and modulo extraction of a subsequence,

J Fnt,x,v.0¢E, x,v,v)dv.dv — J F(t,x,v.)9, x,v,v.)dv,

RS Rs

in LP([0, T];L}OC(R;E X Ri)) and ae. as n— +oo for each test function
¢ CHR, x Ri X R% X R%) Because of (34) and by an easy density argument, this
limit holds in L”([0, T];Ll(Ri X R%)) for each T > 0 and each continuous test funec-

tion ¢ = ¢(t, x, v, v.) with subquadratic growth at infinity in the variable v.. O

With the above convergence statement, we can pass to the limit in the Boltzmann
collision integral, once it is renormalized by the macroscopic density. This average
renormalization is here only to guarantee that all the quantities considered are at
least locally integrable.

However, even without this average renormalization, and modulo extraction of a
subsequence, the Boltzmann collision integral evaluated on F',, converges a.e. in (¢, x)
and weakly in v.

Here is the precise statement needed in the sequel:

Proposition 4.2. Foreach ¢ € C.(R; X R? x R?)

Bi(Fan) B:l:(FaF) . 1 3
J m}¢d’l) — J m}¢dv m LlOC(RJF X R )

R R® R R?

as n — + oQ.
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The proof of this proposition will use the following variant of Egorov’s theorem,
recalled below:

Theorem 4.3. Assume that v, — v a.e. on K cC RP. Then, for each ¢ > 0,
there exists a measurable E C K such that

K\ E|<e, andv, — vuniformly on E.

An interesting consequence of Egorov’s theorem is the following statement on
the continuity of bilinear products.

Lemma 4.4. Assume that u, —u in L, that sup ||[v,||;~ < +oo, and that
vy — v a.e.. Then u,v, —uv in L. If v =0, u,v, — 0in L.

There is a more precise version of the above statement in product spaces:

Lemma 4.5. Assume that, for each ¢ € CC(RD x RP)

y —u in LM(RP x RP), J Unpdv — J ugdv in L} (RP)
RY R’

that sup ||vn|\Lx(Rann) < + oo, and that v, — v a.e. Then

J Uy pdv — J uvgdy in Llloc(RD ) for each ¢ € L>*(RP x R? ).
RD RN
Proof of lemma 4.4. Write
(39) UV, — UV = Uy (Vy, — V) + (U, — U)

since v € L™ and u,, — u in L', the second term converges to 0 weakly in L.

Without loss of generality, one can assume that supp(u,,) C K compact; indeed,
since u,, — u in L', the sequence u,, is tight. By Egorov’s Theorem, given 5 > 0, pick
E C K such that |K \ E| < # and v,, — v uniformly on £. Decompose

un(vn - 7)) = uan\E(vn - 'U) + unlE(vn - 1)) .

Given & > 0 arbitrarily small, the first term can be made smaller than ¢ in L' norm
uniformly in % by choosing # small enough, since u, is uniformly integrable and
v, — v bounded in L>*. With 5 > 0 so chosen, the second term — 0 in L' since v,, — v
uniformly on E and u, is bounded in L'. Hence u,,(v, — v) — 0 strongly in L.
Therefore, if v = 0, only the first term is present in the decomposition above (39),
so that u,v, — 0 strongly in L'. In the general case where v # 0, we only have that
v, — 0 weakly in L! because of the second term in that same decomposition. [
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The proof of Lemma 4.5 is very similar and left as an exercise to the interested
reader.
With the two lemmas above, we can give the

Proof of Proposition 4.2. By Proposition 4.1

An(Fy) . AF) a6
1+ [Fudv 1+ [Fdv ™~
R3 RS

where we recall that

AF) = ” F.b(w —v,,w)dwdv,

R*xS§?
and
AF)
W) = ——%7
AulE) 1 +% | Fdv
RS
while
A (F,) H
—— | < [|B]l -
H 1 —&-ng Fudv|,
Applying Lemma 4.5 shows that
F, A (Fy) FAF) R 3
J1+ i~ J1+ [ Ry i LB <R,
R? R? R® R?
or, in other words
Bﬁ(F’mF%) B,(F,F) : 1 3
J m¢d?} — J 1—|—J‘—Fd’[)¢dv m LlOC(RJF x R )
R’ R R’ R

The case of B (F,, I';,) is easily reduced to the case of B" (F',,, F';) by exchanging
(v,v,) and (v, 7). More precisely,

J B!(F,,F,) 1

— / —
T f 7 dvgbdv 1T % f Fodv ”J F,Fp.¢ b —v,, w)dodv,.

R R <R xS
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Set

and define

while

Observe that

that

and that

(40) |
2

: 1
in L,

FRANCOIS GOLSE and LAURE SAINT-RAYMOND

Dt x,v,0,) = J b — 0., w)dw,

SZ

AF) = J Ft,x,v)0, x,v,v,)dv, ,
R3

A(F)
141 [ F.dv
RS

A (F) =

BiF.F) [ AJF,)
J Tt [~ Jm“d”’
R? R? R

Mmmgwmwmjmm7

a

R3

D, x,v,v)F, (¢, x,v.)dv, — J D, x,v,v,)F &, x,v.)dv,

R3

[52]

(R. x R® x R?) and a.e., possibly after extracting a subsequence of F,.

Indeed, since ¢ is a compactly supported continuous function on R, x R® x R?, ®is
also continuous and bounded on R, x R® x R® x R®. Hence (40) follows from

Proposition 4.1.

3.5 - Consequences of the compactness of F,

O

Before proving that F' is indeed a renormalized solution of the Boltzmann
equation, we first show how the entropy inequality and the variants of the con-
servation laws satisfied by F* follow from the corresponding properties satisfied by
each solution F,, of the truncated Boltzmann equation and from the convergence
properties of F,, stated in Propositions 3.2 and 4.1.
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3.5.1 - The entropy inequality

We begin with the following observation.

Lemma 5.1. Under the same assumptions as in Proposition 4.2, one has

F,F,. FF.
140 [Fydv 1406 [ Fdv
F'F F'F
140 [ Fudv 140 | Fdv

in L'([0, T] x R} x R} x R x S2).

Proof. Same as that of Proposition 4.2. O
Notice that the function
X,Y)»X-Y)(InX - InY)

is convex on (R.)%. Hence, by weak limit and convexity, for each ¢ > 0, Lemma 5.1

implies that
t
J J J J J d(F)bdvdv.dwdxds
1+6 [ Fdv
0 R’ R*xR*x§" R
(41)
¢
lim J J J J J d(F,)bdvdv, dwdxds
T ot 140 [ Fpdv
0 R® R®xR®xS* R®

Likewise, Proposition 3.2 and the convexity of z+ z1nz imply that, for each ¢ > 0

(42) ” FInF(,x,v)dedv < lim ” F,InF,(t, x,v)dxdv.
R*xR? S R*xR?

1
For each ¢t > 0 and each n > 5 one has

t
d(F,)bdvdv.dwdxds
” F, 1nFn(t,x,v)dxdv+J J ”J 1190 J T do
R*xR? 0 R® R®xR>x§? R?

< “ F™"In F™(x, v)dadv

R*xR?
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because of (33) in Proposition 2.1. Passing to the limit as n — + oo in the inequality
above leads to

” FInF@,x,v)dedv +

j J J J d(FYbdvdy, dedzds
R’xR? OR

1+06 | Fdv
3 RPxR?xS? R?
< ” F"In F*(x, v)dadv
R*xR?

on account of (41) and (42), for each ¢ > 0.
Finally, letting 0 — 0 in this last inequality gives the entropy inequality of
Theorem 1.3 by monotone convergence.

3.5.2 - The conservation laws

First F,,(¢t,-,-) —F(t,-,) in L"(R? x R?) uniformly in ¢ € [0, T'] for each T > 0 by
Proposition 3.2, while

(1 + [® + [0F (¢, %, v)daedv < CA + )

R*xR?

with C independent of n by Proposition 2.1. Hence

IiFn<i>dv~IJ3F<ql))dv

in L1([0, T] x R®) as n — + oc.

Passing to the limit in the continuity equation and the global momentum
conservation law for the truncated Boltzmann equation (see Proposition 2.1)
leads to

Oy J Fdv + div, J vFdv =0
and
” vF(t, x, v)dv = ” vF™ (i, v)dv for each t > 0.
R*xR? R*xR?

The global energy conservation for the truncated Boltzmann equation (see
Proposition 2.1) and the fact that F,, > 0 a.e. imply that, for each ¢t > 0 and R > 0,
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one has

” 1<V Fot, 2, v)dvdae < ” [ F,(t, ., v)dvda
R*xR? R*xR?
_ ” W EF™ (e, v)dvdic

R*xR®
Hence, passing to the limit in the left hand side of the inequality above shows that
” I‘U‘SRMZF(L x, v)dvde < ” [[2F™ (e, v)dvdae .
R*xR? R*xR?
Letting then R — + co shows that, for each ¢ > 0
” |v|2F(t, x, v)dvdy < ” \v|2Fm(x, v)dvdx
R*xR® R*xR?

by monotone convergence.
Finally, observe that, for each 7,7 = 1,2, 3, the sequence

J v, dv

RS

< J %|v|2Fndv is bounded in LR, ; L'(R®))
RS
hence, modulo extraction of a subsequence, by the Banach-Alaoglu theorem, for each
1,7=1,2,3
J V0 Fudv — 1y in LR ; M(R?)) weak, .
R3

Clearly, u;; = w;; for i,j =1,2,3.
Let ¢ € R? and y = x(t, x) a nonnegative test function belonging to C,(R.. x R?).
Then

3
”J & v x(t, ©)F (¢, @, v)dvdawdt — Z ” &G (dt
R, xR*xR? ij=1 R, xR

while

”J 1< ?)|21\v\§RX(t, ) F, ¢, 2, v)dvdxdt — J“ € - v|21\v\§R}{(t7 2)F(t, x, v)dvdxdt

R, xR*xR? R, xR*xR?
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as n — + oco. Hence
3
S ” £(t,2) (uz,-of) - j 1 <gviiF ., v)dv) dt
YRR R’

= lim ”J & VP Ly ra(E, D) F (¢, 2, v)dvdaedt > 0.

Nn—+ 00

R, xR*xR?

Letting R — + oo in the left hand side of the inequality above, one obtains

3
> &g
ij=1

|| xto (ug(t) - [ v)dv) at >0,

R, xR® R?
by monotone convergence, which shows that

i) = si®) — [ ot 0o = )
R3

is a nonnegative symmetric element of L>*(R ; /\/l(R3; M3(R))).
The discussion above shows that

J vy dv — J viviFdv + my;

R? R?

[56]

in L>=(R?; M(R?)) weak-*, so that, by passing to the limit in the local conservation
law of momentum satisfied by the solution of the truncated Boltzmann equation, one

arrives at

Os J vFdv + div, J v QVFdv + div,m = 0.

3.6 - Passing to the limait in the renormalized equation

In order to prove the existence part of the DiPerna-Lions theorem, it remains
to prove that F',, converges to a renormalized solution of the Boltzmann equation.

With the information at our disposal, and although Proposition 4.2 contains
useful information on the nonlinear term, this convergence is not trivial, in
particular because the only source of compactness in the problem — i.e. Velocity
Averaging — gives compactness on macroscopic observables defined by F, i.e.
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on quantities of the type

Pt ) = J Fo(t, 2, )y

R3
and not on F, itself.
3.6.1 - Some preparations
For each ¢ € (0,1), define f(z) = ﬁ; clearly 5 € C*(R.) and satisfies

1
< b
1+62° 1402

/)):;(2) =

as well as
1
. <
ﬁé(z) )

for each z > 0.
Therefore, modulo extracting again a subsequence of F',,, one has

(43) Bs(F,) —Fsin LR, x R® x R®) weak *
for each 6 > 0.
On the other hand

BZ(Fan)

<p " <

so that, by Proposition 3.1, modulo extracting again a subsequence of F',,, one has
(44) BsF)BL(F,, Fy)— B2 in Lj, (R, x R* x R?).
Bringing together (43) and (44) leads to
45) (at+v-vx)F5:BifBi on R x R* x R?,
Fs|,_y=Bs(F™, onR’xR®.
Next consider the difference F,, — f5(F",); one has
OF2

< — b =
0<F,—BsEF 15 oF,

< 5F127,1Fn§3 + Fn]-Fn>R .

Pick ¢ > 0 arbitrarily small; the second term on the right hand side of the inequality
above can be made less than ¢in L1(R? x R?) uniformlyint € R,,n > 1and¢é € (0,1)
by picking R > 0 large enough, since F,, is uniformly integrable and tight on
R? x R3, uniformly in . With R so chosen, the first term is bounded by JRF,, and
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vanishes in L°°(R+;L1(R3 x R?)) uniformly in % as é — 0 since F,, is bounded in
L®R.; L'(R?® x R*). Hence

(46) Fo(t,-,) = Bs(Fu(t, -, ) — 0 in LXR® x R?)

uniformly in n > 1 and ¢t € R, as § — 0T, and therefore, modulo extracting a sub-
sequence of 0 — 0,

(47) Fst,-,) — F(t,-,-) in L"R® x R®)

uniformly int € R, as 0 — 0" and on R, x R® x R® a.e..

The idea is now to renormalize the equation (45), which leads to

(48) (at—'_vvx)ln(l—'—F&)im_l-i—Fé 0nR+><R XR,

Fs|,_y=BsF™), onR*xR®.

The advantage in considering (48) instead of the original truncated Boltzmann
equation (31)is precisely the strong convergence (47). So far, we know that F,, — F'in
Llloc(Ri x R? x R?), with strong convergence only for macroscopic observables of
the type

J Fo@t, x,v)¢@)dv,

RS

with ¢ continuous and subquadratic.
On the other hand, there is still a difficulty in considering (48), namely the rather
mysterious dependence of B°. on F.

3.6.2 - The loss term B’
Next we recall that B (F,,, F,) = F,A,(F,) with

(49) Ay(Fy(t,-, ) — AF(, -, ) in LIR? x R?)
uniformly in ¢ € [0,T] as n — + oc.
Let
J— Fn .
n,0 (1 + 5F,n)2 )

modulo extracting subsequences again, one has
Gns— G5 in L°(R,R® x R®) weak *.
Hence

(50) B’ = G;A(F).
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Next observe that Gs < Fs since G,, 5 < f5(F,) for each n; hence

0
(51) 0< B G

00 . 1 3 3
1+F(;_1+F(;A(F)SA(F)€L Bi; (L' (R° xR)).

Hence the family
S

1 —|—_F is weakly relatively compact in L} . (R, x R® x R®).
s

On the other hand
(52) Gst,,) — F(¢,-,) in L"R® x R?)

uniformlyint € R, as 6 — 07, and a.e. on R x R® x R? (by the same argument as
in the case of F5). Hence, possibly after extraction of a subsequence

B Gy F _ B_(F.F)
1 r 117, O = A0 =

(53) +F 1+F

a.e. on R x R® xR® as 0 — 0", and hence (by the Lebesgue theorem) in
LL (R, x R* x R®).

3.6.3 - The gain term Bi
As expected, this term is the most complicated one. We start with the following
easy inequality.
Lemma 6.1. Foreach 6 € (0,1), one has
Bfr <B,(F,F)a.e on R, x R?> xR®.
Proof. First, for each 6 € (0,1) and each » > 1, one has

B+(F717F7L)

/FnB F’I’L)F’ﬂ B EEEE—
BAEDB A F) = s

< B+(FnaFn)~

Denoting for simplicity
J Fpdv=p,,
RS

one has therefore, for each nonnegative ¢ € C.(R?)

ﬁi}(Fn)BJr(Fm Fn)
R? R3

B+(FTZ7F7L)
1+

pv)dv .

n
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Since

By(F B (Fy,F,)— B in L} (R, x R® x R®)
and 0 < < 1while p, — pa.e.on R, x R® Lemma 4.4 implies that

n
BB (Fy, Fy) B

J z;%f”‘élimehm+xme%

so that
B5sFn)B 1 (Fy, Fr) 1 J 5
J T+p, $(w)dv — B ¢(v)dv
R3 Rd

while the right hand side is known to satisfy

(54) J&@ﬁﬁﬂm 1Jmmmmm
1+p,
R? R3
inL} (R x R? x R?). Hence
1

Jhw@m<{gjampwww

R} R?

1+

since this inequality holds for each nonnegative, compactly supported continuous
test function ¢, one has

(55) B, <B.(F,F)ae. onR, xR’ xR®. O
The most important part in our argument is summarized below.

Lemma 6.2. Omne has
B,(F,F) < lim B’

0—0t

Proof. Let f =f() >0 a.e. be a measurable function; for each K > 1, in-
troduce as in section 3 the following decomposition

1
Ff =1 = = kg, + (FFL = Flpp<ksy. < D+ E =D,

where d(f) is the entropy production integrand given by (29). Therefore

(56) BN <y || dnbw-v. oo+ k5. p.

R?xS?
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Consider next the expression

BL(F,, F) BI(F,, F)) BI(F,, F)
57 £ < 2w 1p ot i)
(57) AL OB+ IAE) = 14 oF, o RIL A (Fy

We first claim that, for each 1 > 0,

B'(F,,F.)  B.(F.F)

(58) T4 Ay 1+ JAG)

in L}.(R, x R* xR%).

Bn F mF ns. i i
% is weakly relatively compact in

Llloc(R+ x R® x R®); assuming that, modulo extraction of a subsequence,

B (Fy, Fy)
1+ 2A,(F,)

Indeed, the inequality (56) implies that

—Lin L, (R, x R* x R®)

one has

BL(Fy, Fy) L B.(F.F)

A+ [ Fod)1 +iA,F,) 1+ [ Fdv 1+ | Fav)d + 2AF))
RS R3 R3

71
inLy,

R, x R? x R?) because of (54), by Lemma 4.4 since

1 1 a.e.and 0 < 1 <1ae
1+ [ Fpdv 14 [ Fdv 1+ [ Fudv™

Now, start from the expression (57) and the inequality (56) in the form

BUF,F)  _BiF.F)
T+ R+ A4 )~ 1+ oF,

1 K
+ Tk ” AdF,)b(w — v,, w)dvdw + IFH]'F,QR .

R3 XSZ

Passing to the limitin L}, (R x R? x R?)weak in both sides of the inequality above
implies that
BT (F,F) 1 K

<Bf 4+ —FE
A orRd Ad) =B TP+ 7 F

(69)

where

” d(F )b — v,, w)dvdw — D vaguely

R*xS?



62 FRANCOIS GOLSE and LAURE SAINT-RAYMOND [62]

in the sense of Radon measures on R, x R® x R?, while

Folp,-r —FF in L] (dtdxdv) .
First, we let 6 — 0" and pass to the limit a.e. in (59):

F F K
B+( ) Bb + DO+

L) R
1+}A(F') In K }F

a.e.on R, x R® x R?, where Dy is the L! part of the Radon measure D. Next, we let
R — + 00, so that F® — 0 in Lloc(R+ x R? x R®) and a.e. (modulo extraction of a
subsequence). Finally, we first let K — + co and then 4 — 0", which leads to the
announced inequality. |

3.6.4 - Conclusion of the existence proof

On the other hand, the inequality (56) implies that

ByF)B(F,, F,) < ﬁ ” AF )b — v., 0)dv,do> + KBy F)B (Fo, F).

R?xS?
R, x R? x R®) weak as n — + 00, We arrive at
1

9 < 0
B+ 7—anDO+KB_

By passing to the limit in L}

loc

and therefore _
B’ 1 B 1
<—Dy+K Dy + KAF
155, S mr D B, S gD HEAD

0
+

because of (51). In particular, is weakly relatively compact in

R, x R? x R®). By Lebesgue’s Theorefn and (55), Lemma 6.2 and (47), one has

loc

B’ B F) .

(60) 1—|—Fa 1+F

in L} (R, x R® x R?) and a.e.

asd — 0.

Eventually, passing to the limit in (48) as 0 — 07, on account of (53), (60) and (47)
implies that
B.(F,F) B_(F,F)

Ot +v-Vy)In(Q+F)= 1+F  1+F

with the initial condition
F ‘t:O =F"

since the convergence Fs — F' is uniform in [0, T'].
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More generally, for f € CY(R.) satisfying IB(Z)| <
has

C
>
152 for each Z > 0, one
O +v-Vp)BE) =0 +v- Vx)ﬁ(eln(lJrF) -1
BF,F)
1+F
= (F)BF,F) e L, (R, x R® x R®).

_ ﬂ/(eln(HF) —~DA+F)

To see this, write
d
Oy +v - V)L, x,v) = %ﬁ(F)(t, x+t,v)

and recall that if f : [0, 7] — R is absolutely continuous and @ € C'(R), then ® o f is
absolutely continuous on [0, 7] with (® o f) = &' () f’ a.e.
Finally, let us prove that F' is a renormalized solution of the Boltzmann equation.
First, we already know that F' satisfies the entropy inequality in Theorem 1.3 as
well as the bound

” A + [x? + [v)F (¢, @, v)dadv < CA + 2)
R xR’

inherited from (34). Hence

T

J J J” d(Fbdvdv, dwdxdt < C'(1 + T?)
0 R R®xR®xS§?

for some positive constant C’. Applying Lemma 1.2 shows that

BED) € 1071 < B x BO.B)

VI+F
for each R, T > 0.
Let then f € CY(R, ) be such that |f'(Z)| <
Bs € CY(R) such that

\/lcji——Z for each Z > 0. Pick a family
Cs (0
/ < 4 / <

where Cj is a positive constant that in general depends on ¢ while C’ is a positive
constant that is independent of . Hence in particular

IBs(D)| < |B5(0)] +2C"V1 + Z for each Z >0 and § > 0.
We also require that

Bs(Z) — B(Z) and B5(Z) — B'(Z) for each Z > 0 as § — 0.
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We already know that
01 +v - Vo)fs(F) = B(F)B(F, F)
Bs(F)|,_y = Bs(F™)

for each 6 >0. In other words, for each test function ¢ = ¢, x,v)
€ C*([R, x R? x R?), and each J > 0, one has

”J Bs(F)O; + v - V,)pdvdadt + ” BsF™MHO, xc, v)dvda

R, xR*xR? R*xR?
(61)

+ m ByF)B(F, F)¢dvdadt = 0.
R, xR*xR?
We know that F € C(R.,; L'(R® x R?)) and
IBs(D)| < |Bs50)] +2C"V1 + Z for each Z >0 and § > 0.

On the other hand, we also know that F € C(R,;L'(R®x R®) and d(F)
e LNR, x Riﬁ X Rzg) X Ri* x §%), so that, by the entropy production estimate (14)
together with Lemma 1.2, one has

|BE, F)|
VI+F

Passing to the limit by dominated convergence in the above equality as  — 0 shows
that

eLL (R, xR xR}).

|By(F)B(F, F)| < C'

”J BENO; +v - Vyp)dvdadt + ” BE™MS0, 2, v)dvdas

R, xR>xR? R*xR?

n m B (F)BF, F)édvdadt = 0.

R, xR*xR?
In other words
(0 +v- V)BF) = f(F)BF,F)
BE)|,_y = BE™)

C
Vi+Z

for each f € C'(R..) such that f'(Z) <
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This shows that F' is a renormalized solution of the Boltzmann equation, which
concludes the proof of Theorem 1.3.

3.7 - Solutions in Maxwellian equilibrium at infinity

After [17], P.-L. Lions proposed some variants of the notion of renormalized
solutions that are in Maxwellian equilibrium at infinity. A particular case of his
theory, of paramount importance in the derivation of hydrodynamic limits, considers
solutions of the Boltzmann equation posed in the Euclidian state R® that converge to
some uniform Maxwellian at infinity.

For simplicity, we consider the case where M = M(v) is the centered reduced
Gaussian M = M(l,O,l)-

Consider the Cauchy problem

OF +v-V,F=BF,F), (xv)cR xR, t>0,
F@,e,v) —M®w) — 0 as |x| — + o0,
F|,_,=F".

That F'(t,x,v) — M(v) — 0 as || — 0 holds in some sense that is strong enough so
that the relative entropy H(F'(t, , -, )|M) < + oo for each t > 0.

Definition 7.1. A nonnegative function F € C(R,;L} (R* x R?)) is a re-
normalized solution relatively to M of the Boltzmann equation if and only 1if, for
each function I' € CY(R.,) such that the function

— JI;(—FL)Z is bounded on R, ,
one has
F A F
MO +v- V) <M> =TI (M) BWF,F)

wn the sense of distributions on R’ x R? x R®.

With this definition, P.-L. Lions proved the following variant of Theorem 1.3.

Theorem 7.2. Let F™ >0 be a measurable function such that H(F™|M)
< +oo. There exists a renormalized solution relative to M of the Boltzmann
equation such that F|,_, = F™, which moreover satisfies

e the continuity equation
Oy J Fdv + div, J vFdv =0;

R3 R’i
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o the momentum equation with defect measure

Oy J vFdv + div, J v Q@ VFdv + div,m =0
RS R3
wherem is a Radon measure on R, x R® with values in the nonnegative symmetric

matrices;
o the entropy inequality

¢
HF®)|\M) +% J ”J dF)b(v — v, w)dvdv.dwdxds
OR

(62) 3 RPxR*xS?

+ Jtrace(m)(t) < H(F™M)
foreacht > 0.

This is precisely the notion of solution of the Boltzmann equation which is the
most useful for the problem of hydrodynamic limits.

4 - Formal Hydrodynamic Limits: the Moment Method and the Hilbert and Chapman-
Enskog expansions

In the present chapter, we shall present various formal computations that explain
how the classical PDEs of Fluid Mechanics can be derived from the Boltzmann
equation. Such computations are not rigorous proofs of these derivations; however,
they give extremely valuable intuition on the subject of hydrodynamic limits of the
kinetic theory of gases.

4.1 - The dimensionless Boltzmann equation

Before entering the subject of hydrodynamic limits properly speaking, we first
describe the Boltzmann equation in dimensionless variables. In these variables, two
dimensionless parameters, called the Knudsen and Strouhal numbers naturally
appear in the Boltzmann equation. In this section, we consider the Boltzmann
equation for general cut-off potentials.

Choose a macroscopic length scale L and time scale 7, and a reference tem-
perature ©. This defines two velocity scales:

e one is the speed at which some macroscopic portion of the gas is transported
over a distance L in time 7, i.e.
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e the other one is the thermal speed of the molecules with energy 5 k©; in fact, it

is more natural to define this velocity scale as

. [5F0
V3 m
— m being the molecular mass — which is the speed of sound in a monatomic gas at
the temperature 6.
Define next the dimensionless variables involved in the Boltzmann equation, i.e.
the dimensionless time, space and velocity variables as
At . .
t_T’ ac—z, andv—g.
Define also the dimensionless number density
IR LS 3
F(ta xav) = TCSF(L v, /U) ’
where A is the total number of gas molecules in a volume L3. Finally, we must re-
scale the collision kernel b. As mentionned earlier, b(z, ) is the relative velocity
multiplied by the scattering cross-section of the gas molecules; define

bz,w) with 2 :% :

bz, 0) = 5
C X 7r

where 7 is the molecular radius.
If f satisfies the Boltzmann equation

OF +v- V. F = ” (F'F. — FF)b(w — v, w)dv,dw

R3xS?

then
L . . - Nm? A aa s R
C—TaiF + bV = L—nz “ (F'F. — FF)b(® — b, 0)dd.dw.
R?xS?

The factor multiplying the collision integral is

N x mr? L 1
» _

L L3  mean free path Kn’

where Kn is the Knudsen number defined above. The factor multiplying the time

derivative
x L

c

1
T =: St
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is called the kinetic Strouhal number (by analogy with the notion of Strouhal number
used in the dynamics of vortices). Hence the dimensionless form of the Boltzmann
equation is (see §2.9 in [55]):
(63) StO,F + 5 Vol — % “ EF— FEb — by, o)db.doo.
R*xS?

There is some arbitrariness in the way the length, time and temperature scales L, T,
O are chosen. The most natural thing to do is to choose these in a way that is con-
sistent with the geometry of the domain where the gas motion takes place, the time
necessary to observe significant gas motion, and the distribution function at the
initial instant of time. In addition to Sone’s book [55], we also refer to the introduction
of [5] for a more detailed presentation of the Boltzmann equation in dimensionless
variables.

All hydrodynamic limits of the Boltzmann equation correspond to situations
where the Knudsen number Kn satisfies

Kn«1.

In other words, the Knudsen number governs the transition from the kinetic theory
of gases to hydrodynamic models, just as the Reynolds number in Fluid Mechanics
governs the transition from laminar to turbulent flows — except that the hydro-
dynamie limit is much better understood than the latter situation.

But there is no universal prescription for the Strouhal number in the context of
the hydrodynamic limit; as we shall see below, various hydrodynamic regimes can be
derived from the Boltzmann equation by appropriately tuning the Strouhal number.

4.2 - Compressible Euler limit of the Boltzmann equation: the moment method

The compressible Euler limit is the easiest of all hydrodynamic limits of the
Boltzmann equation at the formal level — and the one for which obtaining a complete
mathematical proof is the most challenging at the time of this writing.

The compressible Euler equations are obtained as a scaling limit of the
Boltzmann equation in the case where

St=1, Kn=¢x1.
With these notations, the dimensionless Boltzmann equation (63) is put in the form

ath+7)'vxFe :lB(Fsan)
(64) 1

- el ex
&

1 ” F'F - F.F, )b — ., w)dodv,.
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Obviously, one expects that, as ¢ — 0,
F,— F, whileBF,,F,) — BF,F)=0.

Because of Boltzmann’s H Theorem (Theorem 3.1 above) this implies that F'(t, x, -) is
a Maxwellian for each (¢, x), i.e.
‘[)(l','7 x) e_\v—u(t.x)\z

(65) F(t,x,v) = Mo ut.o.00)) = W 20t.2)

for some p = p(t,x) > 0,0 = 0(t,x) > 0and u = u(t,x) € R?. Such a number density
is called a local Maxwellian, and indeed, since Maxwellians are the thermodynamic
equilibria in the kinetic theory of gases, we see that the limit Kn — 0 naturally leads
to number densities that are local thermodynamic equilibria. In other words, this
limit agrees with the description of fluid regimes.

It only remains to find the governing equations for the unknowns p, % and 6. For
simplicity, we choose to discuss the case where the spatial domain is the periodic box
— i.e. the torus T°.

Theorem 2.1. Let p™ = pi(x) > 0, 0™ = 0" (x) > 0 and u™ = u"(x) € R® be
continuous on T°. Assume that, for each & > 0, the Boltzmann equation (64) has a
solution F, such that

Fg’t:o = M(pin,’uin"(}in) .

Assume that

| [(” g " 1)+ " SO 1~ Ino™ | do
e
= H(M(pirn"um‘oin)|M(170_1)) < + o0

that F. is rapidly decaying and such that InF, has polynomial growth as
|v| — + oo; assume furtherthat F'y — F a.e., and that the decay properties above are
uniform in this limit.
Then F is a local Maxwellian of the form (65), whose parameters (p, u, 0) satisfy
the compressible Euler system
Op + divy(pu) =0,
Oi(pw) + div,(pu @ u) + Vy(p0) =0,

1 3 . 1 5
O <p<§|u|2 +§0>>+d1vx (pu<§|u|2 +§0)> 0,

together with the initial condition

(pa u, 9){25:0 = (pin7 ui7L7 Hiﬂ) )

(66)
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They also satisfy the differential entropy inequality

(67) Oy (pln 93/2> + div, (pu In 03/2> <0.

The proof given below follows the analysis in [2].
Proof. Without loss of generality, assume that

J pra)de = 1.
TS
Proceeding as in Corollary 3.3, multiply each side of the scaled Boltzmann equation

1
(64) by InF', + 5 |v|2; by using the H Theorem and Proposition 2.1, we see that

e ” [Fg In <%> —F.+ M] &, 2, v)dxdv

T?xR?
¢

i %J J ”J d(F,)b(w — v,, w)dw dvdv,dxds

0 73 R?xR*xS?

< ”{ < ) F+M](Oocv)dacdv

T? 3
where

FF!
I nl & &x
dlF,) = (F.F,, —F:F)ln (F F.g*>

and M = Mg 1) is the centered reduced Gaussian. Because of the elementary in-
equality
aln(a/b)—a+b>0, a>0,b0>0,

the first integral in the left hand side of the inequality above is nonnegative. As for
the integral in the right hand side, it can be computed explicitly since

F":’t:O - M(pin ,uin_’()in) .

Eventually, the inequality above implies that

1

1 “J d(F )b — v., w)dw dvdv,

T3 xR?xS*

<e J {pm lnpm + ipm|um|2 + gpm(em — Ino™ — 1) doe = 0(8)
T
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By Fatou’s lemma, this implies that
d(F)=0,

which implies in turn that # is a local Maxwellian because of Boltzmann’s H Theorem.
Then, by passing to the limit as ¢ — 0in the local conservation laws (8) satisfied by
F, for each positive ¢, it is found that

O J Fdv + div, J vFdv =0,

R:i R3
O J vFdv + div, J v UFdv =0,
1 2 . 1 2
O J §|v| Fdv + div, J v§|v| Fdv=20.
R? R?

Setting
F(t,x,v) = Ma)u,06,0) )

in the above system, and observing that

J M(/}.uﬂ)dv =P,
R3

J VM u0dv =pu,
R3
1 1 3
[ 3l0EMpndo = (510 +50)
RS
while
J VR VM updv = plu @ u+ 0I),
RS
1 1 5
J §v|v|2/\/l(,,,uv0)dv = pu(z \u|2 + 20> ,
R?
we see that (p, u, 0) satisfy the compressible Euler system (66).
Finally, the differential inequality (10) is satisfied by F', for each ¢ > 0; passing to
the limit as ¢ — 0 leads to
Oy J Fln Fdv + div, J vFInFdv <0.

R:% RS
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Since
p 3
J Mup I Mpupdv = pln ((2n9)3/2> Nl
RS
while
p 3
J M 00 10 My 000 = puln ((2n6)3/2> LA
Ré

the differential inequality above, combined with the continuity equation — the first
equation in (66) — eventually leads to (67). O

The basic mechanism of this proof can be summarized as follows: first, analyzing
the entropy production term in Boltzmann’s H Theorem shows that the limiting
number density is a local Maxwellian.

Then, passing to the limit in the local conservation laws that result from the
symmetries of the Boltzmann collision integral leads to the desired hydrodynamic
equations, once we know that the limiting number density is a local Maxwellian.

As we shall see in the sequel, this basie principle lies at the heart of each of the
hydrodynamic limits of the Boltzmann equation — or of other kinetic models of the
same kind — that are discussed in this course.

4.3 - Asymptotic expansions

One can go beyond the compressible Euler limit as stated in Theorem 2.1, in
several directions.

For practical purposes, it is of course interesting to know by how much the
number deviates from the local Maxwellian governed by the compressible Euler
system. A second question, obviously related to the first one, is to determine higher
order hydrodynamic corrections to the compressible Euler system.

Both problems obviously require using asymptotic expansions of the number
density in terms of some appropriate small parameter (the Knudsen number, in this
case).

We therefore consider the same scaling as the one leading to the compressible Euler
system, but for later use assume that the Strouhal number takes some fixed value, i.e.

(68) Kn=¢«1, andSt=17>0.

The scaled Boltzmann equation is

1
(69) TatF£+v'Vsz:;B(Fe>Fs)»
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and will be studied asymptotically for fixed Strouhal number 7 and in the vanishing
Knudsen number limit ¢ — 0.

All methods for hydrodynamic limits based on asymptotic expansions seek so-
lutions of the scaled Boltzmann equation as formal power series in ¢

(70) Fit,x,0) = &'F,t,,0),
n>0

with coefficients F, that are smooth in (¢, ¢, v) and rapidly decaying as |v] — + co.

The leading order approximation F is expected to be the limiting hydrodynamic
distribution function, while the successive corrections F), account for the finite
Knudsen effects. These coefficients F,, are found by plugging ansatz (70) in the
scaled equation (69), and balancing the resulting coefficients of the successive
powers of ¢ on each side of (69):

Order ¢~ !:
B(Fy, Fo) =0,
Order ¢7°:
TOFy +v- V. Fy=2BF, F1),
Order &
tOFo +v - Vo Fo = 2B(Fy, F2) + B(F1, F1),
Order e":

0y +v - VoI = Z B(F77F7)

i+j=n+1

We therefore expect the v-dependence of the functions F,, to be determined by
solving an integral equation (defined by the collision integral) at the order "1, while
its (,x)-dependence will be determined by evolution PDEs resulting from the
equation at order &".

While this strategy is conceptually very simple, it leads to several difficulties that
one should not underestimate.

Depending on the exact form of the ansatz, this identification leads to different
hierarchies of PDEs. A first difficulty is to decide at the formal level whether the
infinite system of equations so obtained is well-posed, in other words to determine
compatibility conditions between the various equations.

These compatibility conditions are in general not sufficient for a rigorous
mathematical result. For instance, the Cauchy problems for the coefficients F’,, may
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be not well-posed in the same functional framework. Even if such a functional fra-
mework exists, the Cauchy problems for the F,, may be not well-posed on a uniform
time. It could also happen that the convergence radius of the formal power series is 0.
More serious problems related to this approach based on asymptotic expansion
will be discussed at the end of the present section.
Essentially two kinds of asymptotic expansions have been used in the context of
the Boltzmann equation, the Hilbert expansion and the Chapman-Enskog expansion.

4.3.1 - Hilbert’s expansion

Hilbert’s expansion is historically the older and goes back to Hilbert’s funda-
mental paper [33] on the kinetic theory of gases.

In view of the discussion above, it is natural to seek the solution of the scaled
Boltzmann equation as the local Maxwellian whose parameters are governed by the
compressible Euler system, plus a fluctuation.

(71) F.(t,x,v)=F <1 + Z g, x, v)) .
n>1
In other words,
Fo(t, 2, v) = M a),ut.2,0¢.0)
where p, # and 6 satisfy the compressible Euler system
©0yp + divy(pu) =0,
t0y(pu) + divy(pu @ u) + V(p0) = 0,

1, » 3 . 1, 2 5 B
0 (p(§ |ul +§9)> +div, (/m<§ ] +§9>> =0.
We recall from chapter 1, section 6 the definition of Boltzmann’s linearized col-

lision integral about the (local) Maxwellian F'y:

Lp,g = —2Fy'B(Fy, Fog);

(72)

likewise, we define the quadratic part in the expansion of the collision integral
about Fy
Or,(9i,9;) = Fy ' B(Fog:, Fog)) .

Then, for each » > 1, identifying the coefficients of the successive powers of ¢ on each
side of the scaled Boltzmann equation leads to the sequence of equalities:

©04(Fogn) + v - VaFogn) = =FoLr,gnir +Fo Y Qr,(gi,9))-

i+j=n+1
1<ij<n
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By Theorem 6.1 in chapter 1, section 6, one can define the pseudo-inverse K;OI of the
linearized collision operator Lg, on (ker Lp,)" C L2(Fodv).
Once g, is known, one computes ¢,,.1 by solving the Fredholm integral equation

i+j=n+1
1<ij<n

(713)  gn+1 = HFp,Gns1 + /-3;101 <_F01(Tat(F09n) +v - Vo(Fogn) + Z QFO(gi7gj)>

where ITp, denotes the orthogonal projection on ker Ly, in L#(Fdv). The compat-
ibility condition at order n + 1 is therefore

<F01<rat<Fogn> +0- VoFoga) — Y QFU(gi,gj)>¢ ker (Cr,)
o

for the inner product of L2(Fydv), in other words,

1 1
(74) rBtJ v | Follp,gndv + div, J v |vFyg,dv=0.
[of? [of?

This relation means that, at each order n > 1, the part /1,9, of g,, that belongs to the
nullspace of Lp, — i.e. the hydrodynamic part of g, — satisfies the linearized com-
pressible Euler equations (with source terms depending ong,,_j, forj =1,...,n — 1).

4.3.2 - Chapman-Enskog’s expansion

The expansion known today as Chapman-Enskog’s expansion was found in-
dependently by Chapman (1916) and Enskog (1917). It is a variant of Hilbert’s ex-
pansion, where the main idea is to collect all the contributions to the local thermo-
dynamic equilibrium at leading order.

It takes the form

(75) Pt = Mi.r0)(14 Y Gt

n>1

where My, is the Maxwellian with the same moments of order < 2 as F, i.e.
(76) Mp (&, 2,) = M t0)0,t.0.0,t2) »
with

P, = Jngv = JM rdv, pau, = JF;;udv = JM Fodv,

po(u.* +30,) = JFglv\zdv = JMFS|v|2dv.
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The relative number density fluctuation of order ¢, i.e. g, is of the form:
gnle, b, 2,) = p,[p, (¢, ), u,(t, ), 0:(¢, @), 0],

where the notation y,[p,(, x), ., x), 0:(, x), v] designates a function of v that de-
pends on (¢,x) through p,, . and 0, and their successive partial x-derivatives eval-
uated at the point (¢, x).

By definition of the Maxwellian My,

Jyn[pg,ug, 0., vIMp.dv = Jyny[ps,u& Hg,v]|v\2Mpﬁdv =0,

Jyn[pg, Ue, O, vIWMp dv = 0.

At variance with Hilbert’s expansion, the Chapman-Enskog ansatz requires
knowing in advance that the successive corrections to within any order in ¢ to the
compressible Euler system are systems of local conservation laws.

These conservation laws are truncations of the formal local conservation laws
deduced from the local conservation of mass, momentum and energy that hold for
(classical) solutions of the Boltzmann equation, and assume the form

Pe
(77) 0, e + ) &diveg, (o, us, 0,) = 0,
pul +30 ) "
where the formal fluxes ¢, are defined by

1

¢n(psa U, 0,) = J v Vn[pw U, 987 ?}]?)Mpgd?) :
[of?

At leading order, we obtain as usual the compressible Euler system in the form (72).
The first correction to the compressible Euler equations is then given by
‘L'atMF}: +v- vaFg = _MFS»C::(Vl [,03, U, 9}:7 ])

or equivalently
3 1 2
704 <logpg - élogﬁg ~ 30, [v — )

(78) : _3 L P
+ div, | vlogp, 2v10g08 20&?}\1} Uy |

= _Es(yl[pm U, 087 ]) )
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where £, denotes the linearization of the collision operator at the local Maxwellian
state Mp..
Using the compressible Euler system to eliminate time derivatives leads to

(19) A (%) : D(u,) + 2B (%) Vo0, = =L [ps s, 0:,0])

where D(u) is the traceless part of the deformation tensor of u
1 o 1.
D(u) = §(qu + (Vau)' ) — gdlvmu ,
while we recall from (21)
1, 1 . s
AR)=2®z —g\z| Id, B(k)= éz(|z| —5).

By Theorem 6.1 in chapter 1, £, is a Fredholm operator, so that, in view of (22),
equation (79) has a unique solution y; L ker (£,) (in the sense of L?(M F,dv)) whose
expression is

~ (VU — U . oD V— U .
(80) yl(pg,ug,ﬁg):—A< m).D(ug) 23( \/0_> Va/0;

where the tensor field A and the vector field B are defined as in (23):
~ (v —u v—Uu
A ) =—£A £) ),
(7)== (a(7))
- (v —u V—Uu
B Y =—£;'(B ).
(7)== (=)

By Proposition 6.5 in chapter 1, there exist two scalar, radial functions a and f such
that

() ()
() = ()

Since the term p; involves first derivatives of the moments p,, u, and 6,,

second derivatives of these moments appear in the flux at the next to leading
order in e.
By truncating the formal conservation law (77) at the order O(e), one obtains the
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compressible Navier-Stokes system with O(¢) dissipation terms:

at Pl

1 . 3
Pe (é%s| +§0£)
Pes

U2 + p.0.1d — epD(u,)

1
Pl (2 |ug|2 + 293> —ere, V0, — en. D) - u,

(81)

+ div,

The viscosity and heat conductivity are given by the formulas

ST A e

1/0, V—u\ = [V — U,
_1vl(p ‘B Mp.dv.
" 3PJ(¢0—) (m)”

which, after expressing the integrand in terms of the new variable

v — U,
HE
reduce to
1
e =160 [ A0V) s AV MaanWVav
(82)

1 ~
N J B(V) - BWV)Mo(V)dV .

Since Ly,,, is a nonnegative self-adjoint operator in L*(M o1dv) and A and
B 1 kerLy,,,, in L*(Mq1)dv), the integrals above are positive scalars.
Their expression in terms of the scalar functions a and f§ defined in Proposition 6.5

in chapter 1 is
+

Uy 68 J a(r)r® e‘fT ,

7T

(83) N

+

NG J BW202 — 5P
0

2_;2 d?"

N

Gbl'—‘

Notice the dependence of the viscosity and heat conductivity upon the temperature
0.; that these coefficients are proportional to the square-root of 6, is characteristic of
the hard sphere gas.
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There are further corrections to the compressible Euler and Navier-Stokes
system, obtained by truncating the Chapman-Enskog expansion at order 2 or more.
These corrections were proposed by D. Burnett (1935); however, the corresponding
fluid dynamical models are in general ill-posed. Recently, D. Levermore and A.
Bobylev have proposed modifications of the expansion method — more precisely, of
the truncation algorithm — that would lead to well-posed hydrodynamic models;
these recent developments have unfortunately not yet been published.

4.3.3 - Miscellaneous remarks on the Hilbert or Chapman-Enskog expansions

Even at formal level, both expansions are not equivalent.

Indeed the compressible Euler system is not known to be stable in L> norm with
respect to viscous perturbations. In particular, in the case of bounded domains, the
set of boundary conditions adapted to the compressible Navier-Stokes system is not
compatible with the Euler system (therefore leading to viscous boundary layers in
the inviscid limit). This seems to indicate that one cannot expect the formal series to
converge.

Although there is no difficulty in defining them, truncated expansions do not
provide an entirely satisfying alternative to considering the complete power series
since

-- they may not be nonnegative for all ¢,  and v; and

-- they fail to justify the hydrodynamic limit after the instant of time when
singularities appear in the limiting solution; for instance, it is known that this
first singular time is in general finite in the case of the compressible Euler
system (see [54]).

However, many of the early mathematical justifications of hydrodynamic limits of
the Boltzmann equation are based on truncated asymptotic expansions. For in-
stance, R. Caflisch gave a rigorous justification of the compressible Euler limit up to
the first singular time for the solution of the Euler system: see [10]. Later, M.
Lachowicz [35] completed Caflisch’s analysis by including initial layers in the trun-
cated expansion, thereby dealing with more general initial data than in Caflisch’s
original paper. By the same method, A. DeMasi, R. Esposito and J. Lebowitz [15]
justified the hydrodynamic limit of the Boltzmann equation leading to the in-
compressible Navier-Stokes equations. Like Caflisch’s, their proof holds for as long
as the solution of the Navier-Stokes equations is smooth; besides the solution of the
Boltzmann equation so constructed that converges to a local equilibrium governed
by the Navier-Stokes equation fails to be nonnegative. It could be that this problem
can be solved by the same method as in Lachowicz’s paper [35]; however, there is no
written account of this so far.
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4.4 - Formal Incompressible Limits

The compressible Euler sytem has been extensively studied by generations of
mathematicians, and yet, at the time of this writing, there is no global existence result
for initial data of arbitrary size. Probably the best result in that direction is the global
existence of BV solutions in one space dimension, for initial data of small enough BV
norm, a remarkable result by T.-P. Liu [45] based on Glimm’s pioneering article [21].

More is known in the case of the compressible Navier-Stokes system; see in
particular the lucid exposition of the subject by E. Feireisl [20]. But our discussion of
the Chapman-Enskog expansion shows that the dissipation terms are small and of
the same order as the Knudsen number order Kn in the compressible Navier-Stokes
system derived from the Boltzmann equation. Therefore these dissipation terms
vanish in the hydrodynamic limit. Since almost nothing is known about the uni-
formity of the solutions of the compressible Navier-Stokes system in the vanishing
viscosity regime, the compressible Navier-Stokes system is not a realistic target for
rigorous hydrodynamic limits.

As an alternative, we shall discuss hydrodynamic limits of the Boltzmann equa-
tion leading to incompressible fluid flows, about which much more is known.
Specifically, we shall explain how

e the Stokes equations,
e the incompressible Euler equations, and
e the incompressible Navier-Stokes equations

can be derived from the Boltzmann equation. Our formal derivations of these hy-
drodynamic models follows the same strategy as the moment method of section 2,
but involves computations similar to the treatment of the first order correction in the
Chapman-Enskog expansion (especially in the computation of dissipation terms).

All hydrodynamic limits of the Boltzmann equation leading to incompressible
fluid models start from the scaled Boltzmann equation (69), and use a scaling where
both the Strouhal number 7 and the Knudsen number ¢ are small. From now on, we
choose ¢ as the master parameter, and let © = 7, depend on e.

Furthermore, in all incompressible limits, the number density ¥ will be sought in
the form of a perturbation of some uniform Maxwellian state, which, by Galilean and
scaling invariance can be chosen to be the centered, reduced Gaussian distribution

ot

M®w) = P

(271')3/2

In other words,

(84) Fe = M(l + 5898)
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where g, = O(1) in some norm, while 6, represents the order of magnitude of the Mach
number Ma. To see that ¢, really matches the usual notion of Mach number (i.e. the
ratio of the velocity of the fluid to the speed of sound), consider the special case where

(85) Fg = M(lﬁggu‘(;) with 4 = 0(1) .

By a Taylor expansion of the Maxwellian about M ¢ ), one finds that

U-v
M(1_U10) = M(I,O,(}) (1 + T) + O(|U|2/9) .
In other words, in (85),
0, is the size of M
2
3

which is precisely the local Mach number. Indeed, we recall that in a perfect

. . /5
monatomic gas at temperature 6, the speed of sound is §9.

In [4], one can find a systematic discussion of all possible incompressible hy-
drodynamic limits of the Boltzmann equation that can be attained by varying the
parameters ¢, d,, and t,. Specifically

e if¢ = J, = 7., the Boltzmann equation converges to the incompressible Navier-
Stokes equations;

e if ¢ < §; = 7., the Boltzmann equation converges to the incompressible Euler
equations; and

e if §, < ¢ = 7., the Boltzmann equation converges to the Stokes equations.

The Stokes equations are

o+ Vep = udyu,  divyu =0 u(0,x) = u™(x),
(86) 5 n
éate = K40, 0(0,x) = 8" (x),

where u > 0 is the kinematic viscosity and x > 0 is the thermal diffusivity. Notice
that the Stokes system is one of the simplest systems of fluid dynamical equations
imaginable, being essentially a system of linear heat equations.

The Navier-Stokes equations — more precisely the Navier-Stokes-Fourier
system is

o+ - Vou+ Vep = uden,  diveu =0,  u(0,x) = ui”(m),
(87) 5 N
5 (8t0+u . VMH) = xd,0, 0(0,x) = 8" (x),
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where the kinematic viscosity u and the thermal diffusivity x have the same values as
in the Stokes system.
The incompressible Euler equations are
Ou+ - Vou+Vep =0, divu=0, u0,x)=u"(),
(88) 5 .
5 (010 +u-V,0) =0, 0(0, ) = 0" (x).

The starting point in our analysis is the scaled Boltzmann equation written below
in terms of the relative number density

F,
By using the notation
(90) Q¢,v) = M ' BWM¢, My),
the scaled Boltzmann equation reads
1 .
(91) 7,0;G, +v - V,G, = A oG, Gy), G.(0,2,v) = G}"(x,v).

In the sequel, the following notation for moments will be particularly convenient

(@) = J S)Mw)dv .
R3

With this notation for moments, the local conservation laws are written in terms of
the relative number density fluctuation g, defined by (84) as

T;:3t<g;;> + diVx<1)gx> = 07
(92) 7,01(vg,) + div, (v ® vg,) =0,

rsatg |v|zg,5> + divx<v% |v|zgg> =0.

Theorem 4.1 (Bardos-Golse-Levermore [3], [4]). Let G, be a family of
distribution solutions of the scaled Boltzmann initial-value problem (91) posed
on R? x R with initial data G that satisfies the initial relative entropy con-
straint

HMG™M) < C™"s?.

Let Gf” =1+ 5gg};” and G, =1+ J.9. where 5, — 0 as ¢ — 0, and where the fluc-
tuations g and g, are bounded in L>®(dt; L>(Mdvdzx)).

&



[83] HYDRODYNAMIC LIMITS FOR THE BOLTZMANN EQUATION 83

Moreover:
(1) Assume that in the sense of distributions the family g™ satisfies

&

i (Plog?), (3 o — 1)) ) = (", 0")
for some (u™, Gm) c L2(0lac;R3 x R), where P denotes the Leray projection onto di-
vergence-free vector fields;

(2) Assume that the local conservation laws (92) are also satisfied in the sense
of distributions for every g.;

(3) Assume that the family g. converges in the sense of distributions as ¢ — 0to
g € L>(dt; LA(Mdvdzx)). Furthermove, assume that Lg, — Lg, while for each
& € L2(Mdw) the moments (Eg,) converge to (Eg), and that every formally small term
vanishes, all in the sense of distributions as ¢ — 0.

Then g is the unique local infinitesimal Maxwellian
(93) g, 2, v) = u(t,x) - v + 0, x)%(|v|2 —5)

determaned by the solution (u,0) of
o the Stokes system (86) when o, = o(e) and 1, = &,
o the Navier-Stokes system (87) when d./¢ — 1 (or any finite value) and T, = ¢,
o the Euler system (88) when J./t. — 1 (or any finite value) and & = o(z,),

with initial data (™, 0™). In the viscous systems (86) and (87), u and x are given by
Sformulas (83) with 0, = 1.

We shall sketch below the formal derivation of the Navier-Stokes system, which
has all the possible terms (convection and diffusion) at the leading order. The formal
derivations of the Euler or Stokes systems are similar.

Proof. Interms of g, the Boltzmann equation (91) becomes
1
(94) e0ig: +v - Vage + ;Egs = Q(ge;ge) s

where £ is the linearization of Boltzmann’s collision integral at the Maxwellian state
M,i.e.
L= —-2MBM,M¢).

Here we have used the fact that 6, = 7, = e.

Step 1: Asymptotic fluctuations
First, we seek the asymptotic form of the number density fluctuations g, in the
vanishing ¢ limit.
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Multiplying the Boltzmann equation (94) by ¢ and letting ¢ — 0 suggests that
g. — ¢ in the sense of distributions on R, x R® x R® with £g = 0.

By Theorem 6.3 of chapter 1, g is an infinitesimal Maxwellian, i.e., is of the form
1
(95) gt.2,v) = p(t,0) + ult, 2) - v + 5 0, (v —3).

Notice that g is parametrized by its own moments, since

p=). u=tg). ando={(3hF-1)g).

Step 2: Incompressibility and Boussinesq’s relations
Passing to the limit in the sense of distributions in the continuity equation, i.e. the
first equality in (92), we obtain

(96) div,(vg) =0, or equivalently div,u =0,

which is the incompressibility condition in the Navier-Stokes equations.
Passing to the limit in the sense of distributions in the momentum equation, i.e.
the second equality in (92), we obtain

div,(v ® vg) =0, or equivalently V,(p+6) =0.

Since g € L>(dt; LA(Mdwdzx)), p + 0 € L*(dt; L?(dx)); the only a.e. constant function
in L2(R?) being 0, one finds that

(97) p+0=0.

This is sometimes called the Boussinesq relation (although this terminology usually
refers to the Navier-Stokes equation for liquids). Together with (95), it implies that g
is of the form (93)

Step 3: The motion and heat equations

The momentum equation in (92) is recast as
.1 1/1

(98) at<vg£> + lexE <A(?})gé> + vx; § |7)‘ 9 )= 0.
Since £ is self-adjoint on L*(Mdv),

1 1 ~

E <A(v)gs> = E <([/A)('U)gs>
(99) o ] ]
- <A<v>5,cgs> — (AQ(g.,g)) — (AGDy + v V.)g.)

Let II be the orthogonal projection on kerl in LQ(RS;Mdv): for each



[85] HYDRODYNAMIC LIMITS FOR THE BOLTZMANN EQUATION 85
¢ € L2(R?; Mdv), one has
1 1
Iy = (p) + v (vp) +§(|v\2 - 3)< (§ [vf? — 1) ¢> .

Because of step 1, one expects that g, can be replaced by I1g. as ¢ — 0 in the right-
hand side of (99). Hence

%<A(v>gg> ~ (AQ(Ilg,, 11g,)) — (Av-V,Ig,)
= (AQUlyg,, ITg,)) — (A ® A) : V,(vg,)

in some sense as ¢ — 0. The contraction in the last term of the right-hand side of the
equality above bears on the indices of A and V,(vg,); in other words, with the con-
vention of repeated indices,

(A®A) : Vi(v9:))ij = (AijAw) O (019:) -

The nonlinear term is simplified as follows.

Lemma 4.2. Foreach ¢ € ker(, one has
1
Q9. 9) =5 L&),

Proof. Differentiate twice the relation
B(M(p,uﬁ)v M(p,u,())) =0

with respect to the parameters p, # and 0. See [4] for a complete argument. O
Eventually, we arrive at the formula

L (A()g.) ~ ! (ALUTg)%) — (A® A) : Va(vg,)

& 2
(100 = 5 (UG ) — (A2 4) : V. o)
= (00) @ {0g2) — 5 1(090) T kD9,
where
1= 1i0 (A:A)

and, for each vector field ¢ = &(x) € R®
D(&) = V& + (VO - g(divxf)l .

Substituting the formula (100) for the momentum flux in (98), and taking into account
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the incompressibility condition (96), we arrive at the motion equation in the Navier-
Stokes system (87).
The heat equation is obtained in a very similar way, starting from the relation

(101) 8t<%(|v|2 - 5)gs>+divx% <B(v)ga> =0. O

5 - Mathematical Tools for the Incompressible Hydrodynamic Limits of the Boltzmann
Equation

In the present chapter, we shall discuss various mathematical approaches to the
problem of obtaining rigorous justifications of the incompressible hydrodynamic
limits of the Boltzmann equation for a hard sphere gas.

More precisely, we shall first discuss an approach of the incompressible limits
based on the spectral analysis of the Boltzmann equation linearized about the uni-
form Maxwellian equilibrium that sets the scale of the speed of sound.

In a second part, we present several uniform a priori estimates resulting from
Boltzmann’s H Theorem; these estimates will be used in the last two chapters of this
survey, devoted respectively to the incompressible Euler and Navier-Stokes limits
of the Boltzmann equation.

5.1 - Spectral analysis of the linearized Boltzmann equation

Because all incompressible limits are in particular small Mach number limits,
they correspond to weakly nonlinear regimes. In such a context, one expects that
the linearization of the Boltzmann equation about the uniform background
Maxwellian state that defines the speed of sound at leading order should play an
important role.

In particular in order to obtain some convergence rate measuring the accuracy of
the hydrodynamic limit, one must understand how the free-transport operatorv - V,
modifies the properties of Ly.

We start with a simple property which will not be used as it is, but helps un-
derstanding a crucial mechanism that occurs in fluid regimes, namely the transfer of
regularity from the v variable to the «x variable.

Proposition 1.1. Assume that the colliston kernel is that of a hard sphere
gas. Let T be the unbounded operator from LZ(T:;); X Rf’); 1+ )Mdxdv) to
LAT? x R?; (1 + [v|) ' Mdxdv) defined by

T=v-V.+ Ly,
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with domain
D(T) = {¢ € LAT? x R*; (1 + [v)Mdxdv) |v - V¢
e LAT? x R3;(1 + |v)) '"Mdaxdv)} .
Then the nullspace of T is
kerT = spang{1, vy, v2,vs, |v|2} )
Furthermore the operator T is coercive on (kerT)*: there exists C > 0 such that
||T¢||L2((1+|v\)’1Mdvdx) > C||¢||L2((1+\v\)Mdvdx)’

whenever ¢ € D(T) satisfies

1
1
“q§ ve | Mdvdx =0.
V3
[of?

Proof. Let ¢ be any element of kerT'. Then,
” LyPpMdxdy = ” ¢TeMdxdv =0,

from which we deduce by the relative coercivity of £,; (see Theorem 6.3 in chapter 1)
that

#(x, ) € kerLy, for almost every x € T? .

In other words, there exist some functions p, u, and 0 € L2(T?) such that
1
P, v) = pla) +ux) - v+ 6)(9c)§(|v|2 -3).
That T'¢ = 0 is then equivalent to

V-V, (p(x) +ulx) v+ 0(90)%(|v|2 - 3)> =0,

from which we deduce that the functions p, u, and 0 are necessarily independent of x.
As for the second statement, observe that

T=v(v)+v-V,—K

and that K is ((jv]) +v - V,)-compact on L?(wMdvdx) by velocity averaging (see
chapter 2). Besides, (u(|v]) + v - V) is closed and bounded-invertible from L?(vMdvdz)
to L*(v~'Mduvdz). Thus T is a Fredholm operator from L2(T% x R?; (1 + |v))Mdadv) to
Lz(Ti X Ri; a1+ |v|)71Mdacdv), and therefore is coercive on (kerT)™ . O
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Of course the previous proposition does not suffice to obtain a precise description
of the asymptotic behavior of solutions to the Boltzmann equation in the hydro-
dynamic limit. This requires refined results on the spectral representation of 7,
which give in particular the dependence of the first eigenmodes and eigenprojections
with respect to the spatial scale.

Theorem 1.2 (Ellis & Pinsky [19]]). Assume that the collision kernel is that of
a hard sphere gas, and let
T=v-V,+ Ly

be the linearized Boltzmann operator. Let T(E) be its Fourier representation
TE&=w-E+Ly.

Denote by U(t, ) the semi-group generated by T(E).
Then

4
Ut,&) = 1" P& + R(t, &)

=1

where ;&) are etgenvalues of B(&) with eigenprojections P;(&), three of which are
stmple and one of which has multiplicity 2.
These eigenvalues have the following asymptotic expansion

2i(&) = igj|¢] — BilEf + 0(EP) as €] — 0

where
B> 0. 120 —iajl] + BlEf) < flél/2 for |] < x,
while
Pi(&) = Py&/1€D + [E1Py(E/ IED) + €[*Py(O) -
Moreover

IR, &)|| < Cexp(— at) for some positive o and C .

The proof of such a theorem is extremly technical, and is based on an argument of
analytic continuation in the ¢ variable.

In other words, while the nature of the spectrum and the spectral gap are given
by velocity averaging plus an abstract argument, the precise study of the analytic
continuation of the 5-uple eigenvalue 0 for ¢ = 0 requires precise asymptotic eva-
luations. As we shall see below, knowing the first coefficients in the asymptotic ex-
pansion of these eigenvalues at large scale (i.e. for small &) is of paramount im-
portance in the justification of the hydrodynamic limit of the Boltzmann equation.
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5.2 - Applications to hydrodynamic limits of the spectral theory of the linearized
Boltzmann equation

The first mathematical proof of the compressible Euler limit of the Boltzmann
equation was proposed by Nishida [47]; his argument used the above description of
the spectrum of the linearized Boltzmann equation by Ellis and Pinsky, together
with an abstract variant of the Cauchy-Kovalevski theorem due to Nirenberg and
Ovsyannikov [48]. We shall not describe his result in this course. Rather, we shall
explain how the spectral analysis of the linearized Boltzmann equation «a la Ellis-
Pinsky» allows constructing global solutions of the (nonlinear) Boltzmann equation,
with estimates that are uniform in the incompressible Navier-Stokes limit. Although
in the same spirit as Nishida’s, this result, due to C. Bardos and S. Ukai [6], puts less
severe restrictions on the regularity of the hydrodynamic solutions. Indeed,
Nishida’s analysis considered analytic solutions of the compressible Euler system,
and therefore was only local in time; on the contrary, the work of Bardos and Ukai
considered global solutions of the Navier-Stokes equations, corresponding to initial
velocity fields that are «small» in some appropriate Sobolev norm.

5.2.1 - Notation and background

We therefore consider the scaled Boltzmann equation for a hard sphere gas with
Strouhal and Knudsen numbers satisfying

St=Kn=¢<1.

We are concerned with solutions of that scaled Boltzmann equation in the vicinity of
the uniform Maxwellian state

1 1
M) = Mappn®) = Wexp <— 5 7)|2>

(in the notation of chapter 1, section 3). It will be convenient to use the relative
number density and relative number density fluctuation

F, F.-M
GK:A—/[ and g, = S

instead of the number density F;, solution of the scaled Boltzmann equation. In

terms of g., the scaled Boltzmann equation takes the form
1
(102) £0ige + 0 - Vags +—Lg: = Gz, 92)

where £ and Q denote respectively the operators defined by
(103) Lg=—-2M"1BM,Mg), Qg,9) =M BMg,Mg).
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The formal analysis of the incompressible Navier-Stokes limit in chapter 4, section
4.4 suggests that g, should converge to some infinitesimal Maxwellian

9, x,v) = ut,x) - v+ t9(t,o¢)%(|v|2 -5,

whose moments » and 6 satisfy the Navier-Stokes-Fourier system.

5.2.2 - Application to the incompressible Navier-Stokes limit

Before stating the Bardos-Ukai theorem, which is the main result in this section,
we need a few notations regarding functional spaces. We shall use the spaces

L = {g = g@) |sup (1+ o) M 2g()| < + o0},
v

Hip={9=gv)|lgl,; =sup@+ |”|ﬁ)\|M1/29(',U)||H; < 400},
v
and
Xip=CR HgpNL R, ;Hp),

where the subscripts [ and § will be chosen so as to ensure that Q maps H; g x H
into H; 5. Note that this property is a stronger constraint for H; 3 than that of being
an algebra because of the weight |v — v*| in the collision integrand.

Theorem 2.1 (Bardos & Ukai [6]) Assume that the collision kernel is that of a
hard spheve gas. Let gy € Hy g forl > 3/2 and f > 5/2 such that
(104) goll;,5 < ao

for some ay sufficiently small.
Then, for any ¢ € (0, 1] there exists a unique global solution g, € X; g to the scaled
Boltzmann equation (102)-(103) with initial data

g3|t:0 =90-
Moreover, the following convergences hold as ¢ — 0:

g: — g weakly x in L=(R,;H,p),
9. — g strongly in Cppe(R, x R, L>").

And the limit point g is the infinitesimal Maxwellian
1
g(t,2,v) = ult, 2) - v + 0, )5 (of* - 5),

whose moments u and 6 are the unique solution to the incompressible Navier-
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Stokes-Fourier equations

o + divy(u @ u) + Vup = udyu,  divyu =0,
00 +u-Vy0 =xd,0,
u’tzo = Puy,

3 2
)

where P designates the Leray projection on divergence free vector-fields.

Before discussing the proof, let us start with a few comments on this result.

The first remark is about the specificity of the incompressible Navier-Stokes
asymptotics : the formal study in chapter 4, section 4 shows that this is the only
macroscopic limit corresponding to some finite Reynolds number regime, and
therefore the only case where global solutions are known to exist for the limiting
system. The perturbative method presented here uses the existence of classical

solutions in the Sobolev space H' for [ > gwith initial data small enough.

The main idea by Ukai [57] is to prove that a similar theory holds for the scaled
Boltzmann equation in incompressible viscous regime: it has indeed global classical
solutions in the weighted Sobolev space H; s for I > 3/2, f > 5/2 provided that initial
data are small enough. If, in addition gy € L1(L2(Mdv))), the solution also satisfies a
dispersion estimate

l9:@®ll15 < ax@ + 07" lgolly s + g0/l 2z -

The derivation of the Navier-Stokes limit for the Boltzmann equation [6] relies on a
rigorous proof of the relation between these two theories. The point to be stressed is
that exactly the same type of assumptions are made on the initial data. The Bardos-
Ukai result results from sharp bounds on the linearized operator.

The main restrictions in such a result are therefore the regularity and the
smallness conditions on the initial data. Such assumptions are not expected to be
necessary, working with Leray solutions of the incompressible Navier-Stokes
equations and with renormalized solutions to the scaled Botzmann equation. The
particularity of both types of solutions is to depend only on estimates with intrinsic
physical meaning. The analogy between both types of solutions is the key point in the
compactness method to be presented in the last chapter.

The last remark bears on the breakdown of the uniform convergence near ¢ = 0,
which corresponds to the appearance of an initial layer associated with the scaled
Boltzmann equation. The necessary and sufficient condition for the uniform con-
vergence up to ¢ = 0 is that the initial gy is well-prepared, meaning that it is of the
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form
go(w) =up - v+ %HO(MZ — 5) with div,uy = 0.

The profile condition in the v-variable ensures indeed that the gas is initially in a
state of local thermodynamic equilibrium and therefore that no further relaxation is
to be expected. On the other hand, as the constraints on the macroscopic parameters,
i.e. the Boussinesq and incompressibility relations, are satisfied initially, acoustic
waves are not expected to arise in the system, and to disturb the convergence pro-
cess in the initial layer before being dispersed.

5.2.3 - Proof of the Bardos-Ukai Theorem

We are going to describe the main ideas in the Bardos-Ukai analysis; however, we
shall not give all the details since the proof is extremely technical. The general
strategy is as follows:

— as a first step, one constructs global smooth solutions to the scaled
Boltzmann equation (102) under a uniform smallness condition, which is done by a
standard fixed point argument, coupled with uniform continuity estimates in H; 4
for £ and Q;

- the second step is the proof of the convergence towards the solution of the
incompressible Navier-Stokes equations, by using estimates on the spectral gap
of the linearized collision operator perturbed by the free transport, and con-
venient approximations for the semi-group generated by the part coming from
the zero-eigenvalue. This second part is more complicated than the first one
since it requires obtaining higher order approximations, but the strategy is quite
similar.

5.2.3.1 - Uniform regularity estimates

In order to prove the global existence of a unique strong solution to the scaled
Boltzmann equation, we use a fairly standard method based on the Duhamel formula
and on the Picard fixed point theorem.

Denote by U, the semi-group generated by

1
(105) T, =50Vt £).

The scaled Boltzmann equation can be reduced to the integral equation

(106) 9: = Ns[gs]>
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where the functional N, is defined by

N.[g]®) = U.®)g0 + w.lg,91®),
t

wlg. g1t) = %J Ut — $)0((s), g(s))ds.

0

(107)

The global well-posedness of the Cauchy problem for (102) is established by proving
that N, is a contraction in a ball of X 4.

Furthermore the smallness condition is uniform with respect to ¢ if the radius of
this ball is independent of ¢. The crucial point is therefore to obtain uniform con-
tinuity estimates on U, and y, in X .

The uniform continuity of the linear semi-group U, is given by the following
Lemma:

Lemma 2.2. Denote by U, the semi-group generated by the operator T, de-
fined by (105).

Then, if f > g, there exists a nonnegative constant Cy such that
[U:®g0ll15 < Cillgollys -

Sketch of the proof. The continuity property of U, is obtained using its
spectral representation and the spectral estimates stated in Theorem 1.2. A scaling
argument gives indeed

R [t
0.(t,0) = U(g_z : sf)
which, together with the spectral estimates on U, leads to
N 1, . 1
108) 0.0 < C{exp( g min i) + exp( - Sot)).
J

This first estimate provides the uniform continuity of U, in H i(Lg).
Notice that one should get a more precise estimate, splitting the part corre-
sponding to the zero-eigenvalue. Indeed, as

4
T =" Py(/[¢)
=1

J

is the orthogonal projection on ker(£), and in particular as /7 does not depend on &
(109) Hi 0,1d - m, é)H <o (exp (— S (min /fj>|é|2t> +exp (— 812015» ,
J

using standard estimates on z +— z exp ( — 22).
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In order to obtain refined estimates, and especially to gain integrability with
respect to the v-variable, one has to use more about the structure of the linearized
collision operator. Indeed, we have seen in the first chapter that £ can be split as

L=v-K
where the frequency part satisfies the lower bound (Theorem 6.1)
v([v]) = vo(1 + |v)),
while the integral part K improves integrability in the v variable (Theorem 6.2):
K: H\(L% — Hy,
and

K : Hl,/f — Hl_ﬂJrl .

From the explicit formula for the semi-group U, generated by (v-V, + v) and
Duhamel’s formula

t
mm=&®+]&mwmm®%,
0
we deduce that

1 1
(110) ||U.@®ully <exp (— F—zuot) llully + Cx_ye? Jexp (— ;uo(t — s)) |U(s)u| xds
0

where K maps X into Y.
Starting from the spectral estimate (108) on U,, and iterating on the inequality
(110) gives finally

1U:®goll; 5 < Cillgollip »

3
provided that H;; C H'(L?), that is for > 5" O

The uniform continuity of the bilinear operator w, is obtained in a very similar
way.

Lemma 2.3. Denote by vy, the symmetric bilinear operator defined by (107).
Then, if f > gand l> g, there exists a nonnegative constant Cy such that

lwelg, k1l p < CaligllypliRellyp -
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Proof. Since 1, v; forj =1,2,3 and |v|2 are collision invariants,

I19(g, k) = 0 for all g, h € L*(oM@)dv) .

Then
1
wlg 1O = [ UL - 910~ MLy hs)ds
0

_, (Qlg,h]

- ¢e< ) ) :
Standard continuity estimates for Q shows that
(111) 071 Qg, W5 + 112, Wz < CllgllglPllyg

for f > 3/2and l > 3/2.
It remains to get a uniform continuity estimate on the linear operator ¢,. The

spectral estimate (109) on % U.(I — Py) implies that

< Ct VA1 + t)_3/4(||(I||H§,(L§) +llalnaz) -

1
H -U.U - H)q’
€ HI(L2)

which allows initializing some iterating process as for U,:
(112) 18, @Dl @2y < Cl0gllg 2y + vl rrae) -
By using Hilbert’s decomposition of £, we gain integrability in the v variable:

t

t
1( - 1 -
3,00 = | 00~ Powg(oxds + 3 | 0. - 9K, q(0)ds
0 0

thus

t
(113) 12 @@y < Celloglly + Cx—y J 16.()()|xds -
0

Starting from (112) and iterating inequality (113) leads to

6.l 5 < C(HQHz.ﬁ + gl g2y + ||UQ||L;(L§)) ,

which, together with (111), gives the expected continuity property
lwlg, Pl p < Caligllypliellyp

provided that vH; ;3 C H'(L?), or equivalently § > 5/2. O
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Proof of existence. KEquipped with these preliminary results, we get im-
mediately the global existence of a unique solution to (102). Indeed, we deduce from
Lemmas 2.2 and 2.3 the estimates below on the operator N, defined in (107):

IN:Lglly5 < Cullgollus + Cellgllig

and
[N:Lg] = NeLh][l; 5 < Co(llglls + Illp)llg = Rl 5 -

Choosing ay and a; such that
Coaq < 1 and Crag + Czaf <a,
we get that N, is a contraction on the ball of radius a; as soon as
ol s < a0,

meaning in particular that the smallness condition is independent of ¢.

5.2.3.2 - The incompressible Navier-Stokes limit

At this point, under the smallness condition (104) on the initial data go, for each
¢ > 0, we are able to construct a global smooth solution g, to the scaled Boltzmann
equation (102). It remains to study the asymptotic behavior of the family (g.) as
& — 0. Weak convergence (modulo extraction of a subsequence) is obvious since the
fixed point argument above gives uniform bounds. But strong convergence is needed
in order to pass to the limit in the nonlinear terms.

This strong convergence properties depends on the existence of limits for U, and
v, ase — 0, and on a compactness argument. The basic idea is indeed to come back to
the previous study replacing the uniform continuity estimates on U, and , given in
Lemmas 2.2 and 2.3 with a convenient choice of equivalents V and w as ¢ — 0 that are
defined in the following lemmas.

Lemma 2.4. Denote by U, the semi-group generated by the operator T, de-
fined by (105).

Then, there exists a linear operator V(1) satisfying the same continuity estimate
. 3
wm Xy p for f > 5 as U,(t)

IV®golls < Cillgollip
such that
Ygo € Hip, U.t)go — V(t)go strongly in C(R* x R?, L>F)

and uniformly in time (near t = 0) if and only if go = V(0)go = I1g.
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Lemma 2.5. Denote by v, the symmetric bilinear operator defined by (107).
Then, there exists a bilinear symmetric operator w satisfying the same con-

L . . 5 3 .
tinuity estimate i X, g for f > 5 and [ > 5 as y,, i.e.

lwlg, 1l < Callglly gllllyp
and such that
Vg, h € X135, w,lg,h] — wlg, h] strongly in CR x R3 L=,

while
g€ Xip—wlg,gle CR, x R37L°‘°’ﬂ) 1s locally compact .

Furthermore, if gi, converges to g strongly in C(R’, x R3; L>*F) and weakly-* in
LOO(R+;HZ_/)’), then

wlgk, 9kl — wlg, 9] weakly — + in LR ;H;p).
The proof of both lemmas relies on a precise study of the following approxima-

tions of U, and % Uld -1

(114) Vit &) = iexp((iajél —ﬁ-lélz)t)P (S/1¢D
e\by ~ e 7 07

and
4 .
(115) Z(t,) =) exp ( (”{f' — />’_,-|é|2>t) |E[Py;(&/ |2 d — IT)
Jj=1

and is established by a stationary phase method applied to the spectral re-
presentation of U, as will be explained later in the next paragraph.

Proof of convergence. Taking both lemmas for granted, we conclude the
proof of convergence.
Start from the decomposition

ge = V(t)g() + (Us(t) - V(t))go + l//[geags] + (l//g[gevge] - l//[g&gs])

(116)
- V(t)gO + 71 + V/[gm 9;;] + 7o .
By Lemma 2.4,
7. — 0in C(RY x R? L>F).
By Lemma 2.5,

wlg.,g.] is relatively compact and 75, — 0 in C(R, x R®,L>F).
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Then,
g. is strongly relatively compact in C(R’, x R3, L>F).

Applying again Lemma 2.5, we see that
g. — g strongly in C(R", x R? L")

while
g. — g weakly-* in L*(R,H, ) and ylg.,9.] — vlg, 9]

modulo extraction of a subsequence, so that eventually
9@ = V©)go + wlg,91®) .

Since V and y satisfy the same continuity properties as U, and y,, the limit ¢ is the
unique solution of the limiting integral equation, which implies that the whole family
g. converges to g in the vanishing ¢ limit.

The convergence of the moments is an easy consequence of the previous results.
The formal study shows that these moments must satisfy the incompressible Navier-
Stokes equations. These equations have to be supplemented by initial conditions,
obtained from the identity g(0) = V(0)go + wlg, g1(0) = I1g.

5.2.3.3 - The stationary phase method

In order to construct the limiting semi-group V(¢) and the limiting bilinear op-
erator y defined in Lemmas 2.4 and 2.5, we need to know more about the spectral
decomposition of U, than the result of analytic continuation stated in Theorem 1.2.

In particular, precise estimates on the leading order approximation ¢a;|¢| of each
eigenvalue /;(¢) are required.

If a; = 0, the corresponding contribution to the semigroup is expected to be es-
sentially independent of ¢, while if a; # 0, it is expected to produce high frequency
oscillations and to vanish in the limit.

The crucial point in the proofs of Lemmas 2.4 and 2.5 is therefore the following
computation which improves the results in Theorem 1.2:

Theorem 2.6 (Ellis & Pinsky [19]). Let T be the linear operator
T=v-Vy+Ly,
or equivalently, in Fourier variables,
TE =&+ Ly.

Denote by 4;(E) the etgenvalues of T(é) that vanish for & = 0, and by P;(&) the cor-
responding eigenprojections.
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Then, 4;is a C* function of |£|. The first order approximation of 1;(&) near & =0
18 given by
ta; #0 j=1,2, and ia; =0 if j =3,4.

Furthermore, the eigenprojections are C* functions of |£| < k, and are defined at
leading order in || by

(P (&) = span{l —Eov+ %(M? _ 3)} ’
@ =spanf 14804 Lo -},

3(P(@) = span{ -1+ (vf ~3)} .
and
S(Pou(©) = span{v - &, v- (€ x &}

where & = é € S% and &' is any unit vector such that E.E=0.

1<l

Taking this result for granted, we return to the approximations V, and Z, of U,
1 . . S
and " U.I — II), using the stationary phase method. For the sake of simplicity, we

will only sketch the proof of Lemma 2.4. Indeed Lemma 2.5 requires to keep one
further order in the expansions with respect to ¢ of the eigenvalues and eigenpro-
jections of U,.

Proof of Lemma 2.4. Start from the decomposition:

4
U, = Z Ligs<ic €XP <g£2 /lj(zé)> Pi(ed) + R (8% , gg>
(117) =1

= Vi(t, &) + hy(t, &) +R<§2,eé),

where V, is defined as previously by

4 -
vt = ex( (- g o).

&

J=1

e The oscillating parts of U.(t)gy (corresponding to the first two terms in V,) are
controlled by a nonstationary phase argument. In view of Theorem 2.6, we only have
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to study integrals of the form
I(t,2,v) = b(®) jexp (i€ - + iy |E[t/e — Bj|EPDalE/|EDie()dé

where a € C°°(S2), b € L>¥ for arbitrary § > 0, and y, denotes some average of g,
against an element of L.
Since a; # 0, for [ > 3/2

12,0 < €(5) b (IOl + 1o )
for some ¢ € (0, 1), where
o) = [ exp iz -~ 67D
Classical estimates on the heat kernel and the definition of y, imply that

e\ 7
(118) ||Vje(t)90”L;c(Lx-/f> < C(i) (||90||L;(L2<Mdv)) + ||90Hz$/;)

e The convergence of the higher order terms #, lies on the following decom-
position : forj € {1,2 3,4}

hit, &) = 11, exp (12 z_,-(ef)t) [P,(e8) — Py(&/|2))]

&

1 .
+ Lygj<n [exp (8—2 /1.;'(85)'5> — exp <mj£ - /’)j|f|2>}P0j(f/|f)

.
FL- 1 ( exp (“4 - e Pt/ €D

The fundamental results on the spectral representation of U, stated in Theorem 1.2
lead then to

. 1

As U, and V, are uniformly continuous in H, 4 for any s € R, by interpolation, we get
fors=1—y>3/2

(119) 1@l e gy < MRl p < Céllullys -

e The convergence of the remainder R is obtained in a very similar way.

4
R (é,sf) = U@ <Id — Ly ZP]-(sf))
j=1
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is uniformly continuous in H; 4. And, by Sobolev embedding arguments,
ot
(120) ||R£(t)u||L§c(L§“a/‘) < Cexp T2 Hu”lﬁ'

In order to obtain uniform convergence, if go = I1gy, notice that
4 4
<Id — Lg<n ZPj(eé)> I = Z (Poj(C/1ED = Lye<icPj (€I
=1 j=1
which gives by the same techniques as previously

. ot
(121) ||R£(t)H/M/HL;C(L;c./§) < Cé'exp (— ?) |\u||lﬁ.

Combining (117 ) with (118), (119) and (120) or (121) gives respectively the con-
vergence on R’ or the uniform convergence under the well-posedness condition

U.®g0 — V(b)go,
where

V(t,0 = exp(—B;|Elt) P&/ 1]

=34

is the non-oscillating part of V..

A similar argument allows to establish Lemma (2.5), and thus to conclude the
convergence proof leading to Theorem 2.1. Therefore, the core of the argument is the
precise description of the spectral representation of the linear operator 7' given in
Theorems 1.2 and 2.6.

This means first that we consider the problem of hydrodynamic limits essentially
in a linear (or perturbative) framework. The disadvantage inherent to that strategy
is the need for a deep result of spectral theory used as a black box . In particular, this
approach fails to provide a real understanding of the coupling between relaxation
and hydrodynamic modes in the full nonlinear Boltzmann equation.

Furthermore one cannot expect to extend such a result to classes of initial data
with less regularity; in other words, this method justifies the incompressible Navier-
Stokes limit of the Boltzmann equation for a meager subset of all physically ad-
missible initial data.

5.3 - Uniform a priori estimates on the scaled Boltzmann equation

To avoid restrictions on the class of initial data that are inherent to methods si-
milar to the Bardos-Ukai argument, one needs to abandon the detailed spectral
analysis of the Boltzmann linearized equation and use instead the available a priori
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estimates on the scaled Boltzmann equation that are uniform in the Strouhal and
Knudsen numbers.

The only such a priori estimates are consequences of the Boltzmann H Theorem,;
they are the common basis to the derivations of either the incompressible Euler or
Navier-Stokes(-Fourier) equations from renormalized solutions of the Boltzmann
equation. We shall therefore present these estimates in the case where

Ma=St=c¢and Kn =& with ¢ > 1

that encompasses both limits.
We therefore consider the Cauchy problem for the scaled Boltzmann equation

1 ,
(122) eOF, + v VoF, = 2 BF,F), (t2,0)€R, x R xR®.

F,_, = Fin,

Because we are interested in a regime where the number density F, stays in the
vicinity of a uniform Maxwellian 3, it will be convenient to use the relative number
density and relative number density fluctuation, defined as

F, F,-M
Go=yp  do=—01
(123) | .
_ . F_
m o __ & wm — &
Gl = el =T

Here, M denotes the same uniform Maxwellian state as earlier in this chapter,
namely

1 1,
M(’l}) —Wexp<—§|v| ) .

In terms of g,, the scaled Boltzmann equation (122) takes the form

1 1
(124) gatgg +v- ngg + F_qﬁgs = (cﬂj Q(g£7gé:) ’

98|t:0 =g
where £ and Q are the operators defined in (103).
We recall from chapter 1, section 4 the definition of the relative entropy of a

number density with respect to the uniform Maxwellian M:

(125) HF |M)t) = ” (Fe In <%> —F,+ M) @, 2, v)dxdv .

We have seen in chapter 3, section 7 that renormalized solutions to the Boltzmann
equation relatively to M can be defined for initial data whose relative entropy with
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respect to M is finite, and that such solutions satisfy the DiPerna-Lions entropy
inequality

H(F.(t)|M)
11 t
(126) t1 @J J J” A(Fy)|(v — v,) - |dvdv,dwdxds
0 R® R*xRxS"

<HF!"M),

where the dissipation integrand d(¥') is defined by (29).

We shall only consider initial data that are close to M in the sense that
(127) H(F™M) < C™"é?.
This corresponds indeed to an initial relative number density fluctuation that is of
order 1in some sense — or equivalently, to an initial number density that is to within
O(¢) of the uniform Maxwellian state M.

Because of the DiPerna-Lions entropy inequality, the initial entropy bound (127)
implies

e the relative entropy bound

(128) H(F(t)|M) < C™&,

e the entropy production bound

+ 00
(129) J J m d(Fy)|(v — v,) - o|dvdv,dwdxdt < 4C713
0 R® R®xR®xS*

In the sequel, we shall discuss the various implications of both these controls.

5.3.1 - Implications of the relative entropy bound

The implications of the relative entropy bound that we shall discuss here are
straightforward consequences of pointwise inequalities satisfied by the nonlinearity
that defines the relative entropy, i.e.

(130) W) =1 +2)log(l+2) —z.

Notice that
HFM) = “ I(egy)Mdvdse

since

(131) h(z) ~ %zz, z2— 0,
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one could think that the relative entropy bound (128) is more or less equivalent to an
L? estimate of the type

JJ |gs(t, X, ?))|2qu;dx < 20 .

However, this is not entirely correct, since g, can take values >> 1/¢, for which
. 1,. .
replacing h(z) by EZZ is not justified.

Instead of (131), we must use global properties of k. First, i satisfies Young’s
inequality

pz <h'(p)+hk), p,z>0,
where /* is the Legendre dual of &:
(132) @)= —p—1.

Notice that 2* is super-quadratic (as can be seen from the Taylor series that defines
h*): in other words,

W Gp) < Zh'(p), p>=0, iel0,1].
Also, notice that
Mz) < h(z), z>-1.

Putting all these inequalities together, we arrive at the following improvement of the
Young inequality above:

(133) plz| g/lh*(p)—&—%h(z), p>0,2z>-1, 1€(0,1].

Lemma 3.1. Let F" = Fi"(x,v) be a family of mesurable, a.e. nonnegative
mitial number densities that satisfies (127). For each ¢ > 0, let F', be a renormalized
solution of the scaled Boltzmann equation (122) relatively to M.

Then, for each sequence &, — 0, the family of fluctuations (g.,) associated to F';,
as in (123) is weakly relatively compact in L}, (dtdx, L*(M(1 + [v[2)dw)).

Proof. Pick 6 € (0,1]; Young’s inequality (133) implies that, for each » such
that ¢, € (0, 0), i.e. for all but a finite number of »’s, one has

40 4 « 1 + v 2
(1 + |v|2)‘gé’n| S _zh(gngen) + —h <i>
&, 0 4

1 N
by taking z = &ugs,, p =y (1+ |of*) and 7 = %
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Consider first the case 6 = 1; hence, for each measurable set £ C R® of finite
measure

; 1
J J(l + [vP)g., | Mdvda < 4C™ + 4|E| Jexp (70 + [F)Mdv .
E

Hence

(1 + |v)g,, is bounded in L>(dt; L}, (de : L*(Mdw))) .

For general 0 € (0, 1),

“(1 + oP)lgs. O\ Mdvde < 40C™ + % IE| Jexp G 1+ v|2)> M.
E

Letting |E| — 0 and 0 = |E\1/2 shows that

”(1 [0 gs, (O Mdvde < 4C™ + /4| |2
E

for each n such that ¢, < |E |1/ z

the family

,i.e. for all but a finite number of »’s. This shows that

a+ |v|2)g£" is locally uniformly integrable on R® x R®

uniformly in ¢ > 0. By the Dunford-Pettis criterion (see chapter 2, section 3), this
implies the announced weak compactness for the sequence g., of relative number
density fluctuations. O

The formal argument given at the beginning of this paragraph suggests that, in
the vanishing ¢ limit, the limiting points of g, belong to L*(Mduvdax) uniformly in t.
Hence the weighted L!-bound implied Lemma 3.1 is certainly not optimal.

Instead, we propose to consider the following renormalized fluctuation

(134) 6. =2 (V@ -1).

The advantage of this renormalized fluctuation over the original one is explained in
the next lemma.

Lemma 3.2. Let Fi* = F"(x,v) be a family of mesurable, a.e. nonnegative
mitial number densities that satisfies (127). For each ¢ > 0, let F'; be a renormalized
solution of the scaled Boltzmann equation (122) relatively to M. Let G, be the relative
number density as in (123). Then, the renormalized fluctuation g, defined in (134) is
bounded in L™(R . ; L>(Mdvdzx)).
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Proof. The elementary inequality
(135) hz) > (V14+z-17, z>-1
implies that
”gf(t, x, V)M @)dxdv < SEZH (F,|M)t) <207,

which is the announced result. O
A natural application of this refined a priori estimate is to decompose
S
(136) 9:=0:+ 4 952

Therefore, we see that the fluctuation g, is bounded in L2(Mdvdzx), up to a remainder
of order ¢ in L' (Mdvdzx), uniformly in ¢ > 0.

5.3.2 - Continuity properties of the collision integral

Before going further, we give an elementary continuity property of the
Boltzmann collision integral for a hard sphere gas, which can be easily extended to all
hard cut-off potentials.

Lemma 3.3 (Golse-Perthame-Sulem [26]). Let B denote the Boltzmann colli-
ston integral in the hard sphere case, let

M = —zesp(~5l’)
be the centered reduced Gaussian and let Qyp be the quadratic operator defined by
Qu(g,¢) = M 'BM¢, M) .
Then, there exists C > 0 such that
19m(@: D121+ oy 1 may < Nl 2aaan |2l 22 opazany -

Proof. Consider for instance the gain part in the collision integral

Q¢ ¢) = “ ¢ |, — ) - w|M.dv.dow;

then

2
198 D110y a1y

2
= J(” Fé |, —v)- wM*dv*dw> 1+ o) *Mdv.



[107] HYDRODYNAMIC LIMITS FOR THE BOLTZMANN EQUATION 107

Let
[[lw =2 oM.dv.do
1+ || '

C = sup

By Cauchy-Schwarz inequality

| Q3(#, @Hiz(aﬂv\)*lMdv)
: CJ” FE|w. —v) - oMM, dvdv.de

< 4nC ” & (V] + [v.DMM. dvdw, ,

which implies the announced continuity for Qj;. O

5.3.3 - Implications of the entropy production bound

The relative entropy bound (128) controls the distance of the number density F'.
to the background Maxwellian state M (by controling the number density fluctuation
g or its renormalized variant ¢,).

By analogy, we expect that the entropy production bound (129) controls the
distance between the number density F'; and the set of all local Maxwellian dis-
tributions.

Lemma 3.4. Let Fi* = F"(x,v) be a family of mesurable, a.e. nonnegative
matial number densities that satisfies (127). For each ¢ > 0, let F', be a renormalized
solution of the scaled Boltzmanmn equation (122) relatively to M. Let g be the number
density fluctuation associated to F', as in (123), while g, designates the renormalized
Sluctuation defined by (134).

Then

0 — 119, — 0 strongly in L}, (dtdx, LA(Mdv)) .
Proof. Replace the hard sphere collision kernel with

(v —v,) - 0

bv —v,,0) = .
W —v., ) 1+ v —wv,

Obviously the entropy production bound (129) implies that

+ 00
J J ”J d(F )b — v., w)dvdv,dodrdt < 4C™13

0 R®R?xR*xS*
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Henceforth, we denote 0" and £? the operators defined in (103) with the new colli-
sion kernel b. First, the dissipation integrand d(F,) is estimated by using the ele-
mentary inequality

(137) (z—y)n (5) > 4(vVz — ).

Hence, by the Cauchy-Schwarz inequality

+ o0
J ” Q' (G, VG (t, 2, v)Mdvdadt
0
t
< 4nJ J m dF)bw — v, w)dvdv,dodeds < 4nC™"ed+3 |
0 R® R* xR’ x8*

Next consider the decomposition
1. 1 ,. . 1
(138) L0 =590 00 — 5LV Ge, VG

The second term on the right hand side of the equality above is O(¢471) in
L2(Mdvdxdt) because of the previous inequality. On the other hand, since the col-
lision kernel b is bounded by 1, using the Cauchy-Schwarz inequality as in the proof
of Lemma 3.3 shows that

P <2
”Qb(geage)”LZ(Mdv) < CHQeHLZ(Mdv) :

Hence, by Lemma 3.2 above, one has
Q"(e, ) = OW) <@t @2y

Finally, by an argument similar to Hilbert’s in the proof of Theorem 6.1 in chapter 1,
£’ is a bounded self-adjoint Fredholm operator on L2(Mdwv) with nullspace
span{l, vy, va, vs, |v\2} so that, for some positive constant ¢, the following relative
coercivity estimate holds:

bA N A~
£ geHLZ(Mdv) > cl|ge — UQeHLZ(Mdv) .

These last two estimates together with (138) imply the announced result. O

6 - From the Boltzmann Equation to the Incompressible Euler System: Conver-
gence Proof

In this chapter, we describe the hydrodynamic limit of the Boltzmann equation to
the incompressible Euler equation, for initial data that are compatible with any
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solenoidal velocity field of finite kinetic energy. We shall also describe in some detail
the method used in the proof, the relative entropy method, which is remarkably
versatile, and has been applied to other asymptotic problems.

6.1 - Statement of the incompressible Euler limit

The incompressible Euler limit of the Boltzmann equation corresponds to the
scaling

Ma =St =¢and Kn =¢? with ¢ > 1.

We therefore consider the scaled Boltzmann equation

1
e, +v-V,F,=—BF,F,), ()R, xR xR?,
(139) &l

Fy|_, = Fin

&

We shall assume that
F?%x, v) = M(l,é‘um(:ﬂ),l)(v) + 0(8) s

where %™ is a solenoidal vector field and M g1y 1s the Gaussian distribution cen-
tered at ew with covariance matrix I:

1 1 ,
M g y0) = Wexp (— 5 v — ew| ) ,

and the error term o(¢) is measured in terms of the relative entropy (see below). We
shall also denote M = M ).

Throughout this chapter, the entropy production rate will play an essential role in
measuring the distance from the number density F. to the manifold of local
Maxwellian states; we shall denote it

ani
D(F) = HJ(F’F; _FF.)In (1;}1:

>|(v —v,) - oldv.do.

As before, we shall use the notion of relative number density and of relative
number density fluctuation

F, M
G(: = M ) and ge = M )
(140)
. Fin . Fin _ M
n _Le in e
G = R and ¢! = M
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In terms of ¢,, the scaled Boltzmann equation (139) takes the form
1 1
(141) €019 + v - Vage + ;qﬁga =1 (9, 9. -

where £ and Q are the operators defined in (103).

According to the formal analysis, g, is then expected to converge to the in-

finitesimal Maxwellian
g, x,v) =ul,x) v,
where u satisfies the incompressible Euler equations.

Under suitable conditions on the initial data, we are actually able to prove [8], [44],
[53] that the distance between any solution of the scaled Boltzmann equation (139)
and the local Maxwellian M, 1) Where u satisfies the incompressible Euler
equations is o(¢) as ¢ — 0.

Theorem 1.1 (Saint-Raymond [53]). Let F};” IS LZIOC(R3 x R?) be a Sfamily of
wmatial fluctuations satisfying

1 .
(142) S HE [ My giny) = 0,

. . . . 5
where u'™ is a solenoidal vector field such that ' € H S(R?) for some s > >

Let F. be, for each ¢ >0, a renormalized solution relatively to M of the
Boltzmann equation (139) with g > 1.
Then, modulo extraction of a subsequence,

9. — g weakly in L}, ([0,T) x R®, L*(M(1 + [v[*)dv))

n the limit as ¢ — 0, with
g, x,v) = ut,x) v,
where u 1s the unique maximal classical solution of the incompressible Euler
equations
ou+u-Vou+Vep =0, divyu =0,
Ult=0 = u™ )

that belongs to L:°.((0, T); WE=(R?)).

loc

Notice that this result deals with renormalized (therefore weak) solutions of the
Boltzmann equation, and with classical solutions of the incompressible Euler
equations. This particular feature is characteristic of the relative entropy method
used in the proof. As we shall see, the relative entropy method is based on the sta-
bility properties of the target equations — in the present case, of the incompressible
Euler equations.
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6.2 - Properties of the incompressible Euler equations

We first recall the basic existence result for the incompressible Euler equa-
tions.

. . 5
Theorem 2.1 (Beale, Kato & Majda [7]). Letu'™ = u"(x) € HS(R3)fors > 5 be
a solenoidal vector field. Then there exist a unique T* € (0,4 oc] and a unique
vector field w € Ly, ([0, T, H(R®)) that is a solution of the incompressible Euler
equations

(143) ou+u-Veu+ Vep =0, divau=0,

with initial data wy—o = u™, which satisfies in addition
T*
J [|eurlu(, )| ;- gs)dt = +o00.
0

Of course, as the proof of existence is based on the Cauchy-Lipschitz theorem,
one easily obtains the continuous dependence of the solution with respect to the
initial data u™ € H*(R?).

This stability result is the key point of the convergence proof for classical solu-
tions. In order to consider a larger class of solutions, one would need a more robust
stability principle, yet to be discovered.

Theorem 2.2 ([42]) Let u € L*(R*;L2(R?) N C(R;w — LAR>)) satisfy the
mcompressible Euler equations (143) in the distribution sense.

Then, for each solenoidal vector field w € L} (R ;W' N H LR?) and each
t >0,

t
' ; 2 [|IX@)@)|. dr
||u’_?/i)||i2(t) S ||1,L77L _w’mnize 6[
144 |
(144) t 2f“X(lU)(T)“de
+2J<J(8tw+w.ww) . (w—%)(S,x)dx>e J as.

1 . . .
where X(w) = 5 Vw + (Vw)T) 1S the stress tensor associated with w.

In particular, if w is a smooth solution to (143) on [0, T']

t
2 o 2 [IX@E. dr
foreacht €[0,T], |lu—w|;.®) <|u™ —w"|;.e 0 |

Notice an important feature of this stability result: while the stability is
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measured in the L? norm, it requires that at least one of the solutions be Lipschitz
continuous.

This inequality can be used to define dissipative solutions of the incompressible
Euler equations [42]. Such solutions always exist globally in time, but are not
known to be weak solutions of the equation in conservative form. They coincide
with the unique smooth solution having the same initial data as long as the latter
does exist.

In particular, the convergence result stated in Theorem 1.1 can be naturally
extended into a global convergence result towards these dissipative solutions.

6.3 - The relative entropy method

Equipped with these basic results on the limiting system, we now explain the
strategy of the proof. We proceed actually by analogy : we have to build some
functional that is the analogue for the scaled Boltzmann equation of the L? norm for
the incompressible Euler system.

The functional which measures the stability for the scaled Boltzmann equation is
obtained naturally from the relative entropy H(F,|M) that is a nonnegative
Lyapunov functional for the Boltzmann equation (see chapter 1), and controls the
size of the fluctuation in incompressible regimes (see chapter 5).

The modulated entropy is then defined for each solenoidal vector field
we CX(R, x R®) by

H(Fe(t; Yy '))|M(1,aw(t,»),1)) = H(Fs(tv Yy ))|M)

(145) .
43| @0 = el ~ B2, o0

The core of the proof is therefore to establish a stability inequality on the
modulated entropy of the same type as (144). This will provide the convergence of
the modulated entropy to zero as ¢ — 0 under the assumption (142). Finally, we
conclude by proving that the relative entropy H(f|g) controls the L' norm of the
difference f — g.

The specific nature of the limiting system does not occur in the proof, except
in defining the maximal time interval over which the hydrodynamic limit is
established: the length of that interval is indeed the life time of the classical
solution of the limiting equation defined by the initial data chosen at the be-
ginning.

The idea of using the notion of relative entropy for this kind of problems comes
from the notion of entropic convergence developped by C. Bardos, F. Golse and C.D.
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Levermore in [5], and on the other hand from Yau’s elegant derivation of the hy-
drodynamic limit of the Ginzburg-Landau lattice model [58].

Applying the relative entropy method to the case of the Boltzmann equation, the
convergence of renormalized solutions of the scaled Boltzmann equation to solutions
of the incompressible Euler equations for well-prepared data is established in [8]
assuming

(i) the local conservation of momentum which is not guaranteed for re-
normalized solutions of the Boltzmann equation — see chapter 3 for a discussion of
this particular point; and

(ii) some control on the decay of the relative number density fluctuations at
large velocities, in the form of a nonlinear weak compactness estimate.

Under the same assumptions, a similar analysis leads to a convergence result in
the Navier-Stokes regime [23]. The problems one encounters when trying to im-
plement the principle described in the previous paragraph are indeed essentially
due to the structure of the Boltzmann equation, especially to the lack of a priori
bounds on particle velocities and to the shortcomings in the notion of renormalized
solution.

In any case, assumption (i) was removed by Lions and Masmoudi in [44]; their
argument uses the matrix-valued defect measure in the local momentum conserva-
tion satisfied by renormalized solutions of the Boltzmann equation (see chapter 3).
That this defect measure vanishes in the incompressible Euler limit follows from the
DiPerna-Lions entropy inequality presented in chapter 3.

Another, more serious difficulty is to circumvent the need for assumption (ii).
This requires estimates on large velocities using in a crucial way the dissipation
control given by the H-theorem [53]. Notice that we still do not know whether
the weak compactness statement assumed in [8] is true. Instead, we introduce a
suitable decomposition of the momentum flux, and estimate each term in that
decomposition either by the modulated entropy, or by the entropy production.
In other words, the argument is based on loop estimates instead of a priori
estimates, and the conclusion follows from Gronwall’s inequality. This strategy
based on the Gronwall inequality has been first used in the framework of the
BGK equation [51], and then adapted to the original Boltzmann equation [53]
using refined dissipation estimates from [28] briefly discussed in chapter 5
(Lemma 3.4).

6.3.1 - Derivation of the modulated entropy

The starting point is therefore the entropy inequality with defect measure (62)
satisfied by renormalized solutions relatively to M of the scaled Boltzmann
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equation:

HF @®)|M) + J trace(m,)(t) + LJ ”D(Fs)(s, x, v)dsdxdv

eq+1
R? 0
< H(F™M)

(146)

where m, € L°(R", M(R3,M3(R))) is the momentum defect measure.
By definition of the modulated entropy (145), we then have

HF M 1)) + J trace(m,)(t) + %J ” D(F.)dsdxdv
0

R3

t
< H(F™ | M g 1) + J%“%(szwz — 2ev - W)F . dvdx.
0

From the continuity equation
1
(147) Oy JFsdv + div, EJvngv =0,
and the conservation of momentum with defect measure
.1 1 ..
(148) O¢ | vF.dv + div,, R v Q@ vFdv + Edlvxmg =0,

we deduce that

t

HF | M1 1)@ + J trace(m,)(t) + gq% J ”D(Fe)dsdxdv

R3 0
t
< HEF™| M yin 1) + J” edaw - (ew — V)F(s, 2, v)dvdads
0
t

— % J J ew?(s, x)div, <J vF (s, x, v)dv) dxds

0

¢
+ Jjw - div, (Jv Q vF(s, %, v)dv + my(s, x)) dxds.
0
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Integrating by parts and rewriting v = v — ew + ew, we obtain

t

le (F o M gp1)®) + 12 J trace(m,)®) + Lg J ”D(Fs)dsdxdv
& &

R? 0

t

|

0R

< H(F‘”|M16WL 1 — Z

J Xw) : m,ds
(149)

* lm @ +w - V) - (ew — V)F (s, v, v)vdaeds

¢
- leJ”X w) : (v — ew)2F (s, x, v)dvdads,
0

where we recall that X(w) = %(Vw + (Vw)T) is the stress tensor associated to the
vector field w.

This inequality satisfied by renormalized solutions of the scaled Boltzmann
equation (139) relatively to M is very similar to (144). In the sequel, we shall explain
how to use this analogy.

6.3.2 - Constraints on the weak limit
In order to deal with the acceleration term
1
B ” O +w - Vyw) - (ew — v)F(s, x, v)dxdv ,
we use the weak compactness implied by the uniform entropy bound
1 1 n in
S HF,M)(®) < < HEF™|M) < C™".
& & :
By Lemma 3.1 in chapter 5, we have
Jngv — 1 strongly in L}, (dtdx)
and
1 1 _ A
;JU(FS — M)dv = A J vF.dv — u weakly in L; (dtdx),

possibly after extraction of a subsequence.
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Hence the acceleration term satisfies

%”(@w +w - Vw) - (ew — v)Fy(s, x, v)dedv
(150)
— J(atw +w - Vaw) - (w—u)s,x)dx

inL} (R.).
Besides, taking limits in the continuity equation (147), we see that u satisfies the
incompressibility condition
div,# = 0.

6.3.3 - Characterization of the limit by the stability inequality
It remains to handle the flux term, namely with

t
- 812]”)( W) : (v — ew) 2 F (s, x, v)dvdads

t
J”X(w) (0 — ew)E(Fy, — My gpa)(s, 2, v)dvdads .
0

1
&2
Passing to the limit directly in this term requires a priori estimates that control the
effect of large velocities and entail equiintegrability with respect to the x variable.
Such estimates were referred to as assumption (i) above. However there is little
hope to establish such a claim : with this type of scaling, we do not know how to obtain
a priori compactness with respect to space variables.

The key new idea is therefore to estimate the flux in terms of the modulated
entropy and of the entropy dissipation, in the following manner.

Lemma 3.1. Under the assumptions of Theorem 1.1, for each K > 0, there
exists some nonnegative constant Cx < CvVK such that, for all solenoidal vector
field w € C*(R x R®),

t
- g%J”X W) : W — ew)*2(F, — My po1)s, 2, v)dvdads
t
| 1x @ HEI My s
0

(151) _

%] 5

+ O(Cge ™% + 0 (\/I_{exp (— %)) :
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The proof of this lemma is given in the last part of this chapter. It is based on some
convenient decompositions of (F, — M x,1), using a square-root renormalization as
in (134)-(136), and on the fact that the collision integral B(F,, F,) is O(£9*%/2) in some
sense as ¢ — 0.

Taking this lemma for granted, it is easy to finish the proof of Theorem 1.1.

Indeed we deduce from (149) and (151) that

8q+3

gle (F o M g )®) + ;2 J trace(m,)(t) + L J ” D(F)dvdaxds

R3

1 ; 1
< E—ZH(FZ,” | M i 1) + 8—2J I X(w)]| J trace(m,)(s)ds

0 e
. ¢

T J ” (Opw +w - Vow) - (ew — 0)Fy(s, ¢, v)dvdwds
0

¢
+ %J | X (W)|| oo H (F s | M1 0 1)(8)dS + O(Crea~/2)
0

vo(ven(-Y)

Integrating next this differential inequality leads to

812 HE | M pon)®) + J trace (m,)(t)

RS

t
1 .
< 8—2H(F;”|M1’W’1) exp (CK J ||X(w)||oo(s)ds)
0

¢
(152) 4 %”J Oaw+w- Vw) - (ew —v)F (s, ¢, v) exp (CK J IX (w)||oc(a)da> dvdxds

t

+0 (cKs@D/Z exp (CK J |X(w)||oc(a)do> dvdacds)

S

t
+0 (ﬂ‘( exp (— f) exp (CK J |X(w)||oc(a)da) dvdmds)

S

which extends to all solenoidal w € L>([0, T]; W n HX(R?)), in particular to all
smooth solutions of the incompressible Euler equations.
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By the convergence property (150) and the assumption (142) on the initial data,
we see that, for each K > 0

t
SHE M) = 0 (ﬁf’exp (-5 )ew (cK | |X<w>||m<s>ds))

0

as ¢ — 0, from which we deduce that
1
8—2H(F8|M1‘m_,1) —0ase—0.

This allows to identify the weak limit # of the scaled bulk velocity. Simple compu-
tations give indeed

1 1 1
_ZH(FslMl,SZL,l) = _ZH(MF€|M1,HM,1) +_2H(Fé|MFF)
& & &

1 1
> 8—2H(MFS|M1,su,1) > gjpglue - u|2d.%‘,
with

e

P, = Jngv and p,u, = 1 Jvngv,

from which we deduce that u = u.

6.4 - Estimates on the flux term

In order to estimate the flux in terms of the modulated entropy and of the entropy
production as stated in Lemma 3.1, we need a suitable decomposition well adapted to
the structure of the collision operator.

The main idea is that the local Maxwellian My , uniquely defined as the local
Maxwellian such that

1 1
(153) J(|;)|2)Mphdvzj(|;)|2)ff'gdv,

is expected to give a good approximation of the distribution F,, provided that its
moments remain bounded.
Now, for Maxwellian distributions, the flux term

1

- S_ZUX(W) - (v — ew) M (s, x, v)dvdx
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can be computed explicitly in terms of the density, mean velocity and temperature of
Mp, and estimated by the modulated entropy H(Mp,| M 41) that is more or less
equivalent to the L? norm of the moments of F, — M 2,1y — see [51].

The first difficulty to apply this strategy is to obtain a control on the relaxation to
local Maxwellians of the number density. In the case of the Boltzmann equation, the
entropy production is not known to measure the distance between F', and My, .

A second difficulty to be addressed is related to cases where moments are far
from their asymptotic values (i.e. become very large pointwise), or to singular cases
where the macroscopic density or temperature vanish.

6.4.1 - Decomposition of the flux term

The second difficulty is handled by a macroscopie truncation as follows: let

(154) X, = 1{@, @) | JM(lm,l)h <M> dv < ;7} .
' M w1

If the moments are far from their asymptotic values in the sense that y, = 0, the
flux term is estimated directly by the modulated entropy, using both the Young and
Bienaymé-Chebyshev inequalities:

1
9_2” A -y — sw|2|F,S — M 1| dacdv

4 Fy — Mz v — ewl?
1 — e srewl) _ *
(155) <5 JJM(LHw,l) <h< Moon, ) + @ =y )h ( 1 dvda

C + 5t
< #H(FAM(LWJ))

If the moments are bounded, i.e. if y, = 1, we proceed as explained at the be-
ginning of this section, namely using the fact that F', is expected to behave asymp-
totically as the corresponding Maxwellian M . In order to make up for the lack of
control on the relaxation, we replace the decomposition

Fo—Mamy =F; —Mp, + Mp, — M@ a1

used to study the flux term of the BGK equation [52] with a decomposition using the
orthogonal projection I7,, on the nullspace of the collision integral linearized at
M g1y

Ty LA(M 1 1yd0) — ker(L ) -
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Consider the decomposition

1 1 1
8—2(Fa — M 1) = Mg (Efa + ;1]22)

2 F
ith f, — = ).
with /. & ( Ma a1 )

By Lemma 3.2 in chapter 5, we expect the L! norm of the second term to be con-
trolled by the modulated entropy.

The second step is to understand the relaxation mechanism which allows getting
control on the first term (which is unbounded but has a bounded momentum flux).
Using the Fredholm property of L4, ,, (obtained from Theorem 6.3 in chapter 1 by
the transformation (20)), we check that the kinetic flux A,, defined by

(156)

(157) A,) = (v — ew)™® — % v — ew|*I

is orthogonal to the nullspace ker(Lu,,,), so that there exists a unique
A, € ker(L /\AOW))l such that

£ Moy @A) = A
In particular, as L, ,,, is symmetric,
% J Mt oA fdv = % J Mty AwLoptg ey ()0
From now on, we use the notation
(158) Lug = —2M, 1, BM 001, Mtaw)9)
Qu(9:9) = M1 BMa 219 M) -

Since the collision integral is a quadratic operator, we get

1
E J M(l,sw,l)Awﬁdv

(159) N
:JM(I,xw,l)A ( Qulferfo) = 5 (\/M(lewl) \/Muswl)))dv

Using (156) and (159), we obtain a control on the flux in terms of the modulated
entropy and of the entropy dissipation whenever the velocities remain bounded,

which is of course not always the case.
The last point consists then in gaining some integrability with respect to the v
variable. In order to do that, we apply the strategy presented in the previous chapter
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(Lemma 3.4). We introduce the projection P,, on the kernel of £,,
(160> f; = owe + (fe - owe)a

where the first term is a polynomial of degree 2 in the v variable and thus is integrable
against any polynomial in v, and the second term is expected to converge to 0.
Using (156), (159) and (160), together with the identity

1
Qw(nwfa wa) = iﬁw((nwf)z) )
(see chapter 4, Lemma 4.2), we eventually arrive at the following decomposition
1
| 2.~ Moo
1 2
=5 J MewyAw(Twf:)"dv
1
1 J M gy Aa(fe — I f)(fe + I f)dv
(161)
1 -
5 J Mt o0 Aw Qu(fi — o for fi + I fo)dv

9 B F. F,
2 0 & 7 & dv
SQJ (e, 1A Qoo (\/M(Lm,l) \/M(Lew,l))

=h+1In+1n+1s.

6.4.2 - Control by the entropy dissipation

The term I3 measures in some sense the relaxation of F, to the manifold of local
Maxwellians, and is therefore expected to be controlled by the entropy production.
By the elementary inequality

@—yn@/y) >4z - Vy°, @y>0,
and the Cauchy-Schwarz inequality

0 F, F,
"\ V Maawn | Maan
+ oo

<C J “D(Fa)dvdacdt < CC™Medt3

2
L2t M o1y dvdacdt)

(162)

where

Uy = JJ |(U — V) 60|M(1,6w,1)(v*)d1)*da).
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Hence
(163) 3 L2ty < 2V CCPETD2 A Longany »

from which we conclude that I converges strongly to 0 in L?(dtdzx).

By the weighted coercivity estimate stated in chapter 1, Theorem 6.3 and the
transformation (20), we also expect the entropy production will control the distance
between f, and its hydrodynamic projection 7, f, on ker(L,,).

From the identity

e 2 F ol
Luf: =73 w\Jerel T T =2w ’
fi= s Qufif) 20 <\/ yZp— \/ Ma,,..wJ))

the L? bound (162) and the continuity of Q,, obtained by translation invariance (20)
from Lemma 3.3 of chapter 5

12w Dl 20, Mo iy < ClIBN L2, Moy | B 20 gy

we get
JXxﬂﬁwﬁ M(l_m_l)dvdm

1 2
5 Cllertefell e L2 o ain e Fell L2t vy

%Q F, F
e "\ Maawn || Mazwn

2
< OVl Lol 2 My

/2
+ O/ Dz %efell L2 My oy dode)

<

+ ||ngs ||LZ(1),,,M(1_,vw.1)d”dx)

L2(v,! M g 1ydodic

1
< C/l\/ﬁ(”)(s(fs - Hwﬂ)||%2(l)wM(l.l»:w.1)d’Udﬂ?) + S_ZH(FSM(MW'D)>

1
+ 7ﬁ0(5q+1)L1(dt)

using Cauchy-Schwarz inequality. Then, by the coercivity estimate

268 = st < C || 2t M v

we see that, for # small enough,

C
lx.(fe — 11 wfs)|\%mM(,,,,7,(,,1)dvdx)3 EWH (Fe| M@ ew1))
(164) :

1
+ ﬁ O(EQ+1)L1(dt) )
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where we recall that

0u() > = (1 + v — ).

Truncating large velocities |v — ew\Z > K in the integrand of I5; for some fixed
K > 0 gives

1
3l < CVR (G HEIMuse) + 06 )
(165) 1
Il < (G HELM: ) + 06 s ).

6.4.3 - Control by the relative entropy

Finally we control large velocities in the integrand of I3;. By Young’s inequality

1
P |Fs - M(l,srw,1>| |v - 8w|21

\vfsw|22K
4 * 1 2
< ng(l.sw.1> h(ef:) +h Ze\v —ewl” )1, ek |-
Estimating then the tail of the Maxwellian implies that

4 1
(166) il < g HEIMa ) + CVE exp ( 4K) '

Finally we estimate the nonlinear term ;. We start with the following explicit
computation:

1 1
2 J M(l,mv,l)Aw(waa)Zdv = (Z Kz — 3 |Z|21> ,

where

2= JMa,m,nﬂwﬂ(v —ew)dw .

By the Cauchy-Schwarz inequality
HIlHLl(daf) < CHM(LM-,D(Hwﬁf||L1<dxdv)§ CI|M(1,W,1)J’82HL1@W) )
As the L?-norm of f; is controlled by the modulated entropy, we finally obtain
C
(167) Ml < 5 HEIMa o).

Combining (161) with (163), (165), (166) and (167), we have completed the proof of
Lemma 3.1.
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7 - From Boltzmann to Navier-Stokes

We shall conclude this survey with a description of the main ideas in the proof of
the incompressible Navier-Stokes limit of the Boltzmann equation.

7.1 - Statement of the problem and main result

We start from the dimensionless Boltzmann equation in the incompressible
Navier-Stokes scaling, i.e. Kn = St = Ma = &

1
O +v -V Fy ==-BI:, F,),
(168) cor Ao = B 1)

Fy|,_,=F".

&

We consider this problem in the infinite, 3-dimensional space, i.e. x € R3,v € R? and

t > 0; the unknown in the above Boltzmann equation is the number density

F.=F.(, x,v) >0, and B is the Boltzmann collision integral for a hard sphere gas.
The initial number density is assumed to satisfy the relative entropy bound

(169) HF™|M) < C"?,
where as before

2
o

M®©@) = Mqon) = e

(27_[)3/2

As in the last two chapters, it is more convenient to consider the relative number
density and the relative number density fluctuation

F, F.—M
(170) G} - M 9 and 9 8M )
. Fin . Fin _ M
mo__ T e m __ T ¢
Gz: - M ’ and gs: - 8M ’

instead of the number density F..
The following notation for moments will be especially convenient:

(@) = Jgﬁ(v)M(v)dv

for each ¢ € L (Mdw).
Likewise, when dealing with quantities related to the entropy production, we
shall use the notation

du = | —v,) - oMM ,.dvdv.dw
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and we agree that the surface element dew on the unit sphere S? is normalized so that

ffn-r

Then, integrals with respect to the measure du will be denoted

(w) = ”J w(,v., 0)du, v., ),

for each y € L (du).

Problem. Given F" satisfying the relative entropy bound (169) — let F', be,
for each ¢ > 0, a renormalized solution of the scaled Boltzmann equation (168) with
initial data F".

Prove that the bulk velocity field fluctuation

u:(t, ) = % J vF (¢, ¢, v)dv — u(t, x)
R.‘z

in some weak topology, possibly modulo extraction of a subsequence, where u is a
Leray solution of the Navier-Stokes equations

(171) o+ u - Vo + Vup = uden,  divyu =0,

with initial data to be explicited and with kinematic viscosity u (implicitly) de-
termined in terms of Boltzmann’s collision integral B.

This problem is one part of the program initiated in [5]; it has been solved only
recently in [28], [29]. This last reference [29] is the one described below; although its
scope is more general than that of [28], it involves a new idea for handling unbounded
collision kernels that actually simplifies the discussion in [28].

Theorem 1.1 (Golse-Saint-Raymond [28], [29]). Let Ff," > 0 a.e. be a family of
measurable functions on R® x R® satisfying the relative entropy bound (169) and
such that

1 . .

B J vF™"dy — u™ in L} (R?),

)

for some arbitrary u € L2(R?). Foreach ¢ > 0, let F', be a renormalized solution of
the scaled Boltzmann equation (168) with initial data F™. Then, as & — 0, the family

of fluctuations of bulk velocity field
1 J vF,dv
&

RS
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1

loc B4 X R?) and each of its limit points is a weak so-

1s relatively compact in L
lution of

o+ u-Vou+ Vep = udyu, divou =0,
(172) .
ul,_y =Pu™,

where P denotes as previously the Leray projection onto divergence-free vector
fields, and the kinematic viscosity is given by the formula

1 ~
,ufEJA.AMdv.

RS

Furtermore, this weak solution u satisfies the Leray type energy inequality

1 2
; J ) Bde +

R3

1 .
J ﬂ|qu|2dxds <lim F_ZH(FZ17|M)
e—0 G

R3

S ——

foreacht > 0.
1
We indeed recall from chapter 2 that the tensor field A(v) = &2 — 3 |1)|21 and the
vector field B(v) = %(Mz — 5)v both belong to the range of the linearization £, at M

of the collision integral, and denote

A=L}A € kerLy), B=L;'Be (kerly)".

Because the linearized collision integral £, is rotation-invariant, we recall that A
and B are of the form

A®) = a(WDA®), B@) = f(|v))B®)

where a and [ are radial, scalar functions.

Notice that the above statement does not involve a heat equation. This, however,
is by no means a limitation of the method in [28], [29], by which one can also derive a
system consisting of the incompressible Navier-Stokes equation coupled to an en-
ergy equation under the assumption of Boussinesq balance.

7.2 - Method of proof

In the remaining part of this paper, we outline the main ideas in the proof of the
Navier-Stokes limit theorem above (Theorem 1.1). Of course, this proof more or less
follows the formal argument presented above. However, several key properties of
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the solutions of the scaled Boltzmann equation used in this formal argument — such
as, for instance, the local conservation laws of momentum and energy — are not
known to be satisfied by renormalized solutions. Hence the proof sketched below
differs noticeably from the formal argument in several places, yet the general idea
remains essentially the same.

7.2.1 - A priori bounds

By Theorem 7.2 of chapter 3, renormalized solutions of the scaled Boltzmann
equation (168) relatively to M satisfy the entropy inequality for each ¢ > 0:

42

t
H(F,()|M) + ij J m d(G,)dudxds < HF™|\M),
0 R? R®xR®xS*

where d(G,) is the entropy production integrand defined by (29). Because of the
initial entropy bound (169), one has, for each ¢t > 0, the relative entropy bound

(173) HF,@®|M) < C"&,

as well as the entropy production estimate

e
(174) JRJ J” (G dudads < Ce

3 R®xR® xS*

We recall from Lemma 3.2 in chapter 5 that the relative entropy bound (173) implies
that

(175) J<(\/E - 1)2>dx < Cing?.

likewise, the entropy production bound (176) implies that
+ 00 9
(176) J J <<( GG, — /GG, >>dacdt < Cingt.
0

7.2.2 - Normalizing functions

As explained in our description of the DiPerna-Lions existence theorem, the
Boltzmann equation can be equivalently renormalized with any admissible non-
linearity whose derivative saturates the quadratic growth of the collision integral.
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Throughout the proof of the Navier-Stokes limit theorem, we shall essentially use
two kinds of normalizing nonlinearities:

e compactly supported nonlinearities that coincide with the identity near the
reference Maxwellian state; and
e variants of the maximal, i.e. square-root renormalization.

Nonlinearities of the first kind are used to define the renormalized form of the
Boltzmann equation in which one passes to the limit as ¢ — 0, while the square-root
normalization is used to establish compactness properties of the family of solutions
to the scaled Boltzmann equation.

The first kind of normalizing nonlinearities is defined through the class of bump
functions y € C*°(R.,) such that

(177) =1, y‘[ =0, vy is nonincreasing on R .

y’[oﬁs/Z] 2,1 00) ,

The Boltzmann equation is then renormalized with the nonlinearity
I'Z)=(Z—-1Dy2);

later on, we denote
. d ’
(178) 12) = (2~ 1p(2) = I'(Z).

The scaled Boltzmann equation renormalized with /" is put in the form

1 1.
(179) at(g’:yé) + E,U : v%(gﬂyt) = gyéQ(G¥7 GL) 9

where we have denoted
Ve = V(Gz:) s )A/s = ?(G:;)a

and where Q designates as previously the Boltzmann collision integral intertwined
with the multiplication by M:

(180) 9G,G) = M1 BMG,MG).

Later on, we shall pass to the limit in the momentum equation deduced from (179).
The second class of normalizing nonlinearities that we shall use to establish
compactness properties of the number density fluctuations G, is defined as

I'i)=\{+7Z, (>0

where the parameter { will be adapted to e.
We saw in chapter 3 that renormalized solutions of the Boltzmann equation sa-
tisfy the local conservation of mass (i.e. the continuity equation); in terms of the
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number density fluctuation g,, this local conservation law is expressed as
(181) £d¢(g,) + div, (vg,) = 0.

Now, the entropy bound (173) implies that

(182) a1+ \1)|2)g‘g is relatively compact in weak Llloc(dtdac;Ll(Mdv))

—see chapter 5, especially Lemma 3.1 in section 5.3.
Let us explain how we use (182). Modulo extraction of a subsequence, one has

g — g in L, (dtda; L(1 + [v]*)Mdw))
and hence
(9:) — (g) and (vg,) — (vg) in L, (dtde).
Passing to the limit as ¢ — 0 in (181) leads to
div,(vg) =0,

so that, denoting

u = (vg)
the relation above is the incompressibility condition in the Navier-Stokes equations

div,u = 0.

Let us now explain how the motion equation in the Navier-Stokes system is de-
rived from the Boltzmann equation. This is of course the main part in the proof, and it
involves several technicalities.

In particular, we shall need truncations in the velocity variable at a level that is
tied to ¢. For each function & = &(v), and each K > 6, we define

(183) ¢k, ) = O e -

Multiplying each side of the scaled, renormalized Boltzmann equation (179) by
each component of vk, and averaging in v leads to

(184) O g7) + A + 9,2 (3 bl g7, ) = DO

where F,(A) is the truncated, renormalized traceless part of the momentum flux
(185) F.(A) = %<AKggm>

while D, (v) is the momentum conservation defect

(186) D;;(?)) = 813<<UK1?;(G;G;* - G;:G;:*)>> .



130 FRANCOIS GOLSE and LAURE SAINT-RAYMOND [130]

Notice that truncating large velocities in the number density, or large values thereof
(which is what the renormalization procedure does) break the symmetries in the
collision integral leading to the local conservation of momentum (see chapter 1): this
accounts for the defect D,(v) on the right hand side of (184). As ¢ — 0, vk, — v while
G. — 1sothat y, — 1: hence, the missing symmetries are restored in the integrand
defining D.(v). Hence, one can hope that D.(v) — 0 as¢ — 0.

In fact, the strategy for establishing the Navier-Stokes limit theorem consists of
the following three steps

e Step 1: prove that, modulo extraction of a subsequence
(VK. g:7,) — (vg) = w in w—L, (dtdx),
while
P(vg g:7,) — u in CR,;D'(RY)),

where P denotes the Leray projection, i.e. the orthogonal projection on divergence-
free vector fields in L2(R®);

e Step 2: likewise, prove that

D.(v) — 0 in L}, (dtdx) ;

e Step 3: and finally prove that
P(div,F,(A)) — Pdiv, (u®?) — vA.u in D(R". x R?).

Once these three steps are completed, one applies P to both sides of (184), which
gives
(187) 0P (VK. g:y.) + P(div,F.(A)) = PD,(v).

Taking limits in each term as ¢ — 0 shows that u satisfies the Navier-Stokes motion
equation. As for the initial condition, observe that it is guaranteed by the uniform
convergence in ¢ that is the second statement in step 1 above.

7.3 - Vanishing of the momentum conservation defect

We start with step 2, i.e. we explain how to prove

Proposition 3.1. Under the same assumptions as in Theorem 1.1
D.(v) -0 in L] (dtdux).

First, we start from the elementary formula

GG, - GG = (\/GIGL — VGG ) (/G161 + VGG

= (a6, - \/G,;G;;*)2+2x/GL.G;,-*( GGy, — VGG
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and split the momentum conservation defect as
D,(v) = D}(v) + D%(v)

with

D) = 813 <<vm(\/ﬁ - \/W)2>>

and
D) = 833 <<ijs\/G£G£*< GG, — \/GsGs*) >>

That D}(v) — 0 in L}

loc(dtdx) follows from the entropy production estimate (176).
Setting

g, = 812 VGG (\/aG, - VGG.)

we further split Df(v) as

2 . 2 A o
D?(v) =— A <<vlvz>KSy8:g>> + - <<vy8(1 — yl:*yéyé*):,£>>
1 PPN PN

The first term is easily mastered by the entropy production estimate (176) and the
following classical estimate on the tail of Gaussian integrals

atN

J e*|v|2/2|v|a1‘v‘2>Rdv _ O(R - 7167}‘3/2) as R — +00.

RN

Observe that the integrand in the third term has the same symmetries as the original
collision integrand (before truncation in |v| and renormalization). The third term is
also mastered by a combination of the entropy production estimate (176) with the
Gaussian tail estimate above.

The most difficult part in the analysis of the momentum conservation defect is by
far the second term in the decomposition of Df (v) above. That it vanishes in LllO (dtdx)
as ¢ — 0 ultimately relies upon the following

Nonlinear compactness estimate

2
o 1) is uniformly integrable on [0, 7] x K x R?
&

(188)  a+ |v|>(

for the measure dtdxMdw, for each T > 0 and each compact K C R®.
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We shall not give any further details on the proof that Df(v) — 0in Llloc(dtdac),
which is based on the above nonlinear compactness estimate together with the usual
entropy production bound (176).

Let us however say a few words on the nonlinear compactness estimate itself. The
relative entropy bound (173) is essentially as good as an L>(dt; L>(Mdvdz)) bound on
g. on the set of (t,x,v)’s such that G.(t,x,v) = OQ1). Elsewhere, it essentially reduces
to an O(e) bound in L*>*(dt; L*(Mdvdzx)), which is quite not enough for the Navier-
Stokes limit. This is why the first works on this limit assumed some variant of this
nonlinear compactness estimate. For instance, in either [5] or [43], it was assumed
that

2

(189) 1+ )2

ey is uniformly integrable on [0, 7] x K x R?

whereas all that was known on this quantity was the estimate

a+ P = O0(/Ine) in L} (dtda; L'(Mdw)) .

9. _
1+G,
This led to a decomposition of the number density fluctuation as
9: =9, + g

where the «good» part of the fluctuation is

g, = 12— = 0(1) in L*(dt; L*(Mduda)
é J’_ é Gg
while the «bad» part is
' gf _  roo( g4 T1
9. = 116G 0Q1) in L*>=(dt; L (Mduvdx)) .

In later works — for instance in [50], [52] and [28] — this decomposition was slightly
modified, as follows. Pick a bump function y € C;*(R”,) such that

13
V[%]El, supp(y) C {é’é} and 0 <y<1

and define
1 - (Ga)
¢ =95G), ¢ = %gg :
It was proved in [28] that

(190) |gi\2 is uniformly integrable on [0, 7] x K x R?
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for the measure dtdxMdv, while

(191) A+ Py = 0( ) in L. (dtda; L'(Mdv)).

In|Ing|
Observe the difference between these last two controls and (189): with the new de-

2
finition of ¢’ and ¢, it is no longer true that |g’|*> < Cg?, while ( 7 fs Ga) <7 _'g—s o S0

that (189) actually entailed that the square of the good part in the old flat-sharp
decomposition is uniformly integrable — even with a quadratic weight in v.

In fact, the techniques in [28] did not allow adding a quadratic weight in v as in
(189), so that this compactness assumption remained unproved; fortunately, it was
possible to complete the proof of the Navier-Stokes limit for cut-off Maxwell mole-
cules with only the bounds (190)-(191), and the weighted estimate

&
v In|lng|

This control shows that the set where the bad part of the number density fluctuation
dominates is small in weighted v-space. There is a definite lack of symmetry between
the controls (191) — bearing on large values of g. — and (192) — bearing on large
[v]’s. This lack of symmetry is remedied in the most recent variant (188) of these

(192) A+ )’ - 9Gy)) = O( > in L} (dtdw; L' (Mdv)).

nonlinear compactness estimates (see [29]): we shall return to this when sketching
the proof of (188).

74 - The asymptotic momentum flux

With the vanishing of conservation defects (Step 2 in the proof of the Navier-
Stokes limit) settled in the previous section, we turn our attention to Step 3, i.e.
passing to the limit in the divergence of the momentum flux modulo gradients. This
is by far the most difficult part of our analysis, and does require several prepara-
tions. In the present section, we reduce the momentum flux to some asymptotic
normal form, to which we eventually apply some compactness results to be de-
scribed later.

Lemma 4.1. Let IT be the L>*(Mdv)-orthogonal projection on kerL; then, un-
der the same assumptions as in Theorem 1.1

2
F.(A) = 2<A (17 */@8_ 1) > ~ 2<21812 2/G,, \/5)> + 0Dy (ata)
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where we recall that the tensor field A is defined by
Alkerfand LA =A=v®v —é|v|21.

The proof of this lemma is based upon splitting the momentum flux as

1 G, —1
FS(A) = ; <AK,;y.s e >

=F(4) + F(4),

as a consequence of the elementary identity

G- D=/ - DG+ D

:%(\/68—1)24%(\/@—1)-

Then, one applies the following corollary of the nonlinear compactness estimate (188).

Corollary 4.2. Under the same assumptions as in Theorem 1.1

VG -1 VG -1
&

&

— 0 in L3(dtda; L*((1 + |v|)Mdv)
as e — 0.

With the corollary above, one can show that the term Fi (A) in the decomposition
of the momentum flux is asymptotically close to

(a(m %))

(notice that the high velocity truncation is disposed of since /7

VG, —1

has at most

polynomial growth in v as |v]| — + o). In order to deal with the second term Ff(A),
we introduce the following decomposition (already used in the previous chapter)

A

& & & &

:2<AQ<‘/G_€_1,¢G_8_1>>—§Q(\/G;\/@),

& &
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from which we deduce with the corollary above and Lemma 4.2 that F'f(A) is

close to
(o552 (o)

&

Lemma 4.3. Foreach ¢ € kerL, one has

Q4. ¢) = %ﬂ(cﬁz) .

Next, we explain how Lemma 4.1 is used in the proof of the Navier-Stokes limit.
To begin with, since

\/Gwa—lNl
e _2'%))‘g

one has

2

(o (%)

On the other hand, the entropy production estimate (176) implies that, modulo ex-
traction of a subsequence, one has

.912 (, /GG, — M) — ¢ in LA(dtdxdp).

Passing to the limit in the scaled, renormalized Boltzmann equation (179) entails the
relation

1
> ~ vk, 0:7,) © (v.9e7,) — 5 (R 9oy )T -

” Qb — v, w)Mdv.dw =v - Vg
R3xS?

1
= §A : Vyu + terms that are odd in v .

Eventually we arrive at the following asymptotic form of the momentum flux:

Proposition 4.4. Under the same assumptions as in Theorem 1.1, one has

1
F.(A) = (vk,9:7.) @ (VK,9:):) — 3 |<UK894;V8>|21

- u(qu + (qu)T) + oM (atd)

where
u = (vg) and g = lir%gg in w—Llloc(dtdx; LYMdv)) .
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7.5 - Strong compactness of (Vk.g.),)

In order to pass to the limit in the quadratic term (vg g.y,) and to conclude that

. 1 } 1
Paiv, (o2 & 05902 — 30w g:2) T ) — Paivsuow ')
in the sense of distributions on R’ x R? as ¢ — 0, the weak convergence properties
of g. established so far are clearly insufficient. One needs instead some strong
compactness properties on the family (vk g.7,)-

a) Strong compactness in the x-variable.

Velocity averaging is the natural way to obtain compactness in the space variable
x for kinetic equations in the parabolic scaling (168). We refer to chapter 2 for an
exposition of the main ideas and results in this direction.

For the purpose of studying the compactness of (vk g.y,) in the x-variable, we use
the nonlinear compactness estimate (188) coupled with the following variant of the L?
case of the Velocity Averaging theorem.

Lemma5.1. Let ¢, be a bounded family in L (dtde; L3(Mdv)) such that |$,)*
is locally uniformly integrable on R’ x R? x R? for the Lebesgue measure. Assume
that

(€0; +v - V)@, is bounded in LY (dtdxdv).

loc

Then, for each y € LA(Mdv), the family (¢,y) is relatively compact in L2 (dtdwx) with
respect to the x-variable, meaning that, for each T > 0 and each compact K C R?,

one has

S\, + 1) — (G (t, x)|dtda — 0
[0,T1xK

as y — 0 uniformly in e
See [28] for the proof — which mixes features of the proofs of Theorem 2.1 and

Theorem 3.3 in chapter 2.
Now, we apply the lemma above to

Ve + G, — 1
$=—( —
since
1 Q(GsaGé‘)
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for ¢ € (1,2), by the entropy production estimate (176). Since

\/ec—i-Gg—lng
e —é &

applying the Velocity Averaging lemma above leads to the following compactness
(«in the x-variable») result

Proposition 5.2. Under the same assumptions as in Theorem 1.1, for each
T > 0 and K C R® compact, one has

“ (0K o7, 6.2+ ) — (0K gy} (&, ) dtde — O
[0,TIxK

uniformly in ¢ as y — 0.

b) Strong compactness in the ¢-variable.

It remains to obtain compactness in the time variable. As we shall see, the sole-
noidal part of (vg g.y,) is strongly compact in the t-variable, but its orthogonal
complement — which is a gradient field — is not because of high frequency oscil-
lations in ¢.

Proposition 5.3.  Under the assumptions of Theorem 1.1, modulo extraction
of a subsequence, one has

P<7)Kggsys> —Uu
in C(R ,;w—L%) and in L (dtda) as & — O.

loc

Proof. Indeed, Proposition 5.2 together with the translation invariance of the
Leray projection P and the fact that P is a pseudo-differential operator of order 0
implies that

(193) ” Poguy) 2 + ) — Ploggoy,) (&, @) 2dtdae — 0
[0.TxK

uniformly in ¢ as y — 0. On the other hand, the conservation law (187) implies that

(194) 0 | Plogin) - &de = 01 in Lt
RS

for each compactly supported, solenoidal vector field & € H3(R®), since we know from
Lemma 4.1 and the bounds (175) and (176), that F.(A) is bounded in L} (dtdzx). Also,

loc
VG, —1
g7, < A+ \/E)GT
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so that (175) implies that
(195) (vk,g:y,) = O1) in B(R+;L2(R3)),

(where B(X,Y) denotes the class of bounded maps from X to Y).
Since the class of H?, compactly supported solenoidal vector fields is dense in that
of all H? solenoidal vector fields (see Appendix A of [42]), (195) and (194) imply that

(196) P(vg. g.7,) is relatively compact in C(R+;w—L2(R3)).

As for the L?

loc

(dtdx) compactness, observe that (196) implies that
P(vk,g.y,) * 15 is relatively compact in L7 (dtdz)

where y; designates any mollifying sequence. Hence
P(vk.g.7,) - P(vk.gey,) * x5 — Pu - Pux y; in L}, (dtdx)
as ¢ — 0. By (193),
P(UK,9:7.) * x5 — Pv.ger:)
inL?

loc

(dtda) uniformly in & as & — 0. With this, we conclude that
IP{o.ge7,)F — |Pul’ in L, (dtde)

which implies that P(vg g.y,) — Pu strongly in L2 (dtdx). O

loc

Next, consider

Van, = <vKggsys> - P<7)Kggs'){g> :

Since

(vk,gey,) — w in L} (dtdx) and div,u = 0
one has
(197) Ve, — 01in L2 (dtdx)

as ¢ — 0. Decompose then
Pdiv, ((vk,9:7:) @ (VK. ge7.)) = P dive(P (v, g:7,) © P(VUK,9:7:))
+ P dive(P(vk,ge7,) ® Vor,)
+ P div,(Vym, @ P(vk,g.7,))
+ P div,(V,m, ® V,m,).

By Proposition 5.3, the first term converges to Pdiv,.(u ® u) in the sense of dis-
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tributions, while the second and third terms converge to 0 in the sense of distribu-
tions because of (197).
As for the last term, for any mollifying sequence &, denote

5 1
7755 = s *p o *p T, ;“gs = s *u Eo *p <§ |v|§{ggsyg> .

Then one has

eV, + V,pid — 0in LY (R ; HY, (R®))

loc loc

D+ gmf —0in L} (R,; H; (R®)
as aresult of (184), the vanishing of momentum and energy conservation defects (see
Proposition 3.1 for the momentum, and proceed analogously for the energy) and the
fact that F,(A) is bounded in Llloc(dtdac) (see Lemma 7.4, and the bounds (175) and
(176)). From the above system, P.-L. Lions and N. Masmoudi observed in [43] that

1 N
div, (Vo7 ® Ver)) =5 Vo (|Vxn§ 2_?

;L&
3 &

2
)+ o0 -

By the strong compactness in the x-variable (see Proposition 5.2)
Pdiv,(V,m, ® Vym,) — 0

in the sense of distributions. Collecting the observations above, we have just proved
that

Proposition 5.4. Under the assumptions of Theorem 1.1, modulo extraction
of a subsequence, one has

Pdivx(<7)1{,;geyg> ® <vK,_gEy,s>) — Pdiv,(u ® u)

in the sense of distributions on R* x R® as ¢ — 0.

With this Proposition, all three steps in the proof of the Navier-Stokes limit
(Theorem 1.1) are completed.

7.6 - The nonlinear compactness estimate

It only remains to prove the nonlinear compactness estimate (188), on which the
two most important steps in the proof of the Navier-Stokes limit — i.e. the vanishing
of conservation defects and the limiting form of the momentum flux — are based.

The nonlinear compactness estimate (188) will of course be obtained from
statement 1) in Theorem 3.8 of the second chapter. In fact, we first observe that, for
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eachce (1,2)

g <¢m- 1>2y<85(¢m - 1)>
e e &
satisfies
¢ = 0Q) in Li*(L'Mdvda))
while

(0 +v - V)¢ = 0(1) in L}, (dtdeMdv).

Wenextlet § — 0 and remove the & from under the square root (in that order) so that

2

¢(3 ~ \/G‘s - 1
& e °

In order to apply Theorem 3.8 to ¢f, it remains to prove that this family is uniformly

integrable in the v-variable. Together with Theorem 3.8, this was one of the new key

ideas in [28]. In fact, we prove that

Proposition 6.1. Under the assumptions of Theorem 1.1, for each T > 0
and each compact K C R, the family

&

2
a+ v|>(ﬁf - 1)

is uniformly integrable in the v-variable on [0,T]x K x R® for the measure
dtdaMdv.

This proposition improves upon the result in [28], that only applied to cutoff
Maxwell molecules. Its proof is fairly technical, so that we shall only sketch the main
new idea in it.

Start from the identity (already used to study the asymptotic momentum flux in
section 4)

(198) w(@) :sQM(\@_l,‘/CT"'_I) —%QMMEZ, VG).

& &

Next, we recall the Bardos-Caflisch-Nicolaenko spectral gap for £ in weighted space
(see chapter 1, Theorem 6.3)

(BLyd) > Col+ D), ¢ € (kerL)*

together with the Golse-Perthame-Sulem continuity estimate for Q (see chapter 5,
Lemma 3.3)

1208, Dl 214 oy vy < ClPN L2azan 19l o opazan) -
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Using both estimates in the identity above leads to the following control

(1-0@)“@

VG, —1

&

1

‘m—l_
&

2 (Mdv))

L2((+]o))Mdv)
2
VG -1
< 0 +00)|Y

L2(Mdv)

This control suggests that
-1 VG, -1
\/CTET is close to its hydrodynamic projection /7 Gef

precisely in that weighted L? space that appears in the statement of Proposition 6.1.

VG,

. . .. -1, .
Since the hydrodynamic projection I7 Y is as regular in v as one can hope for

(being a quadratic polynomial in v), this eventually entails uniform integrability in v
once the difficulties related to the (¢, x) dependence in the estimate above have been
handled. As we already indicated above, the remaining part of the proof is too

technical to be described here, and we refer the interested reader to [29] for a

complete argument.
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Abstract

This article surveys recent mathematical results on the kinetic theory of gases.
Specifically, the following topics are discussed in some detail

- the global existence theory of R. DiPerna and P.-L. Lions for the Boltzmann equation,
and

-the derivation of the classical models of fluid mechanics (i.e. the Euler or Navier-Stokes
equations) from the Boltzmann equation.

Among all existing results on these topics, we have chosen to discuss mostly those bearing
on solutions that are global in time and for arbitrary initial data satisfying only a priori
estimates with intrinsic physical meaning — typically, bounds on the total mass, energy or
entropy.

Consequently, the mathematical methods presented here are well adapted to handling
limits of sequences of functions with little or no uniform regularity. In particular, we study
compactness arguments in LP spaces implied by controls on derivatives of solutions coming
from the partial differential equations satisfied by these solutions.
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