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1 - Introduction

Let (M™*1, g) be a compact (m + 1)-dimensional Riemannian manifold. We are
interested in the set S(X', M, g) of embedded hypersurfaces 2« M which have mean
curvature constant (but not fixed). Observe that the topology of the elements of
S(X, M, g) is fixed by the topology of 2.

For a generic choice of metric g on M (i.e. for g belonging to an open and dense set
of metrics in C® topology) the set S(X, M, g) is the union of smooth 1-dimensional
manifolds [25], [34]. Some of these 1-dimensional manifolds might be compact but
others might be noncompact and it is of interest to understand the compactification
of the later since they give information about the set S(2, M, g) itself. We report
some recent progress in this direction.

We will also compare the results obtained in this geometric framework with re-
cent results which have been obtained in the study of singularly perturbed semi-
linear elliptic partial differential equations or also in the study of singularly per-
turbed Hamiltonian systems.

2 - The mean curvature

We briefly recall the definition of the mean curvature of a hypersurface since this
is the central object of this note. We consider a hypersurface S which is embedded in
M and we denote by n = ng the unit normal vector field about S which is compatible
with the orientation. Given a (small) smooth function w defined on S, we define the
hypersurface S,, as the normal graph of the function w over S. Namely, the hy-
persurface S,, is parameterized by

p € S — Exp,(w(p)n(p))

where Exp denotes the exponential map in (M, g). Conversely, any embedded hy-
persurface S which is close enough to S can be written as S = 8, for some (small)
smooth function w. We are now in a position to define the mean curvature of S first
using some variational approach and then using some differential geometry.

We consider the m-volume functional

(1) Aw) = J dvols,.
Sw

Then, the differential of A computed at w = 0 can be written as

(2) DA—(v) = — JH v dvolg
S
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for some function H := H(S) which is precisely the mean curvature function of S.
Observe that the sign of the mean curvature H depends on the choice of the or-
ientation but the mean curvature vector H := H n does not.

For practical purposes (i.e. computational issues), it is convenient to give another
definition of the mean curvature H(S) of the hypersurface S. We define the second
fundamental form by

bs(X,Y) :=g(VxY,n), VX, YeTS
where V denotes the covariant derivative on (M, g). Using the metric g, we can define
the shape operator Ag as a symmetric endomorphism of 7'S by
gAs X,Y) = bsX,Y), vX,Y €TS.
The mean curvature of S is defined to be the sum of the eigenvalues x; of Ag, which
are usually referred to as the principal curvatures of the hypersurface S. Hence
HS) =rx1+... +xp.

Observe that we have defined the mean curvature to be the sum of the principal
curvatures instead of their average.

3 - Embedded constant mean curvature hypersurfaces

3.1 - Variational approach

Let us consider an embedded oriented hypersurface S. Given any small function
w which we decompose into w = w* — w~ where w* := max (£ w, 0), we define

B, = {Exp,(tn(p) : *te 0w (p)}

to be the domain between S and S,,-. With this notation, we define the (m + 1)-vo-
lume functional

V(w) = J dvoly — J dvolyy
BwJr By~

where volumes are counted positively when w > 0 and negatively when w < 0. The
first variation of V is given by

®3) DV o) = Jv dvolg

. e S
and its second variation is given by

4) Dzv‘wzo(v, V) = — JH?)Z dvolyg .
S
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Of interest will also be the operator which appears in the second variation of the
m-volume functional .A which has been defined above. We have

(5) D* A0, v) = J(|vgv|2 — |Ag|* v* — Ric(n, n)v* + H?v?) dvolg
S

where |Ag|? = K2 + ... + K2, is the square of the norm of the shape operator Ag and
Ric is the Ricci tensor on (M, g).

In view of (2) and (3) we see that critical points of the functional .4 with respect to
some volume constraint ¥V = cte have constant mean curvature. Here the mean
curvature appears as a multiple of the Lagrange multiplier associated to the con-
straint (and hence it is constant). From a slightly different point of view, it follows
from (2) and (3) that hypersurfaces with constant mean curvature equal to / are
critical points of

EWN) = AWl + 2 V(©S).

Indeed, observe that the first variation of this functional reads

DE—o(v) = J(/l — H)vdvolg
S

and hence is equal to 0 if H = A, while its second variation reads

D2 Ao, v) = J(|ng\2 — |Agfv* = Ric(n,n) v + (H? — AH) v*) dvolg.
S

Hence, if H = 4, i.e. S has constant mean curvature equal to 4, then the second
variation of £ reduces to

D28|w:0(v,v) = J(|ng|2 — |AS|2 v? — Rie(n, n)v?) dvolg.
S

This quadratic form can also be written as

D25|w:0(7}7 V) =— JU%S v dvolg
S

where by definition Jg is the Jacobi operator given by
Qg := ds + |Ag|* + Ric(n,n).

Here 4g is the Laplace Beltrami operator on S.
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Minimizers of the functional .4 with respect to some volume constraint V = cte play
avery important role since they are solutions of the well known isoperimetric problem
concerning which an important literature is available. We shall refer to [27] and to the
references therein for precise results. Finally, critical points of the functional .4 have
(constant) mean curvature equal to 0 and are usually referred to as minimal hy-
persurfaces. Again, there is a huge literature on minimal hypersurfaces in Riemannian
manifolds and we shall refer to [4] for references and recent developments.

3.2 - Embedded constant mean curvature hypersurfaces in R™*

The sphere of radius p, S}’ C R™1 has constant mean curvature H = . The
question whether, in Euclidean space, there are other embedded compact examples
has been negatively answered by A.D. Alexandrov [1] in the celebrated:

Theorem 3.1 (A.D. Alexandrov). The spheres are the only compact em-
bedded constant mean curvature hypersurface in R™ ™.

It turns out that relaxing the embeddedness condition changes the picture
completely and, since the early 1980’s there has been a lot of results concerning the
understanding of compact constant mean curvature hypersurfaces in Euclidean
space [12] and [11], triggered by the pioneer work of H. Wente [33].

Relaxing the compactness assumption also changes the picture completely.

. . -1 .
Obviously, the cylinder S;”‘l x R! has mean curvature H = mT But there is also

a one parameter family of embedded hypersurfaces of revolution which have con-
stant mean curvature (in dimension m = 2, these surfaces had been found by
C.E. Delaunay in the middle of the 19-th century [5]). In any dimension, these hy-
persurfaces can be parameterized by

(s,8) € R x 8" — p(re”® x, k(s)) € R"™,

m=1

1 . .
where p >0 and 7 € (O,—(m — I)Tl>. The function s — o (s) is a smooth non-
constant solution of

@0 + e + e R = 1
and the function s — x (s) is defined by
({% = ‘52(620 + 6(277)1)5).

It is easy to check that these are constant mean curvature hypersurfaces [10]. They
have been the starting point of the development of the theory of complete non-
compact constant mean curvature hypersurfaces [16], [13], [17].
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4 - Local foliations by CMC hypersurfaces

In the early 1990, motivated by possible applications in general relativity, R. Ye
proved the existence of constant mean curvature spheres in Riemannian manifolds.
More precisely:

Theorem 4.1 (R. Ye). Assume that p € M is a nondegenerate critical point
of the scalar curvature R on (M, g). Then, a neighborhood of p is foliated by con-
stant mean curvature topological spheres X(p), for p € (0, py).

In fact, if S,(¢q) denotes the geodesic sphere of radius p centered at g, the leaf X(p)
of this foliation is a normal graph over S,(¢) for some function w = O(p?) and some
point ¢ € M such that dist,(p, ¢) = O(p?). We shall make this statement more precise
later on.

This result gives a local description of some noncompact components of the space
S(S™, M, g). The condition on p to be a critical point of the scalar curvature is “al-
most” necessary for the existence of such foliation and R. Ye has proved, under some
extra technical assumption, that the existence of such a foliations is necessarily as-
sociated to a critical point of the scalar curvature on M.

The m-volume of the leaf X(p) can be expanded as

_ m|Qm _ 1 2 4
AE() = p" IS |<1 sy B P+ O >)

while the volume of the mean convex part of M — X(p), which is a domain By, en-
closed by the leaf X(p), can be expanded as

m+1

P my (1 M+2
VBsp) =7 I (1 2m(m + 3)

R, PP+ O(P4)>

where R, is the scalar curvature at the point p. It is known that solutions of the
isoperimetric problem for small volumes are close to small geodesic spheres [27] and
it is very likely that, for generic metrics g on M, these solutions belong to one of the
foliations obtained by R. Ye. This has not yet been proven since some additional work
is required, but this would allow one to expand, in terms of the small parameter¢ > 0,
the isoperimetrie profile Z(¢) defined by
I = inf  AS)
S:V(Bs)

where By is the domain enclosed by S and V(- ) is the (m + 1)-dimensional volume
functional.

It would be interesting to extend R. Ye’s result in the case where the metric has
constant scalar curvature (in which case all points are degenerate critical points of
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the scalar curvature) or even when the metric is Einstein. The solutions of the iso-
perimetric problem for small volumes are known to be close to geodesic spheres and
a natural question is understand where these spheres can be on the manifold.

5 - Proof of Theorem 4.1

We give a sketch of the proof of R. Ye’s result. This proof involves the same in-
gredients as the original proof but has the advantage not to be specific to the mean
curvature operator and hence it can be extended to prove the existence of hy-
persurfaces with constant k-th symmetric function of the eigenvalues of the shape
operator [19]. Assume that we are given ¢ € M and let £, ..., E,,.1 denote an or-
thonormal basis of T, M. The geodesic sphere of radius p centered at ¢ € M is de-
noted by S,(¢q) and can be parameterized by

x € 8" — Expy (p O))
where

e=( ... ") es” and O(x) == ijEj
J

parameterizes the unit sphere in T, M.
Given a small function w defined on S™, we consider the perturbed geodesic
sphere S,(q, w) which is parameterized by

w € 8" — Exp) (p(1 — w(@)) O@)).

The mean curvature of the hypersurface S,(q, w) cannot be computed explicitly,
however we can easily obtain its expansion in powers of the constant p and the
function w together with its partial derivatives. This expansion reads

1

m
H(S)(q,w)) = 573

. 1 :
Ricy(0,0)p — 1 Vo Ric, (0, 0) P2+ Oy(p)

1 1
+ 5 (Asm +m)w + p Lqy(w) +/—) Qq(w)

where Ric denotes the Ricci curvature tensor on (M, g). Here L, is a linear second
order differential operator whose coefficients are bounded independently of p and @,
is a second order nonlinear differential operator which gathers all the nonlinear
terms and has Taylor expansion whose coefficients are bounded independently of p
and which does not involve any constant nor any linear term. We refer to [19] for
precise statements.
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Since the mean curvature of S,(g) is close to the constant "itis tempting to try to
find a function w such that ’

HS,(q,w) = 2.
14

This problem is clearly equivalent to finding a solution to the following nonlinear
elliptic problem

(6) (dgn +m)w = é Ric (0, 9) p +i Ve Ric(0,0)p* — O(p*) — p? L(w) — Q(w)

where we have dropped the g indices for the sake of simplicity in the notations. In
order to solve this equation, we would like to invert the elliptic operator on the left
hand side and then apply some fixed point theorem for contraction mappings.
Unfortunately, the operator

ASIH + m

has a nontrivial kernel and in fact
KeI’ (ASm —+ m) = Span {xl’ . ,xWH’l }

From the analytical point of view, this is nothing but the fact that m is an eigenvalue
of —Ag» and from the geometric point of view this follows from the fact that the
operator Agn + m is the Jacobi operator about the unit sphere which has some
nontrivial Jacobi fields associated to rigid motions. We denote by I the L?(S™)-
projection onto Ker (4s. +m) and also denote by IT+ the L?(S™)-projection onto
Ker (dgn + m)*. Observe that I7 and I7+ commute with Agn + m.

We first consider the projection of the equation over Ker (dg. + m)". Assume
that w € Ker (4sgn +m)" in the L2(S™) sense then the projection of (6) over
Ker (dgn + m)* reads

(7) (Ugn +m)w = IT+ (; Ric(0, 0) p* + }Iv@Ric(@, 0)p® — O(p4)>

— 1T (p* L(w) + Q).

Now the operator Ag. + m restricted to functions which are L?(S™)-orthogonal to
Ker (4g» + m) is invertible and a fixed point argument (for contraction mappings)
implies that there exists w := w(p, q) € 24 (S™) (depending on p and q) solution of (7).
Moreover

w(p, q) = Ozaggu)(pP).
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Once this is understood, we consider the L2-projection over Ker (dg. + m) of the
equation (6) when w = w(p, ). Simple observations show that:
(i) Since w € Ker (dgn +m)*, then IT((dgn +m)w) = 0.

(ii) Since Ric(@, ®) is homogeneous of degree 2 in 2/ and the elements of

Ker (4gn + m) are homogeneous of degree 1 in 2/, then IT @ Ric(0, ©) pz) =0.

1 )
(iii) We have H(Z VoRic(O, @)p3> =Cn p3 Z (Vg,R)x' where ¢y, # 0 only

depends on m and R is the scalar curvature of (M ,9). The proof of this fact uses
Bianchi’s second identity. This is precisely the point where the gradient of the scalar
curvature appears in the analysis.

(iv) Next IT(O(p*)) = O(p°). This uses the fact that O(p*) can be decomposed
into the sum of a term which is homogeneous of degree 4 in 2/ and hence whose
projection over Ker (4dgn +m) is 0 and a term O(p°).

(v) Finally, I7(p? Lw(p, @) + Q(w(p, q))) = O(p?). The proof of this fact uses
the special structure of the operators L and @ and the special structure of w(p, ).

Collecting these observations, we conclude that the L2-projection over
Ker (4gn + m) of the equation (6) where w := w (p, q), reduces to solving the non-
linear equation on ¢ € M

(8) > Vg R, =0,
J

where the right hand side depends nonlinearly on g and belongs to Ker (4s» + m). At
this point, it is straightforward to see that, a necessary condition for the equation to
be solvable for any p tending to 0 is that the point p towards which g converges is a
critical point of the scalar curvature function. If p is a nondegenerate critical point of
R, then this equation can be solved using either a fixed point argument of a degree
argument. In addition the point ¢ solution of (8) satisfies dist(p,q) = O(p?). This
completes the existence of constant mean curvature leafs in R. Ye’s result. The fact
that these leafs constitute a foliation require slightly more work.

Nevertheless, observe that the obvious estimate 7(p? L(w(p, q)) + Q(w(p, q)))
= O(p*) is sufficient to prove the existence of the constant mean curvature leafs, but
is not enough to guarantee that the leafs constitute a foliation.

6 - Constant mean curvature clusters

In an ongoing work with A. Malchiodi, we construct further branches of
SS™, 2, g). To keep the level of technicalities as simple as possible, let us just
mention the:
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Theorem 6.1 (A. Malchiodi, F. Pacard). Assume that p is a nondegenerate
critical point of the scalar curvature R of (M,g) and further assume that V2R,
has a simple positive eigenvalue. Then there exists a one parameter family of
constant mean curvature topological spheres X(p), p € (0,p) which are em-
bedded and are close to the connected sum of two geodesic spheres S,(q1) and
S,(g2) with

dist(p,q;) =p+olp) and  dist(q,q2) =2p+ o(p).

This result shows that the result of R. Ye does not exhaust the description of the
ends of the branches of S(S™, M, g). This last result generalizes to arbitrary number
of spheres under some appropriate conditions.

In view of these results, we can ask the following question: Is it true that, as H(S)
tends to +oo,

(9) H(S)Wl H’H’L\_ S N jmTVL |SWL| 529’

for somej € N — {0} and p € M, where hypersurfaces S which belong to some fixed
noncompact branch of S(S™, M, g) are considered?

7 - Condensation over submanifolds

We are interested in the existence of families of constant mean curvature hy-
persurfaces which condensate over a submanifold. Assume that K is a k-dimensional
(embedded) submanifold in M with 1 <k <m — 1.

We define the geodesic tube of radius p > 0 around K by

S K):={peM : dist(p,K)=p}.
The mean curvature of S,(K) is given by

(10) H(S (K)) = mTk + o),

and is close to be constant. Based on the previous experience, it sounds reasonable to
perturb the geodesic tube into a constant mean curvature hypersurface, at least
when p is small enough. In fact, we have the:

Theorem 7.1 (F. Mahmoudi, R. Mazzeo, F. Pacard). Assume that K is a
nondegenerate minimal submanifold. Then, there exists I C (0,1), a countable
union of closed nonempty intervals, such that:
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o Vpel, S,(K) can be perturbed into X(p) a constant mean curvature hypersur-
face with

HEp) ="k
p

o Forallt> 2 there exists ¢; > 0 such that
[IN,7) -7 <crt.

Some remarks are due. This result proves the existence of constant mean cur-
vature hypersurfaces whose topology is given by the topology of SNK, the spherical
normal bundle of K in M. In general, the result does not hold for all small values of p
and in fact 7 is the union of countably many disjoint closed nonempty intervals. This
is related to some underlying bifurcation phenomena which prevents us to carry over
the construction for any small values of p, as was the case in R. Ye’s result. The
second property shows that, even though 7 might not contain any interval of the form
(0, 7) it is denser and denser in this interval as » tends to 0.

In addition, for a generic choice of the metric g on M, this result proves the ex-
istence of infinitely many distinet noncompact branches in S(SNK, M, g). This fol-
lows from the fact that the index of X(p) tends to +oc as p € I tends to 0.

Again, the hypersurface 2(p) is a normal graph over S,,(f{p) for some function
w = O(p?), where Kp is itself a normal graph over K for some normal variation
d = O0p2).

Observe that, in this result, the submanifold K cannot be any submanifold but has
to be a minimal submanifold and indeed, if one were to compare this result with R.
Ye’s result then the assumption on p being a critical point of the scalar curvature in
R. Ye’s result is now replaced by the fact that K has to be a minimal submanifold.

We end up this discussion by giving explicit examples of such hypersurfaces when
M™+1 = §m+1 with the standard metric and K = {0} x S¥. Given r € (0,1), we con-
sider the hypersurface

2r) =8 Sh—

which has constant mean curvature given by

2
H(zw)):(m—k)”lr’" "

VI
This gives explicit the hypersurfaces whose existence is proven in Theorem 7.1.
Observe that these hypersurfaces exist for all » € (0,1) but on the other end the

standard metric on S”*! is not generic! Other explicit hypersurfaces can be defined
analogously in appropriate quotients of R™*! or 1"+
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8 - Proof of Theorem 7.1

We consider the perturbed geodesic tube S,(K,w, @) parameterized by
(11) (p,x) € SNK — Exp, (p (1 — w(p, v)) O(x) — D(p))

where w is a function defined on the spherical normal bundle SNK and @ is a section
of the normal bundle NK. The role of @ is to parameterize all k-dimensional sub-
manifolds close to K just as in R. Ye’s proof the center of the geodesic sphere had to
be chosen close to the critical point of the scalar curvature. The function w plays the
role of the corresponding function in R. Ye’s proof.

As in §5, we expand the mean curvature of the hypersurface parameterized by
(11) in terms of p, w, @ and their partial derivatives. We obtain

m—k

H(S,(K,w, ®)) - B(6,6)p + 0%

1

+ pLw, D) +% Q. @)

where B is a quadratic form defined on NK and Ik is the Jacobi operator about K.
We refer to [20] for the details. We shall not give the exact expression of the operator
B but only mention that, in a local trivialization, B(©, ©) is homogeneous of degree 2
in the coordinates a/. The Jacobi operator Jx is nothing but the operator which
appears in the second variation of the k-dimensional volume functional, or equiva-
lently in the differential of the mean curvature operator about K. It is given by

X = A + B + RY

where A% is the rough Laplacian on NK, B is a potential associated to the second
fundamental form about K and iY is some contraction of the curvature tensor as-
sociated to the connection on NK. We refer to [18] for further details. The important
fact for us is that this operator, acting on sections of the normal bundle, is elliptic and
is invertible, since we have assumed that the minimal submanifold K is non-
degenerate.
Observe that, when w = 0 and @ = 0 we have
HS (K, w, ®)) = mTk +0()

which is better than what was claimed in (10). This improvement is due to the fact
that we have assumed that K is a minimal submanifold.
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We would like to perturb S,(K) in such a way that the mean curvature of the

perturbed hypersurface is equal to H = m_—k The problem amounts to find a
function w and a vector field @ satisfying

1
(12) , .
=B(0,0)p — O(*) — p L(w, D) — P Qw, D).
We decompose any function v defined on SNK as
v=pw—+g(D,0)
where, for all p € K
wp,-) L Ker(Ugnr +m —k)

and @ is a section of NK. i.e. for every p € K we consider the eigenfunction de-
composition of w(p,-) in terms of eigenfunctions of Ag.. We denote by II the
L2(S™*)-projection over Ker (Ag.—« +m — k) and by IT+ the L?(S™*)-projection
over (Agmr +m — k)* so that

Tv(p,) = g(@(p),®0)  and T v(p,-) = pw(p,-).

Finally, we denote by L, the operator
1 N
L, (pw + g(®, O)) := <p Ag + /—)(Asm—k +m — k)) w+ 9(Jg D, 0)

which appears on the left hand side of (12).

8.1 - Analysis of the spectrum of L,

The spectrum of L, is the union of:
e The set of
, 1

where /; are the eigenvalues of 4k and y; are the eigenvalues of Agn«.

e The set of eigenvalues of the Jacobi operator Ik, none of which is equal to 0
since K is assumed to be nondegenerate.

Obviously, an important new difficulty arises since

m—k
Ai

(13) Ay = (m—k)=0 when p=

1
b
P

and hence the operator L, is not invertible for this value of p.
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Nevertheless, when

(14) p¢{ mi;k : jzl},

one can evaluate the distance between the spectrum of ., and 0. This yields some
estimate of the norm of (L,,)f1 (say as a operator from L>(SNK) into W22(SNK)).
Unfortunately, formal computations show that, when k > 2, the discrepancy p L is
not small enough to consider L, + p L as a small perturbation of L,,. Also, still when
k > 2, the error term B(@, ©) p + O(p?) is too large and these two facts annihilates
any hope to apply some fixed point argument to solve (12) when k¥ > 2. When k = 1,
i.e. when K is a geodesic, the distance between two consecutive eigenvalues of
Ag( = 8?) is “large enough” and yields a reasonable estimate of the norm of (Lp)_l.
Therefore, in this case one can obtain a solution of the nonlinear equation by ap-
plication of a fixed point theorem for contraction mappings. This is precisely what
has been done in [25].

In order to overcome this difficulty when &k > 2, we have adopted a strategy which
was developed originally by A. Malchiodi and M. Montenegro in a different context
[24].

8.2 - Finite tmprovement of the approximate solution

The first important idea is to improve the approximate solution we are working
with. To do so, it is natural to apply some iteration scheme and define by induction
(w;, @;), © > 0, as the solution of

1 ~
pAg Wiy + ;(Asm—k +m — k) wi + 9(Jk Pit1, O)

1
= B(6,0)p — O(*) — p L(w;, ®;) — p Qw;, ;)

and, for example wy = 0, @y = 0. Needless to say, one has to assume that (14) is
fulfilled. It turns out that this is not the right iteration scheme to consider since, as
mentioned above, the operator on the left hand side might not be invertible for all
values of p and, even in the cases where it is invertible, the norm of its inverse is large
with respect to p. Instead, the idea of A. Malchiodi and M. Montenegro is to use the
iteration scheme defined by

1

— (A +m — k) wi1 + 9(Jg Piv1, 0)
(15) ,
= B(0,0)p — O(p*) — p L(w;, ®;) — p Qw;, ;) — p Axw; .
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The advantage of this iteration scheme versus the previous one is that, this time, the
operator on the left hand side has a nice bounded right inverse in the following non
conventional sense: Given any function pz + g(¥, ©) defined on SNK where z(p, -) is
L2(S™*)-orthogonal to Ker (Agn—+ +m — k) and ¥ is a section of NK. We first solve
the equation

Xpd=V.

This is where the assumption on the nondegeneracy of K is used since it implies that
the Jacobi operator 3y is invertible. Next, we solve

1
; (Asm—/c +m — k) 'W(p, ) = z(p7 )

for each p € K. This amounts to consider p € K as a parameter. Finally, direct
computation shows that we have

1

This recipe yields the existence of a well defined operator
pz+g(¥,0) € LASNK) — pw + g(®,0) € L (SNK)

whose norm is bounded independently of p and which is a “right inverse” for the
operator which appears on the left hand side of (15). Naturally, the main drawback is
that we do not have any gain of regularity along K! since the operator on the left hand
side of (15) is not elliptic.

One might wonder if one can use this “right inverse” to solve (14) using a fixed
point argument. Unfortunately, on the right hand side of (14), the presence of Ak
again annihilates any hope for such a strategy since 2 degrees of regularity are lost at
each iteration.

Nevertheless, this “right inverse” is good enough for the iteration scheme to be
applied a finite number of times since B(®, ©) p — O(p?), the error term in (14), is a
smooth function. Using this strategy, we obtain easily

w;=00p? and & = O
and one checks that the mean curvature of S,(K, w;, ®;)) is given by

H(S/’(K7 Wi, ¢7)) = mT_k + O(/)ZH)

for all ¢ > 1.
The estimate for @; follow from the fact that I7(B(O, ©)) = 0.
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8.3 - Estimate of the spectrum of some operator

Now the problem reduces to find w=w; +w and & = &; + ® such that

—k
H(S (K, w, D)) = mT This amounts to solve an equation of the form
1 - X g = TR
pAK+;Mww+W%—m W+ g(Ig P,0) + pLi(iv, P) = Op )—;QMM¢Y

We will be able to solve this nonlinear problem using a fixed point theorem provided
we can show that, for some values of p, the inverse of the linear operator on the left
hand side has a norm bounded by some fixed power (independently of %) of 1/p.
Therefore, it remains to estimate the distance between 0 and the spectrum of the
operator

s 1 _ ~ = g
H%ﬂu:@AK+;Mym+4n—MMv+M6K¢JD+meM¢)

To this aim, one estimates the index of I.,; (i.e. the number of negative eigen-
values of [L,;). We get

(16) Index L,; ~cp*.

The proof of this estimate uses Weyl’s asymptotic formula to estimate the number of
eigenvalues of Ax which are less than a large constant

#GEN I <iy~IE

Next, we estimate the derivative of the small eigenvalues o of L, ; (considered as
multivalued functions) by

(17) p0,d>2(m—k)—cp,

as p tends to 0. Let us point out that this estimate is far from being optimal since
formal computations (for example starting from (13)) would predict that
Vi 0y,0 ~ 2(m — k). The proof of (17) uses a localization result for the eigenfunctions
associated to small eigenvalues: If [,; » = —o v and ¢ is small, then v is essentially a
function defined on K.

The estimate (17) has important consequences. For example, it implies that, for
small values of p, the small eigenvalues of [, ; are monotone increasing functions of p
and therefore, the index of L., ; is a monotone (decreasing) function of p. Now that we
know that the index is a monotone function of p, we can use (16) to show that, given
t > 2, the intervals [, 72] C (p,2p) such that

o — 1y > phtt
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and for which L, ; has no kernel for all » € [r1,72] cover at least a subset of size
p—cpof (p,2p).

For any such interval [, 72], using (17), we obtain a lower bound for the distance
between 0 and the spectrum of [,,; and hence a uniform estimate for the norm of

(L,»)" : LASNK) — L*(SNK)

by a constant times p~**? when r € (r; 4+ pF++1, 75 — pFH#+1), This is precisely the
bound on the norm of the inverse by a power (independent of 7) of 1/p we were
looking for. Once such a uniform bound has been obtained in the L? setting, elliptic
regularity theory provides a uniform bound (with a worst exponent) in the Holder
setting. The proof of the result is therefore complete.

8.4 - Open problems

It is an interesting open problem to prove that the above results have a suitable
converse, in other words if it is possible to characterize the possible condensation
sets of families of constant mean curvature hypersurfaces as their mean curvature
tends to oo. In this direction, let us mention the recent:

Theorem 8.1 (H. Rosenberg). There exists a constant Hy > 0 only depend-
mg on the geometry of (M, ) such that, if S is an embedded constant mean cur-
vature hypersurface with mean curvature greater than Hy then S is homologically
trivial.

Moreover, the distance from any point p in the mean convex part of M — S and S
1s bounded by c/H, where ¢ > 0 only depends on the geometry of (M, g).

It follows from §3.2 that, in R”*!, Delaunay hypersurfaces do exist. It turns out
that Delaunay type hypersurfaces also exist in T1"*! and they can be obtained by
reducing the problem to some nonlinear ordinary differential equation. Moreover
Delaunay type hypersurfaces also exist in S”*! and these can be understood as bi-
furcated branches from the one parameter family of hypersurfaces described at the
end of §7.

It is then a natural question to investigate the existence of these Delaunay type
constant mean curvature hypersurfaces in any compact Riemannian manifold.
Despite some partial result in this direction [19] the problem remains completely
open. The existence or non existence of these Delaunay type hypersurfaces for
generic choice of the metric ¢ is intimately related to a quantization result in the
following sense: The hypersurfaces constructed in Theorem 7.1 satisfy

(18) HES" *Hmes — m"™ k8" k| Hr K,



158 FRANK PACARD [18]

as H(S) tends to +oc. In other words, properly rescalled, the m-dimensional volume
density restricted to S converges uniformly to the k-dimensional volume density
restricted to K as the mean curvature tends to +oo. Is such a quantization result also
true for generic choice of the metric g and hypersurfaces S belonging to some fixed
noncompact branch of S(SNK, M, g)?

In another direction, is it possible to construct for generic metric, families of
constant mean curvature hypersurfaces which condensate along lower dimensional
sets which are still minimal in an appropriate sense, but which have singularities (for
example, a Steiner tree with geodesic edges)? When M"+! = §"+! with the canonical
metric such constructions seem possible, however again the canonical metric on S”*!
is a non generic metric!

9 - Concentration phenomena in singularly perturbed nonlinear problems

The previous results can be understood as typical results which can be obtained in
many singularly perturbed nonlinear problems. We give here a few instances of this
phenomena.

9.1 - Example 1
We consider the semilinear elliptic equation
(19) Em—u+ul =0

where the function u is defined in 2 C R" and satisfies 9,4 = 0 on Q2 and % > 0in Q.
The problem is to describe some solutions of this problem as the parameter ¢ > 0 tends
to 0. First of all, there exist solutions of (19) which concentrate at nondegenerate critical
points of the mean curvature of 0Q, as ¢ tends to 0 [9]. These solutions are precisely the
counterpart, in this setting, of the solutions obtained in Theorem 4.1.

Also, solutions with multiple concentration at nondegenerate critical points of the
mean curvature of 9%, as ¢ tends to 0 have been proven to exist [8]. These solutions
are the counterpart, in this setting, of the solutions obtained in Theorem 6.1.

Finally, A. Malchiodi and M. Montenegro have recently proved the existence of
solutions of (19) concentrating along nondegenerate geodesics of 92 or along all R,
for a sequence of ¢ which tends to 0 [23], [24] and [21].

9.2 - Example 2

We consider the nonlinear Schédinger equations

(20) —iedy =My —Vy+ |yl y
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for which we are looking for standing waves

iAt/e

w(t,x) = e ux).

It is easy to check that the function » has to be a solution of a singularly perturbed
semilinear elliptic equation.

A. Floer and A. Weinstein [7] have proved the existence of solutions of (20)
concentrating at nondegenerate critical points of V as ¢ tends to 0. This results
parallel the result of Theorem 4.1.

Recently, A. Ambrosetti, A. Malchiodi and W.M. Ni on the one hand and M.
Montenegro, M. del Pino, M. Kowalczyk and J. Wei on the other hand have proved
that there exist solutions of (20) concentrating along curves which are non-
degenerate critical points of the weighted length functional

K— J(z +V)EEdvoly
K

for a sequence of ¢ which tends to 0. Again, these results parallel the result of
Theorem 7.1.

9.3 - Example 3

We give a last example in the framework of Hamiltonian systems. We consider
the Hamiltonian system associated to the action

Aly) = J - % |05y [* + w(y)

where the curve y is restricted to some submanifold M c R". For all ¢ > 0, we
consider the singularly perturbed action

Aw) = J— 2 10 @)+ 6@
&

where this time  is a curve in R" and G(x) := dist(x, M)?.

J. Shatah and C. Zeng [29] have proved that nondegenerate periodic solutions of
the Hamiltonian system associated to A can be perturbed into periodic solutions of
the Hamiltonian system associated to A, for a suitably chosen sequence of & which
tends to 0. Again, this result parallels the result of Theorem 7.1. A similar resonance
phenomena arises in the work of A. Malchiodi [22] where the equation

(21) P+ lZVV(x) =0
&

is considered for a curve x in R”. Here the potential V is assumed to have a sub-
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manifold M C R” as set of critical points and (X, Y) — D?V (X, Y) is positive definite
on the normal bundle of M. Then, periodic solutions of (21) are shown to exist for a
sequence of ¢ tending to 0 and these converge to a closed geodesic of M as e tends to 0.

10 - Further comments

If the concentration phenomena at isolated points has been extensively studied
over the last 30 years, the concentration phenomena along submanifolds has just
been the object of more recent attention.

Beside the above examples, there are important works for which a concentration
phenomena along submanifolds has been pointed out. This is for example the case in the
study of Sibert-Witten equations [30], the study of Ginzburg-Landau equation in higher
dimensions [3], the study of Cahn-Hilliard or Allen-Cahn equations [26], [15], ...
However, in all these last examples the resonance phenomena (which is present in the
previous list of examples) does not arise and the only problem one has to deal with is
usually the perturbation of the concentration set as the parameter tends to 0.

We end up this note by the following observation: In Example 3, if one assumes
that (X,Y) — D?V(X,Y) is negative definite on the normal bundle of M, then,
periodic solutions of (21) do exist for all small values of the parameter ¢ and these
converge to a closed geodesic of M as ¢ tends to 0. Hence the resonance phenomena
does not appear any more. Similarly, the equation which arises in the Allen-Cahn
theory [15] reads

(22) EAtu—ut=0.

The nonlinearity has the opposite sign as the one which appears in (19) and this
change of sign is responsible of the loss of the resonance phenomena in the study
of (22).
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Abstract

In this short note, we report some recent progress on the existence of constant mean
curvature hypersurfaces in Riemannion manifolds. We also compare these results with si-
milar results which have been obtained for singularly perturbed nonlinear problems.
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